
The price of Optimum in Stackelberg games on

arbitrary networks and latency functions

A. C. Kaporis∗ P. G. Spirakis ∗

March 2, 2006

Abstract

Let M be a single source-destination network of parallel links with load dependent latency
functions. M is shared by an infinite number of users, each scheduling its infinitesimal small
portion of total flow r to links in M of currently minimum delay. This may yield a Nash
assignment of flow with cost arbitrarily larger than the optimum one [13, 27], increasing the
Coordination Ratio [13] on M .

A Leader can decrease the coordination ratio on the “price” of the flow he controls. He wisely
acts first, assigning flow αr on M , and then all Followers react selfishly, assigning (1−α)r flow
on M . This is a Stackelberg Scheduling Instance (M, r, α), 0 ≤ α ≤ 1. In [23] the NP -hard
problem 1

3 -2
3 Partition was reduced to deciding if an instance (M, r, α), restricted to linear

latencies, admits a Leader’s strategy inducing a given cost, i.e. computing the optimal Leader’s
strategy is NP -hard. For systems with arbitrary latencies the coordination ratio is ≤ 1

α , or
≤ 4

3+α for linear latencies [23], or even better [1].
For any network M with parallel links and arbitrary strictly increasing latencies, we efficiently

compute the minimum portion βM of flow r needed by a Leader to induce M ’s optimum cost,
and the Leader’s optimal strategy. Then, we prove that computing the optimal Leader’s strategy
on instances (M, r, α ≥ βM ) is in P , and the coordination ratio is 1. The really hard instances
are (M, r, α < βM ) and no Leader’s strategy can induce the optimum cost, i.e. the coordination
ratio is > 1. Also, even if (M, r, α < βM ) the optimal Leader’s strategy can be computed in P
if each Mi ∈ M incurs latency `i(x) = aix + bi, with b1 ≤ . . . ≤ bm and a1 = . . . = am.

Unfortunately, Stackelberg routing in more general network topologies can be arbitrarily
hard. No performance guarantee is known with respect to the centrally controlled portion.
In particular, Roughgarden presented a modification of Braess’s Paradox graph, such that no
strategy controlling αr flow can induce ≤ 1

α times the optimum cost, ruling out all existing
scheduling methodologies.

However, our main result also applies to any network G, efficiently computing the minimum
portion of centrally controlled flow sufficient to induce the optimum cost.

Classification: Pricing and Equilibria in Networks, The Internet and the World Wide Web
Indication: Regular Presentation

Due to lack of space, some proofs are included in a clearly marked Appendix, to be read at
the discretion of the Program Committee.

∗Email addresses: {kaporis, spirakis}@ceid.upatras.gr, {spirakis}@cti.gr

1



1 Introduction

In large scale networks such as Internet the users/providers have freedom on how to route their load.
This allows them to make their choices according to their own individual performance objectives,
bringing the network to fixed points most times worse than the optimum one [7]. Such selfish
behavior is being studied with the notion of Nash Equilibrium in the mathematical framework of
Game Theory [6, 11, 12, 13, 15, 18, 19, 23, 29].

As a measure of how inefficient is the Nash equilibrium compared to the overall system’s opti-
mum, the notion of coordination ratio was introduced in [13]. This work has been extended (price
of anarchy is another equivalent term) in [4, 5, 9, 14, 20, 21, 22, 23, 27, 28].

To improve the performance of the system under selfish behavior a great variety of methodologies
have been considered so far. These methodologies intent to bring the system to fixed points closer
to its optimum performance. The network administrator or designer can define prices, rules or
even construct the network, in such a way that induces near optimal performance when the users
selfishly use the system. This can be achieved through pricing policies [3], algorithmic mechanisms
[8, 16, 17], network design [10, 28], or routing small portion of the traffic centrally [1, 11, 23].

Particulary interesting is the last approach where the network manager takes part to the non-
cooperative game. The manager has the ability to control centrally a part of the system resources,
while the rest resources are used by the selfish users. This approach has been studied through
Stackelberg or Leader-Follower games [1, 2, 11, 12, 23, 30]. One player (Leader) controls a portion
of the system’s jobs and assigns them to the system (Stackelberg assignment). The rest of the users
(Followers) having in mind the assignment of the Leader react selfishly. The assignment of Leader
and Followers is called Stackelberg Equilibrium. The goal of the Leader is to induce an optimal or
near optimal Stackelberg Equilibrium.

Motivation: (i) Single-commodity networks with parallel links. Consider a system M
of parallel links and a total of flow r to be scheduled on M , denoted as a Scheduling Instance
(M, r). Given an scheduling instance (M, r), there is a unique Optimum assignment O of flow r on
system M minimizing the total cost C(O) incurred on system M . We study the case of an infinite
number of selfish users, each assigning its infinitesimal small portion of total flow r on links in M of
currently minimum delay. Let the cost C(N) of the Nash assignment N on the scheduling instance
(M, r). Then,

C(N) = ε(M,r) × C(O) (1)

where ε(M,r) depends only on instance (M, r) and can be arbitrarily larger than 1 [27], but if all
links in M have linear load depended latency functions, then ε(M,r) ≤ 4/3 [13]. We try to obtain
a more clear picture of this degradation on system’s performance, measured by the factor ε(M,r),
by studying Stackelberg Scheduling Instances as in [23], and as in [11] where we focus on the case
of an infinite number of users (or simple user). According to [23, 11] there is a central authority
(Leader) that controls a portion 0 ≤ α ≤ 1 of the overall flow r to be assigned on system M , while
the rest (1− α)r of the flow is assigned by the infinite self-optimizing users (Followers) on M . In
[23] this is denoted as a Stackelberg Scheduling Instance (M, r, α), 0 ≤ α ≤ 1. This means that each
scheduling instance (M, r) corresponds to a family of Stackelberg scheduling instances (M, r, α),
parameterized with respect to α ∈ [0, 1]. Given a Stackelberg scheduling instance (M, r, α), the
goal of the Leader is to find an assignment (strategy) S of his flow αr on M , such that to induce a

2



Followers’s assignment T of the remaining (1− α)r flow, with cost C(S + T ) near to the optimum
C(O) one. That is

C(S + T ) ≤ ε(M,r,α) × C(O) (2)

More precisely, in [23] it was proved that ε(M,r,α) ≤ 1
α , 0 < α ≤ 1 for arbitrary latency functions,

and if restricted to instances with linear latencies it becomes ε(M,r,α) ≤ 4
3+α .

From Expression (2), we realize that the portion α captured by the Leader “pays” an upper
bound on system’s degradation factor ε(M,r,α) which is smaller than the plain one in Expression (1),
see also [1]. More precisely, in [23] it was presented the algorithm LLF that on input a Stackelberg
scheduling instance (M, r, α) computes a Leader’s strategy S inducing Nash assignment T with
performance guarantee C(S + T ) ≤ 1

αC(O). In case all links in M have linear latencies then the
performance guarantee is even better C(S + T ) ≤ 4

3+αC(O). However, on the same Stackelberg
scheduling instance (M, r, α) there may exist a better Leader’strategy S′ inducing T ′ such that
C(S′ + T ′) < C(S + T ), see footnote 6 in [23]. This means that LLF cannot always compute the
optimal strategy. Also, there may exist a strategy S′′, escaping from LLF, such that C(S′′ + T ′′) =
C(O). Such limitations are depicted in the negative result in [23] stating that the problem of
computing the Optimal Stackelberg strategy on a given Stackelberg scheduling instance (M, r, α)
is weakly NP -hard.

(ii) Arbitrary single-commodity nets. Finally, an important question [23] that motivated
us is the extension of the above results to arbitrary network graphs, closer to the nature of real
networks. Given an arbitrary single source-destination (s, t)-network G, can a Leader wisely assign
his αr portion on some edges, inducing a selfish s → t routing of the remaining flow with best
possible cost? Unfortunately, in [26] Appendix B.3 Proposition B.3.1, was exhibited a simple 4-
nodes graph where no strategy can guarantee cost 1

α times the optimum one. Notably, this 4-node
graph is reminiscent to the one of Braess’s Paradox. To the best of our knowledge, no performance
guarantee as a function of the centrally controlled portion α has been established for arbitrary
(s, t)-networks.

(iii) Arbitrary multi-commodity nets. Even less is known for Stackelberg strategies on
arbitrary networks when we have k amounts of flows r1, . . . , rk each ri to be routed through a
source-destination pair (si, ti), i = 1, . . . , k. The study of such k-commodities on arbitrary nets is
imminent, since they model in the most realistic way the interplay amongst competitive entities on
Internet.

Our results: (i) Single-commodity network with parallel links. Our first main result
is the polynomial-time algorithm OpTop that on input a scheduling instance (M, r) computes the
minimum portion βM of flow r needed by a Leader to induce the Optimum cost C(O) on M , as well
as Leader’s Optimal Stackelberg strategy, see the open question in [25] page 28. In other words,
for an arbitrary scheduling instance (M, r) and arbitrary continuous, differentiable and strictly
increasing latencies functions we prove that for all Stackelberg scheduling instances of the form
(M, r, α ≥ βM ) a Leader can enforce the Optimum cost C(O) on M , and the problem of computing
the Optimum Stackelberg strategy is in P . In view of Expression (2), for such instances the factor
ε(M,r,α≥βM ) is precisely 1. On the contrary, for all Stackelberg sceduling instances (M, r, α < βM )
it is not possible for a Leader to enforce the Optimum cost. Then in Expression (2) we get that
ε(M,r,α<βM ) > 1, which means that such Stackelberg scheduling instances are the really hard ones
and we can try to attack these by sophisticated fully polynomial approximation schemes as the

3



ones presented in [1]. Such non-optimizing behavior was presented also in [11], for the restricted
case of M/M/1 systems of distinct links. Notably, if such M/M/1 systems contain small groups
of highly appealing links or there are large groups of identical links then βM may be significantly
small.

Single-commodity network with parallel links, focusing on the hard region. Trying
to understand further the underlying complexity of hard instances (M, r, α < βM ), we started to
investigate systems of links, with appropriate load dependent latency functions that, hopefully,
may admit efficient computation of the optimal strategy. Our motivation is the case of simple
followers (which is identical to an infinite number of followers that we consider here) studied in
Section 8 in [11]. We compute the optimal Stackelberg strategy on hard instances (M, r, α < βM )
for any network with parallel links M = {M1, . . . , Mm} where each link Mi ∈ M has linear latency
`i(x) = aix + bi satisfying the property: b1 ≤ . . . ≤ bm and a1 = . . . = am.

(ii) Arbitrary single-commodity nets. Our second main result is an algorithm that ef-
ficiently computes the minimum portion βG of Leader’s flow, sufficient to induce the optimum
routing of flow r from a source-vertex s to a sink t on any network G. Despite the negative results
presented in [23, 26], we can extend OpTop to work on input an arbitrary network G.

(iii) Arbitrary multi-commodity nets. We are currently working on extending and formu-
lating our results for k commodities on arbitrary links.

Outline of the paper: In Section 1.1 we describe the model that we use for the case of parallel
links and the corresponding one for arbitrary networks. In Section 2 we present the polynomial-
time algorithm OpTop for parallel links. In Section 2.2 we prove its optimality for parallel links. In
Section 2.3 we generalize to arbitrary networks. We present our results in this order for reasons of
clarity. Due to lack of space the some proofs are included in Appendix A and figures in Appendix B,
to be read at the discretion of the reader. In Section 3 we focus on the hard region (M, r, α < βM )
of parallel links.

1.1 Model

Single source-destination parallel links: We adopt the model in [23]. We have m parallel links
connecting a single source vertex s to a sink vertex t. Each link i on flow xi incurs latency function
`i(xi) ≥ 0, differentiable, strictly increasing and xi`i(xi) convex on xi. Each selfish user controls an
infinitesimally small amount of the total flow r. Let the m-vector X ∈ Rm

+ denote the assignment
of jobs to the links in M such that

∑m
i=1 xi = r. This instance is annotated (M, r). The Cost of an

assignment X ∈ Rm
+ on the (M, r) instance is C(X) =

∑m
i=1 xi`i(xi) The minimum cost is incurred

by a unique assignment O ∈ Rm
+ , called the Optimum assignment. The unique assignment N ∈ Rm

+

defines a Nash equilibrium, if no user can find a loaded machine with < latency than any other
machine.
Arbitrary Networks: We adopt the model in [26] Section 2.1. A network is as a directed
graph G(V, E) with set of vertices V and edges E. There are k source-destination vertex pairs
(s1, t1), . . . , (sk, tk) and no self loops are allowed. Pi is the set of all paths amongst (si, ti), i =
1, . . . , k, and P =

⋃
i Pi. A flow is a function f : P → R+. The amount of flow fe on edge e ∈ E

is the flow it receives from all paths in P. If we focus on the flow of a specific source-destination
pair (si, ti) then we let f i the restriction of f to Pi, i = 1, . . . , k. The total of flow wishing to travel
through source-destination pair (si, ti) is ri and f is feasible if the flow it assigns on each path Pi

is ri. If flow fe traverses edge e it incurs latency `e(xe), where `e(·) is increasing, differentiable and

4



fe`e(fe) convex on fe. The latency of a path P ∈ Pi with respect to flow f is the sum of its edge-
latencies `P (f) =

∑
e∈P `e(fe). The cost of a flow f is C(f) =

∑
e∈E `e(fe)fe =

∑
P∈P `P (f)fP .

The unique Optimal flow f∗ is the one minimizing the cost C(·) of scheduling flow r on graph G
and due to convexity properties can be efficiently computed. We have a Nash equilibrium on a
network G if an only if for every commodity i ∈ {1, . . . , k} and paths P1, P2 ∈ Pi with fP1 > 0 we
have `P1(f) ≤ `P2(f). In other words, in each source-destination pair (si, ti) no flow in a loaded
path can find any other path from si to ti experiencing less latency.

2 Optimality of algorithm OpTop

Single-commodity network with parallel links. In this section we present algorithm OpTop
that computes the minimum flow that should be controlled by the Leader in order to induce the
overall optimum on a given instance (M, r). Let O := 〈o1, . . . , om〉 the optimum assignment and
N := 〈n1, . . . , nm〉 the Nash assignment on (M, r). Intuitively, OpTop initially loads si = oi to
each link Mi ∈ M with ni < oi, that is, to all links not appealing to the selfish users. Then it
discards all these not appealing links as soon as it loads them optimally. The remaining flow is
assigned recursively by OpTop in exactly the same fashion to the simplified subnetwork of links. It
terminates as soon as it encounters a simplified subnetwork with all of its links optimally loaded.

Algorithm: OpTop (Single-commodity network with parallel links)
(1) Set r0 = r the total flow in M . Compute the optimum assignment O := 〈oi : Mi ∈ M〉

on instance (M, r0). Set M ′ ≡ ∅.
(2) Compute the Nash assignment N := 〈ni : Mi ∈ M〉 on instance (M, r).
(3) For each link Mi ∈ M such that oi > ni set M ′ = M ′ ∪ {Mi}.

If M ′ ≡ ∅ go to (5).
(4) Set M = M \M ′ and O := O \ {oi ∈ M ′} and r = r −∑

Mi∈M ′ oi.
Set M ′ ≡ ∅ and go to (2).

(5) The portion of flow controlled by the Leader is βM = (r0 − r)/r0.

In Sections 2.1 and 2.2 we prove our main Theorem 1 for the case of a single-source, single-
destination network M of parallel links.

Theorem 1 Consider an instance (M, r) with latency function `i(·) per link Mi ∈ M differentiable,
strictly increasing and x`i(x) convex on x. Algorithm OpTop computes the minimum portion βM of
total flow r that a Leader must control to induce overall optimum cost on M , as well as Leader’s
optimal Stackelberg strategy.

In Section 2.3 we generalize Theorem 1 for arbitrary network topologies and the same standard
class of latency functions.

2.1 Useful machinery

Single-commodity network with parallel links. We denote the corresponding Nash and
Optimum assignments on an instance (M, r) as N = 〈n1, . . . , nm〉 with

∑m
i=1 ni = r, and O =

〈o1, . . . , om〉 with
∑m

i=1 oi = r. We give a more useful definition for the Nash assignment N .

Definition 1 An assignment N = 〈n1, . . . , nm〉of total flow
∑m

i=1 ni = r on (M, r) is called Nash
Equilibrium if there exists a constant LN > 0 such that for each link Mi ∈ M , if ni > 0 then
`i(ni) = LN , otherwise `i(ni) ≥ LN .

5



We denote as Stackelberg strategy S an assignment S = 〈s1, . . . , sm〉 of flow
∑m

i=1 si = βr, β ∈
[0, 1], on instance (M, r). Given S, we denote the induced Nash assignment as T = 〈t1, . . . , tm〉
with

∑m
i=1 ti = (1− β)r.

Definition 2 Given Stackelberg strategy S = 〈s1, . . . , sm〉 with
∑m

i=1 si = βr, β ∈ [0, 1], the
assignment T = 〈t1, . . . , tm〉 of the remaining flow

∑m
i=1 ti = (1 − β)r on instance (M, r) is an

Induced Nash Equilibrium if there exists a constant LS > 0 such that for each Mi ∈ M , if ti > 0
then `i(ti + si) = LS, otherwise `i(ti + si) = `i(0 + si) ≥ LS.

The Stackelberg Stategy S induces the Nash assignment T . The assignment T +S is called Stackel-
berg Equilibrium. The Cost of an assignment X = 〈x1, . . . , xm〉 on M equals C(X) =

∑m
i=1 xi`i(xi).

The cost of the Stackelberg Equilibrium S + T is C(S + T ) =
∑m

i=1(si + ti)`i(si + ti).

Definition 3 Link Mi ∈ M is called over-loaded (or under-loaded) if ni > oi (or ni < oi),
otherwise is called optimum-loaded, i = 1, . . . , m.

Definition 4 Link Mi ∈ M (or load si ∈ S) is called frozen if Stackelberg strategy S assigns to it
load si ≥ ni, i = 1, . . . ,m.

Luckily, by the Nash assignment N of the users, all links may end up optimum-loaded. In this way,
N ≡ O and the cost C(N) of the system is minimized, that is C(N) = C(O). In general N 6≡ O,
since the selfish users prefer and thus over-load fast links, while dislike and under-load slower ones,
increasing the cost C(N) > C(O). The crucial role of strategy S is to wisely pre-assign load si ≥ 0
to each link Mi ∈ M . This is successful to the extent that the induced Nash assignment T made
by the users will assign an additional load ti ≥ 0 to each Mi, yielding the nice property si + ti = oi

for each i = 1, . . . , m. Intuitively, strategy S biasses the initial Nash assignment N to the induced
one T , in a way that S + T ≡ O, minimizing the induced overall cost C(S + T ) = C(O) of system
M . It is convenient to state the following easy proposition.

Proposition 1 Consider an instance (M, r) with latency functions `j(·) j = 1, . . . , m. Let the
Nash assignment N = 〈n1, . . . , nm〉 of (M, r). If N ′ = 〈n′1, . . . , n′m〉 is the Nash assignment of
(M, r′) with r′ ≤ r, then for each link Mi ∈ M it holds: n′i ≤ ni.

Proof. The Proof is available at Appendix A.1.
Theorem 2 describes each Stackelberg strategy S inducing Nash assignment T with cost C(S+T ) =
C(N). In other words, Theorem 2 describes exactly all those useless strategies that induce cost
indifferent from C(N). Then, it is useless for OpTop to employ such a strategy S when trying to
escape from a particular Nash equilibrium N with C(N) >> C(O).

Theorem 2 Consider an instance (M, r) with latency functions `j(·) j = 1, . . . ,m. Let the Nash
assignment N = 〈n1, . . . , nm〉 of (M, r). Suppose that for a Stackelberg strategy S = 〈s1, . . . , sm〉
with

∑m
i=1 si = βr, β ∈ [0, 1], it holds sj ≤ nj , j = 1, . . . , m. Given S, let the induced Nash

assignment T = 〈t1, . . . , tm〉 of the remaining flow (1 − β)r. Then it holds nj = sj + tj for each
Mj ∈ M , in other words, N ≡ S + T .

Proof. The proof is available at Appendix A.2.
In view of the negative result of Theorem 2, a natural question concerns the properties that a
Stackelberg strategy must have in order to induce cost 6= C(N). We answer this question on
Theorem 3 and its generalization Lemma 1 below. Before this, we give a convenient definition.

6



Definition 5 Each Stackelberg strategy S that satisfies Theorem 2 is called useless-strategy, oth-
erwise is called useful-strategy.

Theorem 3 states that any link Mi ∈ M receiving load si ≥ ni by a strategy S (while there is no
link Mj ∈ M with load sj < nj) will become non appealing for the subsequent selfish assignment
T of the users. That is, for each Mi ∈ M assigned load si ≥ ni, its induced load by the Nash
assignment T equals ti = 0. Intuitively, in the induced Nash equilibrium T , the dictated load
si ≥ ni by strategy S to link Mi will remain “frozen” to si, i ∈ {1, . . . , m}.
Theorem 3 Let the Nash assignment N = 〈n1, . . . , nm〉 of on instance (M, r). Suppose that for
a Stackelberg strategy S = 〈s1, . . . , sm〉 with

∑m
i=1 si = βr we have either sj ≥ nj or sj = 0, j =

1, . . . , m. Then for the induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining load (1 − β)r
we have that tj = 0 for each Mj ∈ M such that sj ≥ nj , j = 1, . . . , m.

Proof. The proof is available at Appendix A.3
A crucial limitation of Theorem 3 is that it does not rule out the existence of a strategy S assigning
load sj < nj to some link Mj ∈ M in a way that at least one link in MS+

to become appealing
for the selfish users. Lemma 1 rules out such possibility. Intuitively, Lemma 1 states that each
assignment of load sj ≥ nj made by strategy S to each link Mj ∈ MS+

(see its definition in
Appendix C.3) remains unaffected by its induced Nash load (i.e. T induces load tj = 0 on Mj),
irrespectively of any assignment of load si < ni made by S to any other link Mi 6= Mj .

Lemma 1 Let the Nash assignment N = 〈n1, . . . , nm〉 on instance (M, r). Suppose that for a
Stackelberg strategy S = 〈s1, . . . , sm〉 with

∑m
i=1 si = βr, β ∈ [0, 1], we have either sj ≥ nj or

sj < nj , j = 1, . . . , m. Then for the induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining
load (1− β)r we have that tj = 0 for each link Mj ∈ M such that sj ≥ nj , j = 1, . . . , m.

Proof. The proof is available at Appendix A.4.
In Section 2.2 we apply Theorem 3, Lemma 1 and Proposition 2 to discard the links with frozen
load sj = oj ≥ nj and simplify the initial game. Clearly, such links will never be affected by the
induced selfish play of the users on the rest of links. Therefore, using Proposition 2, we focus on the
remaining links with load under S that equals si < ni, which may be affected by the selfish users,
trying to find a subsequent partial Stackelberg strategy on them that will induce the optimum cost.

Proposition 2 Let the system M = {M1, . . . ,Mm} and the Nash assignment N = 〈n1, . . . , nm〉 on
(M, r). Fix a Stackelberg strategy S = 〈s1, . . . , sm〉 such that either sj ≥ nj or sj < nj , j = 1, . . . ,m.
Let the subset of frozen links MS+

= {Mj ∈ M : sj ≥ nj}, j = 1, . . . , m, and their frozen
load rS+

=
∑

Mj∈MS+ sj . Then the initial Stackelberg game of flow r on M can be simplified to

scheduling the remaining unfrozen flow rS− = r− rS+
to the remaining unfrozen subsystem of links

MS− = M \MS+
.

2.2 The optimal evolution of OpTop

2.2.1 Phase 1: OpTop loads optimally all initially under-loaded links.

During Phase i ≥ 1, let N i = 〈ni
1, . . . , n

i
m〉 denote the Nash assignment of flow ri (where r1 equals

the initial total flow r) on to subsystem of links M i (where M1 is the initial system M). Also, let
O = 〈o1, . . . , om〉 denote the overall optimum assignment of flow r onto system M (notice that O is

7



not parameterized with respect to the ith Phase). We introduce the following partition (according
to Definition 3) of the system M1 ≡ M of links, during Phase 1

M1− = {Mj ∈ M1 : n1
j < oj} and M1+

= {Mj ∈ M1 : n1
j ≥ oj}. (3)

According to Theorem 3 and Lemma 1, if during Phase 1 a Stackelberg strategy S1 =
〈s1

1, . . . , s
1
m〉 assigns load s1

j such that oj < n1
j < s1

j to at least one over-loaded link Mj ∈ M1+
(see

Definition 3) then Mj will remain frozen to an unfavorably high value s1
j > oj , irrespectively of any

load s1
i strategy S1 may assign to any other link Mi 6= Mj . Therefore, Mj will never reduce its

load to the optimum value oj , and thus the system M will never converge to its overall optimum
assignment O.

In the same fashion, applying Lemma 1, if during Phase 1 strategy S1 assigns load s1
j such

that n1
j < s1

j < oj to at least one under-loaded link Mj ∈ M1− then Mj will remain frozen to an
unfavorably low load s1

j < oj .
Then OpTop must assign load s1

j = oj > n1
j to each initially under-loaded link Mj ∈ M1− , other-

wise under-loaded links will never attain their overall optimum load. Furthermore, by Theorems 2,
3 and Lemma 1, it is wasteful any assignment of flow s1

i < n1
i to any other link Mi ∈ M1. Clearly,

no such assignment oi < s1
i < n1

i can affect favorably any load assignment s1
j = oj > n1

j to any
initially under-loaded link Mj ∈ M1− . We conclude that at the end of Phase 1 algorithm OpTop

constructs the Stackelberg strategy S1 such that in each Mj ∈ M1− it assigns load s1
j = oj , while

in each Mj ∈ M1+
it assigns s1

j = 0.
Simplification of the initial game: Each initially under-loaded link Mj ∈ M1− will remain

frozen to its induced by S1 optimum load s1
j = oj > n1

j . Applying Proposition 2, we can simplify the
game by discarding each initially under-loaded link Mj ∈ M1− that becomes frozen by S1. During
Phase 1 algorithm OpTop needs a portion r1− to frozen the links in M1− r1− =

∑
Mj∈M1− oj . Then

the initial Stackelberg game of flow r1 on M1 can be simplified to scheduling the remaining flow
r2 = r1 − r1− to the remaining links M2 = M1 \M1− .

2.2.2 Phase i ≥ 2: the recursive nature of OpTop.

During Phase 2, we consider the Nash assignment N2 = 〈n2
j : Mj ∈ M2〉 when scheduling the

remaining flow r2 = r1− r1− on the simplified system M2 = M1 \M1− and, similarly as in Phase
1 let,

M2− = {Mj ∈ M2 : n2
j < oj} and M2+

= {Mj ∈ M2 : n2
j ≥ oj}. (4)

Then, applying similarly as in Section 2.2.1 Theorem 2 and 3, Lemma 1 and Proposition 1, OpTop
constructs the subsequent Stackelberg strategy S2 onto subsystem M2 such that in each Mj ∈ M2−

it assigns s2
j = oj , while in each Mj ∈ M2+

it assigns s2
j = 0. Then, once more, OpTop simplifies

the game, scheduling flow r3 = r2 − r2− = r2 − ∑
Mj∈M2− oj onto subsystem M3 = M2 \ M2− .

Finally, OpTop terminates as soon as it reaches a Phase i0 where the simplified subsystem M i0 has
the property

M i0− = {Mj ∈ M i0 : ni0
j < oj} ≡ ∅, (5)

and outputs the minimum possible flow βM needed to impose the overall optimum on system M

that equals βM =
∑i0−1

k=1
rk−

r1 = r1−ri0

r1 , i0 ≥ 1.

8



2.3 Generalizing OpTop to arbitrary networks

We consider an arbitrary network G with single-source vertex s and sink t such that the latency
function `e(·) per edge e is strictly increasing on flow xe, differentiable and xe`e(xe) is convex (i.e.
standard latencies). There is a total of flow r to be routed from s to t. The unique optimum routing
O of total flow r from vertex s to t can be computed in polynomial time, on any such network G,
see in [26] Section 2.3 Fact 2.3.6. This also holds for the Nash assignment N on G, selfishly routed
from vertex s to t, see [26] Section 2.5, Remark 2.5.2 (d).

The approach (sketch): Consider the optimum assignment O of flow r that wishes to travel
from source vertex s to sink t. O assigns flow oe incurring latency `e(oe) per edge e ∈ G. Let
Ps→t the set of all s → t paths. We can compute in polynomial time the shortest paths in Ps→t

with respect to costs `e(oe) per edge e ∈ G. That is, the paths that given flow assignment O
attain latency: minP∈Ps→t (

∑
e∈P `e(oe)) i.e., minimize their latency. It is crucial to observe that,

if we want the induced Nash assignment by the Stackelberg strategy to attain the optimum cost,
then these sortest paths are the only choice for selfish users that eager to travel from s to t.
Furthermore, the uniqueness of the optimum assignment O determines the minimum part of flow
which can be selfishly scheduled on these shortest paths. More precisely, let As→t = {e ∈ G :
e belongs in at least one shortest path from s → t} the set of all “fast” edges in paths from s to
t. Observe that the flow oe′ assigned by the optimum assignment O on any “slow” edge e′ 6∈ As→t

has incentive to change its path (since it is not a shortest one). Then, for each e′ 6∈ As→t, a
Stackelberg strategy must frozen its flow oe′ on it. Otherwise, selfish users traversing e′ will opt for
a shortest path and eventually ruin the overall optimum assignment O. However, for each fast edge
e ∈ As→t the flow oe assigned by O has no incentive to change path (it currently is on a shortest
one). Therefore, it is useless to employ any Stackelberg strategy on any e ∈ As→t. We conclude
that the minimum flow sufficient by a Leader to induce the optimum cost equals

∑
e′ 6∈As→t

oe′ . It is
easy, but tedious, to extend our proof methodology of Sections 2.1 and 2.2 in order to fully justify
our argument of correctness as stated above.

Algorithm: OpTop (On single-Commodity network G with m edges and flow r)
(1) Initialize Stackelberg strategy S = 〈s1 = 0, . . . , sm = 0〉 and

centrally captured flow rS = 0.
(2) Compute the optimum assignment O := 〈oe : e ∈ G〉 on instance (G, r).
(3) Set cost `e(oe) on each edge e ∈ G, oe ∈ O.
(4) Compute the shortest paths in G with edge-costs `e(oe), ∀e ∈ G.

Let As→t the set of edges in shortest paths.
(5) For each edge ei 6∈ As→t set si = oi and rS = rS + oi.
(6) Return the Leader’s portion βG = rS

r and his strategy S.

OpTop achieves coordination ratio 1 on the graph in Fig. 1, used by Roughgarden to proved that
1
α × O guarantee is not possible for general (s, t)-networks, see Appendix B.3 in [26]. We first
compute the path P0 ∈ P of minimum latency:

∑
e∈P0

`e(oe) = minP∈P
∑

e∈P `e(oe), with respect
to the optimum O that on each edge e ∈ E assigns flow oe. The optimal flows per edge are:

os→v =
3
4
− ε, os→w =

1
4

+ ε, ov→w =
1
2
− 2ε, ov→t =

1
4

+ ε, ow→t =
3
4
− ε (6)

Then P0 = s → v → w → t (see [26] pp. 143, 5th-3th lines before the end), irrespectively of the flow
traversing it. ∀ e ∈ E such that e 6∈ P0 OpTOp assigns flow oe. Therefore edge s → w gets flow os→w

9



and edge v → t flow ov→t, according to (6). The selfish routing starts. On starting-node s all flow
r = 1 will opt to travel trough most wanted path P0. However, on node s the Leader (according
to his strategy dictated by OpTop) forces os→w of r = 1 to travel via s → w 6∈ P0 (which is an ugly
edge and no one wants it). The remaining selfish r−os→w flow will still opt for most preferred path
P0 and will traverse through edge s → v (this flow is optimal for s → v). The Leader comes up as
soon this flow arrives at node v. He pursues (according to his strategy dictated by OpTop) another
ov→t flow to traverse the ugly v → t 6∈ P0 edge, and finally reach the precious destination t. Now,
the remaining r − os→w − ov→t is free to opt for edge v → w ∈ P0 which is still highly appealing
(this flow is optimal for v → w). A great surprise arises as soon as these r− os→w − ov→t liberians
reach node w: they meet their os→w fellows. Now the r− ov→t flow will keep on walking via w → t
(this is optimal for w → t) and reach destination t, where they meet their ov→t friends. Thus the
coordination ratio equals to 1, since all edges received the optimal flows depicted in (6).

@
@

@
@

@
@

@
@
@R

��
��

s

�
�

�
�

�
�

�
�
�� @

@
@

@
@

@
@

@
@R

��
��

v

�
�

�
�

�
�

�
�
��

��
��

w

��
��

t

?

`(x) = 0

`(x) = 1

`(x) = 1

`(x) =











0, x ∈ [0, 3

4
− ε]

arbitrary, x ∈ (3

4
− ε, 3

4
)

1 − ε, x ∈ [3
4
,∞]

`(x) =











0, x ∈ [0, 3

4
− ε]

arbitrary, x ∈ (3

4
− ε, 3

4
)

1 − ε, x ∈ [3
4
,∞]

Figure 1: A bad example for Stackelberg routing.

3 Single-commodity networks with parallel links, focusing on hard
instances (M, r, α < βM)

Consider an instance (M, r) with latency functions `i(x) = aix+bi, with a1 = . . . , am, i = 1, . . . , m,
i.e. parallel linear latency functions, ordered from faster to slower, that is bi < bi+1, i = 1, . . . , m−1.
In Lemma 2 we show that on any instance (M, r, α < βM ) there is a Leader’s optimal strategy
that partitions M = {M1, . . . , Mi0 , . . . ,Mm} around some link Mi0 such that subsystem M>0(i0)
(containing links appealing to Followers) is M>0(i0) = {M1, . . . ,Mi0} and subsystem M=0(i0)
(containing links that Followers dislike) is M=0(i0) = {Mi0+1, . . . , Mm} .

Lemma 2 There exists an optimal strategy of S of the leader, such that all links in M=0 have
indices greater than ones of the links in M>0.

Proof. See Appendix A.5.

Algorithm for the optimal strategy: The Leader takes advantage of Lemma 2 and in poly-
nomial time computes his optimal strategy using an algorithm that we present in Appendix A.6.

10



Acknowledgment We wish to thank an anonymous referee for urging us to extend OpTop to
general nets.

References

[1] V. S. Anil Kumar, Madhav V. Marathe. Improved Results for Stackelberg Scheduling Strategies. In Proc.
of the 29th International Colloquium on Automata,Languages, and Programming, 2002, pp. 776-787

[2] T. Basar, G. J. Olsder.Dynamic Noncooperative Game Theory. SIAM, 1999

[3] R.Cocchi, S.Shernker, D. Estrin, L. Zhange. Pricing in computer networks:Motivation, formulation, and
example, IEEE/ACM Transactions on Networking, 1(6):614-627,1993

[4] A. Czumaj and B. Voecking. Tight bounds for worst-case equilibria. In Proc of the 13th SODA, 2002.

[5] A. Czumaj. Selfish Routing on the Internet, Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis,CRC Press, 2004

[6] S.C. Dafermos and F.T.Sparrow. The traffic assignment problem for a general network, Journal of
Research of the National Bureau of Standards, Series B, 73B(2):91-118, 1969

[7] P. Dubey. Ineficiency of Nash Equilibria. Mathematics of Operations Research, 11(1):1-8, 1986

[8] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions. In Pro-
ceedings of the 32nd Annual ACM Symposium on Theory of Computing, May 2000.

[9] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis. The structure and complexity
of nash equilibria for a selfish routing game. In Proc. of the 29th ICALP, pp 123–134. Springer-Verlag,
2002

[10] Y. A. Korilis, A. A. Lazar and A. Orda. The designer’s perspective to noncooperative networks. In
Proceedings of the IEEE INFOCOM 95, Boston, MA, April 1995.

[11] Y.A. Korilis, A.A. Lazar, A. Orda: Achieving network optima using stackelberg routing
strategies, In Proceedings of the IEEE/ACM Transactions of Networking. Extended version
http://citeseer.ist.psu.edu/221983.html, 1997

[12] Y.A. Korilis, A.A. Lazar, A. Orda: Capacity allocation under noncooperative routing, In Proceedings
of the IEEE/Transactions on Automatic Control, 1997

[13] E. Koutsoupias and C. Papadimitriou. Worst-case Equilibria. In Proceedings of the 16th Annual Sym-
posium on Theoretical Aspects of Computer Science, pp. 387–396, Vol. 1563, Lecture Notes in Computer
Science, Springer-Verlag, Trier, Germany, March 1999

[14] M. Mavronikolas and P. Spirakis: The price of Selfish Routing,In Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing, 2001

[15] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991

[16] N. Nisan and A. Ronen. Algorithmic mechanism design.In Proceedings of the 31st ACM Symposium on
Theory of Computing, 1999, pp 129-140

[17] N. Nisan. Algorithms for selfish agents: Mechanism design for distributed computation. In Proceedings
of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pages 1-15, 1999.

11



[18] M. J. Osborne, A. Rubinstein. A course in Game Theory, MIT Press

[19] G. Owen. Game Theory. Academic Press. Orlando, FL, 3rd Edition, 1995.

[20] C. Papadimitriou. Game Theory and Mathematical Economics: A Theoratical Computer Scientist’s
Introduction. In Proceedings of the 42nd IEEE symposium on Foundations of Computer Science, 2001

[21] C. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of the 33rd Symposium on
Theory of Computing, ACM Press, New York, pp 749-753, 2001

[22] T. Roughgarden. The price of anarchy is independent of the network topology. In Proceedings of the
34th ACM Symposium on the Theory of Computing, 2002. pp 428-437. 105

[23] T. Roughgarden. Stackelberg scheduling strategies. In Proceedings of the 33rd Annual ACM Symposium
on the Theory of Computing, pp 104-113, 2001.

[24] T. Roughgarden. The price of Anarchy is Independent of the Network Topology. In Proccedings of the
34th Annual ACM Symposium on Theory of Computing (STOC), p.428-437, Montreal, Quebec, Canada,
May 19-21, 2002, ACM Press, New York, NY

[25] T. Roughgarden. Stackelberg scheduling strategies. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing, pp 104-113, 2001 Slides presentation
http://theory.stanford.edu/∼tim/slides/stack_cornell.pdf

[26] T. Roughgarden. Selfish Routing. Phd Thesis, Cornell University, May 2002.
Available at: http://theory.stanford.edu/ tim/

[27] T. Roughgarden, E. Tardos. How bad is Selfish Routing?. In Proceedings of the 41st Annual Symponsium
on Foundations of Computer Science,pp 93-102, 2000

[28] T. Roughgarden. Designing networks for selfish users is hard. In Proceedings of the 42nd Annual Sym-
posium on Foundations of Computer Science, pp 472–481, 2001.

[29] S. J. Shenker. Making greed work in networks: A game-theoretic analysis of switch service disciplines.
IEEE/ACM Transactions on Networking, 3(6):819-831,1995

[30] H. von Stackelberg. Marktform aund Gleichgewicht. Springer-Verlag, 1934

[31] http://students.ceid.upatras.gr/∼ politop/opTop, opTop Experimental results.

APPENDIX

A Proof of Proposition 1, Theorem 3 and Lemma 1

A.1 Proof of Proposition 1

Since N is a Nash assignment of the flow r on M , by Definition 1, ∃ LN > 0, such that for each link
Mi ∈ M if ni > 0 then `i(ni) = LN , otherwise `i(ni) = `i(0) ≥ LN . Let MN+

= {Mi ∈ M : ni > 0}
and MN−

= {Mi ∈ M : ni = 0}. Similarly for N ′, let LN ′ > 0 the corresponding constant, and
MN ′+

= {Mi ∈ M : n′i > 0} and MN ′−
= {Mi ∈ M : n′i = 0}. To reach a contradiction, suppose

that ∃ Mi0 ∈ MN ′+
such that n′i0 > ni0 .

12



Case 1: If Mi0 ∈ MN−
then `i0(n

′
i0

) = LN ′ > `i0(ni0) = `i0(0) ≥ LN , since each `i(·) is strictly
increasing and n′i0 > ni0 = 0. Then, each link Mi ∈ MN+

must have load n′i > ni under N ′,
otherwise it will experience latency `i(n′i) ≤ `i(ni) = LN < LN ′ which is impossible, since N ′

is a Nash equilibrium. Therefore, we reach a contradiction since we get r′ ≥ ∑
Mi∈MN+ n′i >∑

Mi∈MN+ ni = r.

Case 2: If Mi0 ∈ MN+
then `i0(n

′
i0

) = LN ′ > `i0(ni0) = LN . Therefore, each link Mi ∈ MN+

must receive load n′i > ni under N ′, otherwise each Mi ∈ MN+
will experience latency `i(n′i) ≤

`i(ni) = LN < LN ′
. That is, in the same fashion, we reach a contradiction.

A.2 Proof of Theorem 2

Since N is a Nash equilibrium on the links in M with
∑m

i=1 ni = r, then there exists a constant
LN > 0, such that for each link Mj ∈ M that receives load nj > 0 it holds `j(nj) = LN .
That is, all loaded links incur the same latency LN to the system M . Consider an arbitrary
Stackelberg strategy S, assigning load sj ≤ nj to each Mj ∈ M with

∑m
i=1 si = βr, β ∈ [0, 1].

Then, the initial system of links M is transformed by S to the equivalent system MS , such that
each link MS

j ∈ MS with load xj now experiences latency `S
j (xj) = `j(xj + sj). Since for each

Mj ∈ M it holds sj ≤ nj then ∃ tj ≥ 0 such that tj = nj − sj and also
∑m

i=1 ti = (1 − β)r. Let
T = 〈t1, . . . , tm〉 this assignment on MS . Obviously, for the same constant LN > 0 as above, it
holds: `S

j (tj) = `j ((nj − sj) + sj) = `j(nj) = LN , for each Mj ∈ M with tj > 0. This means that
T is a Nash equilibrium on system MS and also S + T ≡ N .

A.3 Proof of Theorem 3

By Definition 1, since N is a Nash equilibrium on M , ∃ LN > 0 such that for each Mi ∈ M ,
if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN . Fix a Stackelberg strategy S on M , such
that for each link Mi ∈ M , either si ≥ ni or si = 0. Let MS+

= {Mi ∈ M : si ≥ ni} and
MS− = {Mi ∈ M : si = 0}, and notice that M = MS+ ∪ MS− and MS+ ∩ MS− = ∅. Each
Mi ∈ MS+

receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (7)

On the other hand, each Mj ∈ MS− receiving induced load tj ≥ 0 experiences the same (since
sj = 0) as the initial (that is, without applying strategy S) latency

`S−
j (tj) = `j(tj + sj) = `j(tj). (8)

In the sequel, the induced Nash assignment T by strategy S assigns the remaining flow on M

r −
m∑

i=1

si = r −
∑

Mj∈MS+

sj ≤
∑

Mj∈MS−
nj . (9)

Having in mind (8) and (9), the crucial observation is that even if all the remaining flow that
appears in LHS of (9) is assigned selfishly only on subsystem MS− , it is impossible the common
latency LS− experienced by each loaded link in MS− to become LS− > LN , so that at least one

13



link in MS+
to become appealing for the selfish players. More formally, let TS− be the partial

Nash assignment that corresponds to assigning the flow that appears in LHS of (9) only on to the
subsystem MS− . By Definition 1, ∃ LS− > 0 such that for each loaded link Mj ∈ MS− with load
0 < tS

−
j ≤ nj (here RHS inequality stems from Proposition 1 and the RHS of (9)) it holds

`S−
j (tS

−
j ) = `j(tS

−
j ) = LS− ≤ `j(nj) = LN . (10)

By (7) and (10) it follows that no link Mj ∈ MS+
is appealing for the overall induced Nash

assignment T .

A.4 Proof of Lemma 1

By Definition 1, since N is a Nash equilibrium on M , ∃ LN > 0 such that for each link Mi ∈ M ,
if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN . Consider an arbitrary strategy S and let
MS+

= {Mi ∈ M : si ≥ ni} and MS− = {Mi ∈ M : si < ni}. Similarly as in (7), each Mi ∈ MS+

receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (11)

However, here we do not have the nice fact as in (8) for the link latencies in MS− (since now sj 6= 0
). We can circumvent this as follows. The induced Nash assignment T assigns on system M the
remaining flow that equals

rS = r −
m∑

Mi∈ MS+∪MS−
si ≤ rS− = r −

∑

Mi∈MS+

si ≤
∑

Mi∈MS−
ni, (12)

where the rightmost inequality stems from the fact that

rS+
=

∑

Mi∈MS+

si ≥
∑

Mi∈MS+

ni. (13)

Now, we prove that even if the flow rS− in (12) is scheduled selfishly only on the subsystem MS− ,
then all links with load > 0 in it, would not experience common latency LS− > LN so that at least
one link in MS+

to become appealing for scheduling any excess of flow. Let NS− the partial Nash
assignment (that is, without previously assigning S on to subsystem MS−) when scheduling flow
rS− appearing in (12) only on to subsystem MS− . Also, applying strategy S on to subsystem MS− ,
let TS− the induced partial Nash assignment (that is, by assigning previously S on to subsystem
MS−) when scheduling the remaining of rS− appearing in (12) only on to subsystem MS− . Let
nS−

i (or tS
−

i ) denote the load assigned by NS− (or TS−) to each Mi ∈ MS− . Then, we have the
following two cases.

Case 1: Suppose that for each link Mi ∈ MS− it holds si ≤ nS−
i . Then we can apply Theorem 2

when assigning the remaining of rS− on subsystem MS− . In this way, for each link Mi ∈ MS− it
holds si + tS

−
i = nS−

i . Furthermore, from Inequality (12) we realize that

rS− =
∑

Mi∈MS−
nS−

i ≤
∑

Mi∈MS−
ni. (14)

Applying Proposition 1, we conclude that for each loaded link Mi ∈ MS− it holds `i(nS−
i ) ≤

`i(ni) = LN and using (11) the lemma is proved.

14



Case 2: Suppose that there exists at least one link Mi ∈ MS− such that si > nS−
i . Then we can

construct TS− as follows. For each link Mi ∈ MS− such that si ≤ nS−
i we set

tS
−

i ≤ nS−
i − si (15)

(see its validity below) otherwise we set tS
−

i = 0. Clearly, each link Mi ∈ MS− with tS
−

i > 0
experiences a common latency

LS− = `S−
i (tS

−
i ) ≤ `i((nS−

i − si) + si) = `i(nS−
i ) ≤ `i(ni) = LN ,

and the lemma follows. On the other hand, each link Mi ∈ MS− with tS
−

i = 0 already has load sj

due to S such that nS−
j < sj < nj . Therefore,

LS− ≤ `S−
j (tS

−
j ) = `S−

j (0) = `j(sj) < `j(nj) = LN ,

and the lemma follows. The Inequality (15) can be proved as follows. Given strategy S, let the
subsystem MS−

0 ⊆ MS− containing all links Mi ∈ MS− such that si > nS−
i . Consider strategy

S′ such that on each Mi ∈ MS− \MS−
0 it assigns load s′i = si and for each MS−

0 it assigns load
s′i = si − (si − nS−

i ) = nS−
i (that is, it subtracts load (si − nS−

i )). In this way we get
∑

Mi∈MS−
s′i <

∑

Mi∈MS−
si. (16)

Given strategy S′, Theorem 2 applies on assigning selfishly the flow that appears on the RHS of
(17) onto subsystem MS− , and let TS′− the corresponding induced Nash assignment. Then, for
each link Mi ∈ MS− it holds tS

′−
i = nS−

i − s′i, and most importantly, each Mi ∈ MS−
0 gets induced

load tS
′−

i = 0. The crucial observation is that if we add back the subtracted load (si−nS−
i ) on each

Mi ∈ MS−
0 then (i) strategy S′ becomes S and (ii) each Mi ∈ MS−

0 becomes even less appealing
(recall tS

′−
i = 0 under S′). Furthermore, given strategy S, let TS− the induced Nash assignment of

the flow that appears in the LHS of (17)
∑

Mi∈MS−
tS
−

i = rS− −
∑

Mi∈MS−
si <

∑

Mi∈MS−
tS
′−

i = rS− −
∑

Mi∈MS−
s′i, (17)

on subsystem MS− . From Proposition 1, on selfisly assigning the flow in LHS of (17) onto subsystem
MS− \MS−

0 , we conclude that each Mi ∈ MS− \MS−
0 now receives flow

tS
−

i ≤ tS
′−

i = nS−
i − s′i = nS−

i − si,

while each Mi ∈ MS−
0 now receives tS

−
i = 0.

A.5 Proof of Lemma 2

Let S be an optimal strategy for the Leader and T is the induced Nash Assignment. With no loss
of generality, assume that M1 ∈ M=0 (which means t1 = 0) and M2 ∈ M>0 (which means t2 > 0),
see Figure App.B-2(a). The partial cost of S + T on subsystem {M1,M2} equals:

s1`1(s1) + (s2 + t2)`2(s2 + t2) = s1`
1 + (s2 + t2)`2 = A, with `1 ≥ `2 (18)

15



Our purpose is to reassign the Leader’s flow s1 + s2 on subsystem {M1,M2}, in a way that t1 > 0,
inducing partial cost ≤ A and latency ≤ `2 on the most appealing link. In this way, we get another
Leader strategy, with cost ≤ A, that satisfies the property described in Lemma 2. We start by
interchanging the loads between M1 and M2, i.e. load s1 goes from M1 to M2 and load s2 + t2 goes
from M2 to M1, see Figure App.B-2(b). This decreases the latency on M1 to `1′ < `2 and increases
it on M2 to `2′ > `1. Since we have parallel linear load functions, we can remove load ε from M2

till the latency it experiences drops from `2′ to `1 and place it to M2 raising its latency from `1′ to
`2, see Figure App.B-2(c). The new cost on {M1,M2} is:

(s2 + t2 + ε)`1(s2 + t2 + ε) + (s1 − ε)`2(s1 − ε) =
(s2 + ε + t2)`2 + (s1 − ε)`1 = A + ε(`2 − `1) ≤ A, since `2 ≤ `1

A.6 The Leader’s polynomial algorithm

By Lemma 2, there are ≤ m possible partitions of M into subsystems M>0(i0) = {M1, . . . , Mi0}
and M=0(i0) = {Mi0+1, . . . , Mm}. Given an instance (M, r, α), fix a partition M>0(i0),M=0(i0) of
system M , for each i0 ∈ {1, . . . ,m− 1}. We wish to find 0 ≤ εi0 ≤ αr such that the partial cost on
subsystem (M>0(i0), (1 − α)r + εi0), when Followers assign selfishly (1 − α)r + εi0 flow, added to
the partial cost on subsystem (M=0(i0), αr− εi0), when the Leader assigns local optimally αr− εi0

flow, is minimized. The constraints are (i) : ∀Mj ∈ M>0(i0), tj > 0, (ii) : ∀Mj ∈ M=0(i0), tj = 0,
and also, the common latency in (M>0(i0), (1− α)r + εi0) must be at most the latency of any link
in (M=0(i0), αr − εi0).

In other words, by Theorem 2 the cost on subsystem (M>0(i0), (1 − α)r + εi0) reduces to
computing the cost of the Nash assignment of flow (1 − α)r + εi0 onto subsystem M>0(i0). Also,
the cost on subsystem (M=0(i0), αr − εi0) reduces to computing the Optimum assignment of flow
αr − εi0 onto subsystem M=0(i0). Both computations of Nash and Optimum assignment can be
done efficiently for linear latencies. The addition of both costs is acceptable, only if for the given
value of εi0 , all links in M>0(i0) become loaded, and their common latency Lεi0 is at most the
minimum latency experienced in any link in M=0(i0) (in case of violation of any such constraint,
we set the cost equal to ∞).

Notice here that for a given (M, r, α < βM ) and any index i0 ∈ {1, . . . , m− 1}, the partial cost
on (M>0(i0), (1−α)r + εi0) is strictly increasing on εi0 , while the partial cost on (M=0(i0), αr− εi0)
is strictly decreasing on εi0 . This allows as to efficiently compute the value ε∗i0 that minimizes
the sum C(ε∗i0) of the partial costs. The optimal Leader strategy is determined by the tuple
(i, εi), i ∈ {1, . . . ,m− 1}, 0 ≤ εi ≤ αr such that C(εi) = min{C(ε∗1), . . . , C(ε∗m−1)}.

16



B Figures

(a)

-

`

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`2(x)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`1(x)

6

x

q

s2 + t2

`2

q

s1

`1

(b)

-

`

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`2(x)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`1(x)

6

x

q

b

s2 + t2

`1
′

`2q

b

s1

`2
′

`1 qq

put s2 + t2
to M1

?

put s1
to M2

6

(c)

-

`

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`2(x)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡
`1(x)

6

x

¡
¡

¡¡µ

add ε
till `2

q qc

b

s2 + t2

`1
′

`2q

¡
¡

¡¡ª

remove ε
till `1

b

s1

`2
′

`1 qqc qq

s1 − ε?
s2 + t2 + ε

?

Figure 2: Representation of assignments and latencies on M1 and M2 links.(a) The s1 assignment
gives latency `1 while s2 + t2 assignment gives latency `2 ≤ `1. (b) Interchange of load in M1 and
M2, i.e. s1 goes to M2 raising the latency to `′2 > `1 while s2 + t2 goes to M1 diminishing the
latency to `′1 < `2. (c) Remove from the M2 link load ε till the latency goes to `1 and add the same
load ε to M1 till latency goes to `2. The cost of this new assignment is less or equal to the cost of
the assignment in (a).

17


