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Proving Conditional Randomness using
the Principle of Deferred Decisions

Alexis C. Kaporis
Lefteris M. Kirousis Yiannis C. Stamatiou

1 INTRODUCTION

In order to prove that a certain property holds asymptotically for a restricted
class of objects such as formulas or graphs, one may apply a heuristic on a random
element of the class, and then prove by probabilistic analysis that the heuristic
succeeds with high probability. This method has been used to establish lower
bounds on thresholds for desirable properties such as satisfiability and colorabil-
ity: lower bounds for the 3-SAT threshold were discussed briefly in the previous
chapter. The probabilistic analysis depends on analyzing the mean trajectory
of the heuristic—as we have seen in Cocco et al. [3]—and in parallel, showing
that in the asymptotic limit the trajectory’s properties are strongly concentrated
about their mean. However, the mean trajectory analysis requires that certain
random characteristics of the heuristic’s starting sample are retained throughout
the trajectory.

We propose a methodology in this chapter to determine the conditional that
should be imposed on a random object, such as a conjunctive normal form (CNF)
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formula or a graph, so that conditional randomness is retained when we run a
given algorithm. The methodology is based on the principle of deferred decisions.
The essential idea is to consider information about the object as being stored
in “small pieces,” in separate registers. The contents of the registers pertaining
to the conditional are exposed, while the rest remain unexposed. Having sep-
arate registers for different types of information prevents exposing information
unnecessarily. We use this methodology to prove various randomness invariance
results, one of which answers a question posed by Molloy [8].

2 PRINCIPLE OF DEFERRED DECISIONS

Let G ∈ Gn,m be a graph chosen uniformly at random, conditional on its number
of vertices n and number of edges m. All G with n vertices and m edges are
thus equiprobable. Intuitively, if we delete from G a vertex v chosen uniformly
at random and also delete all edges incident on v, the new graph should be
random conditional on the new number of vertices, n− 1, and the new number
of edges m′, where m′ is a random variable. In other words, given m′, the new
graph is equiprobable among all graphs with n− 1 vertices and m′ edges. Note
that here and in what follows, “random” will mean “uniformly random,” that
is, equiprobable, on conditionals that will be either explicit or clear from the
context.

Knuth [6, Lecture 3] has introduced a method, known as the principle of
deferred decisions, by which randomness claims such as the one above can be
verified. In the specific example of vertex deletion from a Gn,m graph, it works as
follows. Consider n+m cards facing down, or more precisely, n+m registers with
unexposed content. The first n of them correspond to the vertices of the graph
and the remaining m to its edges. The register of a vertex v contains pointers to
the registers of the edges incident on v. The register of an edge e contains pointers
to the registers of the two endpoints of e. That the registers are unexposed means
that the pointers can be specified randomly. To delete a random vertex, do the
following: point randomly to a vertex register; expose its contents; expose all edge
registers pointed to by this vertex register; delete the exposed vertex register and
the exposed edge registers; nullify pointers in other vertex registers that point
to deleted edge registers (without exposing these vertex registers). The registers
that have not been deleted remain unexposed and, therefore, they can be filled
in randomly. The only conditional, that is, the only exposed information about
the graph, is the new number of vertex registers and the new number of edge
registers.

The principle of deferred decisions states that conditional randomness is
retained as long as no new information about the current contents of unexposed
registers can be determined, at any given update step, from information exposed
up until that step. The method can be applied in more complicated situations.
Consider a random graph conditional on (i) the number of vertices, (ii) the
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number of edges, and (iii) for each i = 0, . . . , n − 1, the number of vertices of
degree i (the degree sequence). We claim that upon deleting a random vertex of
degree i (for any i) and its i incident edges, the new graph is random conditional
on the same type of information. Indeed, it suffices to augment the argument of
the previous paragraph with the additional assumption that for each vertex v
there is an exposed degree register containing an integer equal to its degree. This
degree register needs to be exposed so that the algorithm may choose, at random,
a vertex of a given degree. After a deletion step, the contents of the remaining
vertices are updated. After the update, no information about the new values of
the unexposed registers can be determined from what still is, or previously was,
exposed. Therefore, the new graph is random given the number of its vertices,
the number of its edges, and its degree sequence.

Notice that keeping a register unexposed is not in itself sufficient to guarantee
that its contents stay random. Randomness is destroyed if one could even im-
plicitly infer additional information about the current contents of an unexposed
register from the combined knowledge of the current and previous contents of
exposed registers. Therefore, in all cases, a proof is necessary that no new in-
formation about the current values of unexposed registers can be implicitly re-
vealed. On the other hand, it is permissible for a given update step to implicitly
reveal information about previous contents—subsequently overwritten—of an
unexposed register. This does not destroy randomness, in that it is the updated
structure that must be proven random. Since revealing past secret information
causes no harm as long as no current secret information is revealed, it is con-
venient to imagine an omniscient “intermediary”: an agent independent of the
deleting algorithm who updates all necessary registers in total confidence (see, in
this respect, the “card model” in Achlioptas [1]). Randomness is retained even if
the actions (updates) of the intermediary combined with all exposed information
implicitly yield some information about past values of unexposed registers, as
long as no information about their current contents is revealed. Of course, this
construct of “intermediary” is not a formal notion, but simply a convenient way
to describe the updating mechanism.

Notice also that one should not assume that all previously unexposed infor-
mation that is going to be overwritten is necessarily exposed at an update. Doing
so might make it possible to infer additional implicit information about the up-
dated contents of unexposed registers. In general, only part of the information
to be overwritten needs to be known in order to carry out the update, and thus
implicitly revealed. The construct of the omniscient intermediary operating in
secrecy frees us from having to make explicit exactly what secret information
(to be overwritten) is implicitly revealed at an update. We simply need to make
sure that no updated secret information is implicitly revealed after the update.

We illustrate these points by a further example. Consider a random graph
conditional on (i) the number of vertices, (ii) the number of edges, (iii) the
number of vertices of degree 1, and (iv) the number of vertices of degree 0
(isolated vertices). We claim that upon deleting a random vertex of degree 1
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and its incident edge, the new graph is random conditional on the same type
of information. This randomness claim is an immediate consequence of a more
general theorem proved in Pittel et al. [10] (see also Broder et al. [2]), where the
degrees of the vertices to be deleted are allowed to take values up to an arbitrary
fixed integer k, assuming that the degree sequence of the graph is given up to k
(we have seen in the previous example that this is true if we allow the degrees
to range up to n − 1). The proof in Pittel et al. [10] depends upon counting
all possibilities. However, the result can also be proved using the principle of
deferred decisions. Assume that for each vertex v there is an exposed degree
register that contains a three-valued parameter, indicating whether the degree
of that vertex is 0, 1, or ≥ 2. In contrast to the case where the whole degree
sequence was known, updating these registers after a deletion step presupposes
knowledge of unexposed information. For instance, to update the degree register
of a vertex that had degree at least 2 before the deletion, and which lost an
incoming edge because of the deletion, we need to know whether its degree
was previously exactly 2 or strictly more. However, it is easy to see that no
information about the updated value of the unexposed registers is revealed by
the combined knowledge of what currently is and previously was exposed: if an
updated degree register ends up with the value ≥ 2, beyond this information we
still have no knowledge of its actual degree. Therefore, randomness is retained.
The omniscient intermediary secretly carries out the updating, using unexposed
information. Even though the intermediary might reveal implicit information
about the past values of registers, an observer cannot obtain any knowledge
about the current contents of any unexposed register from what is and was
unexposed.

On the other hand, the fact that additional current information is implicitly
revealed is sometimes hard to notice. The subtlety of implicit disclosure can be
illustrated by the following example. Let a B&W graph be a graph whose edges
are either black or white. Call a vertex all-white if all the edges incident on it are
white. Let the w-degree of a vertex v be the number of all-white vertices that v is
connected with (see figs. 1 through 3). Notice that a black edge incident on v does
not count towards the w-degree of v, while a white edge incident on v may or may
not count towards the w-degree of v. Suppose we are given a random B&W graph
G conditional on the number of vertices, and for each vertex v, the w-degree of
v as well as the number of black edges and the number of white edges incident
on v. All other characteristics of G are assumed to be random. Formally, given
a fixed integer n and a fixed array of integers dw,i,j where w, i, j = 0, . . . , n− 1,
then G is chosen with equal probability among all B&W graphs such that dw,i,j
is the number of vertices in the graph with w-degree w, i incident white edges
and j incident black edges. We assume that the values of the array are such that
there is at least one such graph. Suppose now that we delete from G a vertex v,
chosen at random among all vertices with a specified w-degree (say 0). Suppose
we also delete all edges, black and white, incident on v. Is the new graph random
conditional on the same type of information?
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Prima facie, one may think that the answer to this question is yes. Indeed,
suppose that the exposed registers give for each vertex its w-degree, as well as
the number of black edges and the number of white edges incident on it. All other
information about the graph is assumed to be unexposed, that iss, random. After
the deletion of a vertex v as previously described, and the subsequent deletion of
all edges incident on v, all registers are updated. We may be tempted to conclude
that the same type of information about the graph is known before and after the
deletion, leading to an affirmative answer to the question. Unfortunately, this
argument is erroneous. To see why, observe what happens if, after the deletion
of v, the exposed w-degree of another vertex u increases. Using the combined
knowledge of the current and previous contents of exposed registers, we can
infer that in the new graph there exists at least one vertex v′ that has just
become all-white (as the result of the deletion of a black edge joining v with
v′). Additionally, we learn that u is connected with at least one of these newly-
all-white vertices. However, this last type of information is not supplied by the
currently exposed registers, which give only the w-degree of u and the number
of black and white edges incident on it. They do not specify a subset of the
all-white vertices connected with u. The fact that we have implicit access to that
information means that randomness cannot be retained in the new graph.

We now show a specific case of this. Consider the list of degree parameters (w-
degree, number of incident white edges and number of incident black edges) given
in figure 1(a) for each vertex of a random B&W graph. Then, by an easy case
analysis we may verify that the only graphs having these degree parameters are
the two depicted in figure 1(b) and (c). These two graphs are equiprobable, and
any information about them other than what is in the upper table is assumed to
be stored in unexposed registers. Suppose now that we delete the vertex v5 from
the random graph. Then the resulting graph, depending on which the original one
was, will have the degree parameters given either in figure 2(a) or in figure 3(a).
Suppose the resulting graph has the degree parameters of figure 2(a), so that the
original graph was the one in figure 1(b)—examining this case will be sufficient
for the purposes of demonstration. Again, by an easy case analysis we can verify
that the only graphs having these degree parameters are the two depicted in
figure 2(b) and 2(c). (If the original graph was the one in fig. 1(c), then the only
possible graph having the degree parameters of fig. 3(a) is the one depicted in
fig. 3(b)—we do not examine that case here.)

If deleting vertex v5 did not destroy randomness, then both graphs in fig-
ure 2(b) and 2(c) should be equiprobable. However, from the combined knowledge
of the tables in figure 1(a) and figure 2(a), we can easily infer that the graph in
figure 2(c) is impossible. This is so because combining the information in the last
columns of the tables in figure 1(a) and 2(a) we find that the newly all-white ver-
tex is v6 (it is the only vertex that previously had, but no longer has, an incident
black edge). Also, from the combined information in the third and fourth rows
of the second columns of these tables we see that both v3 and v4 are adjacent
to v6, as their w-degree has increased. Continuing with an easy case analysis,
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(a)

vertices w-degree # of white incident edges # of black incident edges
v1 0 2 0
v2 1 1 1
v3 1 2 2
v4 0 1 1
v5 0 0 1
v6 0 2 1
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FIGURE 1 Original B&W graph: (a) exposed register values; (b) and (c) the two
possible graphs corresponding to these values. Solid lines represent black edges and
dashed lines represent white edges.

we conclude that the only graph that has the degree parameters of figure 2(a)
and was obtained from a graph that has the degree parameters of figure 1(a) by
deleting v5 is the graph in figure 2(b). In other words, the combined knowledge of
the two tables—the one before the deletion and the one after—reveals additional
information that cannot be obtained exclusively from the current table, after the
deletion. This proves that randomness is not retained. It is instructive to note
that if no information were given about the w-degree of the vertices and we dealt
only with information about the ordinary degrees (even if they were categorized
by the number of incident white edges and the number of incident black edges)
then randomness would be retained. That is true because combined knowledge
of the two consecutive tables would not then be enough for us to infer additional
unexposed information about the resulting graph.

The execution of an algorithmic step on the graph, such as the deletion of a
vertex and the edges incident on it, can thus implicitly but subtly expose addi-
tional information about the current values of unexposed registers. In section 4,
we describe more fully the methodology that is helpful in checking whether any
implicit exposure of additional information has taken place as the result of the
application of an algorithmic step. As we have seen here, the basic idea is to
store information about the random structure in registers, in sufficiently “small
pieces.” The payoff of doing so is that implicit disclosure of information can be
detected easily. Again, we do not require that updates be performed only on the
basis of exposed information: unexposed information can be made available to
the omniscient “intermediary” doing the updating. But there must be no way
for us to infer this information.
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(a)

vertices w-degree # of white incident edges # of black incident edges
v1 0 2 0
v2 1 1 1
v3 2 2 2
v4 1 1 1
− - - -
v6 0 2 0
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FIGURE 2 B&W graph from figure 1(b) with vertex v5 deleted: (a) exposed register
values; (b) and (c) the two possible graphs corresponding to these values.
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v1 0 2 0
v2 1 1 1
v3 1 2 1
v4 0 1 1
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FIGURE 3 B&W graph from figure 1(c) with vertex v5 deleted: (a) exposed register
values; (b) the only possible graph corresponding to these values.

One might say that a safer way to prove conditional randomness claims is
by rigorous counting arguments, rather than through the principle of deferred
decisions. In complicated situations, however, counting arguments are practically
impossible. As we will see from specific applications, our methodology makes it
easy to specify what the a priori exposed information should be in order to
retain randomness throughout the execution of an algorithm, given the type of
operations that the algorithm allows. Such considerations have attracted much
attention lately, in view of the increased interest in the probabilistic analysis of
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heuristics on random Boolean formulas and graphs. This has been discussed in
Cocco et al. [3] (see also Molloy [9] for an overview of satisfiability and colorability
thresholds). The probabilistic analysis involves analyzing the mean path of the
heuristic [11], while showing that randomness is retained throughout the course
of the heuristic. It is in situations like this where our methodology is particularly
useful. This approach can ultimately be used to obtain lower bounds on threshold
locations: indeed, the best lower bound to date on the satisfiability threshold [4,
5], mentioned in the previous chapter, has been proven using the principle of
deferred decisions.

The rest of the chapter describes specific applications of this nature. We
answer, notably, a question posed by Molloy [8] concerning a Davis-Putnam
heuristic acting on a CNF formula comprised of 3- and 2-clauses, when the
literals to be satisfied are selected on the basis of how often they appear in
each of the two types of clauses. Using the principle of deferred decisions, we
show what characteristics must be conditional in order to retain randomness
throughout the procedure (theorem 4.2 in section 4), and conjecture that this is
the minimal set of conditionals needed.

3 TERMINOLOGY AND NOTATION

Our results can be applied in various contexts related to random graphs or
formulas. However, for concreteness, we first present them in the context of
random formulas comprised only of 3- and 2-clauses. We introduce below the
related terminology and notation.

Let V be a set of variables of cardinality n. Let L be the set of literals
of V, that is, elements of V and their negations. A k-clause is a disjunction of
exactly k literals from L. Let φ be a Boolean formula in conjunctive normal form
(CNF), comprised of 3- and 2-clauses. Let m be the total number of clauses of
the formula. Let C3 and C2 denote the collections of 3-clauses and 2-clauses of
φ, respectively, and let c3, c2, and l be the respective cardinalities of the sets
C3, C2, and L. Clearly c3 + c2 = m, and l = 2n. (Note that the notation used
here is slightly different from that of Cocco et al. [3]: there, C3 and C2 were
the numbers of 3- and 2-clauses, and c3 and c2 were the respective densities.
Note also that C3 and C2 are distinct from C3 and C2 from the previous chapter,
where they denoted the collections of clauses containing exactly 3 and 2 positive
literals, respectively.)

For i = 0, 1, . . . , 3c3 +2c2, let Di be the set of literals in L that have exactly
i occurrences in φ. The elements of Di are said to have degree i. Literals whose
negation is in D0 are called pure. Notice that according to our terminology, a
literal in L whose variable does not appear at all in the formula is pure.

Let D3
1 and D2

1 be the sets of literals that have exactly one occurrence in
φ, in a 3-clause and 2-clause, respectively. D1 is then the disjoint union of D3

1
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and D2
1. Let also D2

1×1 be the subset of D2
1 comprised of literals that appear in

a 2-clause whose second literal also belongs to D2
1.

Let di, d3
1, d

2
1, and d2

1×1 be the respective cardinalities of Di, D3
1, D

2
1, and

D2
1×1. Obviously, d1 = d3

1 + d2
1.

Consider the collection of formulas comprised of 3- and 2-clauses that have
given, fixed values for the parameters l, c3, c2, d0, d3

1, d
2
1, and d2

1×1. Make this
collection into a probability space by assigning to each one of its elements the
same probability (we assume that the values of the parameters are such that
this space is not empty). An element of this space is called a random {3, 2}-CNF
formula conditional on the values of l, c3, c2, d0, d3

1, d
2
1, and d2

1×1. One could
define random graphs similarly, conditional, for instance, on the number of edges
and vertices, as we did in the previous section. Such formulas and graphs are
called conditionally random objects.

We will consider algorithms on random {3, 2}-CNF formulas that only apply
steps of the following three types (one step may comprise several constituent sub-
steps):

• Set a pure literal. Select at random a pure literal, set it to True and delete
all clauses where it appears.
• Set a degree-one literal from a 3-clause. Select at random a literal in D3

1, set
it to False, delete it from the 3-clause where it appears and delete all clauses
where its negation appears.
• Set a degree-one literal from a 2-clause. Select at random a literal in D2

1, set
it to False, delete it from the 2-clause where it appears and delete all clauses
where its negation appears. This can create a 1-clause. As long as there are
1-clauses, choose one at random, set its literal to True, delete all clauses
where it appears and delete its negation from any clause in which it appears.
Ignore (delete) any empty and thus trivially unsatisfiable clause that may occur
during this step. This last provision is simply a technicality introduced to study
the randomness of the formula independently of its satisfiability. Of course,
when such a step is used as a subroutine of an algorithm for satisfiability, the
occurrence of an empty clause is an indication to stop immediately and report
unsatisfiability.

4 RESULTS

Theorem 4.1. Let φ be a random {3, 2}-CNF formula conditional on the values
of the parameters l, c3, c2, d0, d3

1, d
2
1, and d2

1×1. If any algorithmic step like
the ones described above is applied to φ, then the formula obtained is a random
{3, 2}-CNF formula conditional on the new values of the parameters l, c3, c2,
d0, d3

1, d
2
1, and d2

1×1.
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Proof Notice that no algorithmic step differentiates between degree-one lit-
erals appearing in 2-clauses on the basis of the degree of the other literal in
the 2-clause. Still, according to the statement of the theorem, randomness
is preserved if it is conditional not only on d2

1 but also on d2
1×1. The reason

for this will become clear later in this proof.
We first introduce some general notions, in more formal terms than before.
An object such as a formula or a graph can be modeled by a data structure.
Let us think of a data structure as a collection of registers containing infor-
mation about the object. For example, a data structure modeling a graph
includes a register for each vertex, with pointers to the registers of the edges
incident on the vertex. It also includes a register for each edge, with pointers
to the registers of the vertices on which the edge is incident. A data struc-
ture modeling a formula includes a register for each literal, with pointers to
the registers of the literal appearing in the clause. It also includes a register
for each clause (more information about the registers of a formula is given
below).
Registers are partitioned into groups. The elements of each group contain
various types of information for the same part of the modeled object. For
example, for each vertex of a graph, we may have several registers in one
group: one with pointers to the edges incident on the vertex, another with
the degree of this vertex, etc. For the present purposes, we refer to the
registers belonging to the same group as sub-registers of the group. We also
imagine, for each group, a head register with pointers to its sub-registers.
When a sub-register of a group contains a pointer to another group, it is
assumed to point to the head register of that other group. Intuitively, the
reason for storing different types of information in separate sub-registers is
to avoid exposing all information about a part of the modeled object when
it is necessary to expose only a “small piece” of it.
A data structure with unexposed information is a data structure whose
(sub-)registers are partitioned into two categories, called unexposed and ex-
posed registers. The partitioning is done according to rules given in the
definition of the structure. These rules are based on the type of contents
of the registers. The head registers of the groups are always exposed. In-
tuitively, one may think of such a structure as modeling an object whose
characteristics stored in the unexposed registers are random, conditional on
the information stored in the exposed registers. The same group may con-
tain both exposed and unexposed sub-registers. For example, although the
specific edges where a vertex appears may not be exposed, its degree may
be exposed.
In general, given a conditionally random object, we associate with it a data
structure as above. An algorithmic step that deletes an element of the object
(such as the deletion of a vertex or the assignment of a variable) corresponds
to the deletion of the group of registers associated with the deleted element
of the object. After the deletion, all registers are updated.
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Definition 1. An algorithmic step is called randomness preserving if, after
the corresponding deletions and updates of registers, no information about
the contents of unexposed registers can be inferred from what currently is and
previously was exposed, beyond what can be inferred from what is currently
exposed. In other words, no additional information is implicitly revealed by
knowing both past and current exposed information.

To prove a randomness claim such as the theorem under consideration, it
suffices to find a data structure with unexposed information that models
the conditionally random object in the claim, and then to show (i) that the
algorithmic steps are randomness preserving and (ii) that the information
in the conditional is exactly the information that can be extracted from the
exposed registers of the structure.
We describe below a structure S, with unexposed information, that models
a random {3, 2}-CNF formula conditional on the parameters l, c3, c2, d0, d3

1,
d2
1, and d2

1×1.
• For each literal t in L, the structure S contains a group of sub-registers

collectively called literal sub-registers. These contain information about
the degree of the literal, its occurrences in the formula and its negation.
The information that is assumed exposed is (i) the degree and (ii) the
position in the formula of literals with a single occurrence that happens to
be in a 2-clause. All other information is unexposed. More formally, one
of these sub-registers contains two bits of information indicating whether
t belongs to D0 (t does not appear in the formula), D3

1 (t has degree 1 and
appears in a 3-clause), D2

1 (t has degree 1 and appears in a 2-clause) or
none of these (t has degree at least 2). This sub-register is exposed. Also,
we assume that there are sub-registers containing pointers to the positions
of all occurrences of t in the formula (to the heads of all clause sub-registers
where t appears; see below). These sub-registers are exposed if t is in D2

1

and unexposed otherwise. The reason for exposing the position in the
formula of literals in D2

1 will become apparent later. Finally, we assume
that there is an unexposed sub-register pointing to the head of the literal
sub-register of the negation of t. It is important to notice that because
the pointer to the negation of a literal is unexposed, each literal is paired
with its logical negation randomly.
• For each clause in the formula, the structure S contains a group of sub-

registers collectively called clause sub-registers. These contain information
about the type of the clause (3-clause or 2-clause) and pointers to the
heads of literal sub-registers corresponding to the literals that appear in
the clause. The information about the type of the clause is exposed, while
the pointers to the literal registers are unexposed.

It is straightforward to verify that after the application of any of the algo-
rithmic steps, no information about an unexposed register can be deduced
from what is and previously was exposed. Under these circumstances, the
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randomness of the structure S is preserved under an algorithmic step. The
need for having the positions of literals in D2

1 exposed can be seen in the
event that under an update step, exactly one 3-clause shrinks to a 2-clause
and exactly one literal moves from D3

1 to D2
1. In that case, the information

about the type of each clause and the degree of each literal is sufficient to
allow us to infer the position of this literal.
Now the theorem follows because the information that can be extracted
from S consists only of the values of the following parameters: l (the number
of groups of literal sub-registers), c2 (the number of groups of clause sub-
registers for 2-clauses), c3 (the number of groups of clause sub-registers for
3-clauses), d0, d3

1, d
2
1, and d2

1×1. The value of d2
1×1 can be obtained from

S because the positions in the formula of literals in D2
1 are exposed. All

other information that can be extracted from S can be expressed in terms
of the values of the parameters l, c3, c2, d0, d3

1, d
2
1, and d2

1×1, only. (One
can immediately see, for instance, that the number of 2-clauses where both
positions are filled with literals of degree at least 2 or the number of 2-
clauses where one position contains a literal of degree at least two and the
other a literal of degree exactly one can be expressed in terms of the values
of the parameters l, c3, c2, d0, d3

1, d
2
1, and d2

1×1). This completes the proof
of Theorem 4.1.

We now come to the generalization of the previous result to arbitrary degrees,
where algorithms making use of the overall number of occurrences of literals in
3-clauses and 2-clauses, separately, are allowed. To preserve randomness in this
case, a conditional given by a number of integer parameters—as in the previous
theorem—is not enough. We have to assume that the positions of all literals
appearing in 2-clauses are known, regardless of their degree: this information is
revealed when a 3-clause shrinks to a 2-clause and the exposed degree information
of literals is updated. However, no information about negations of literals or
identification of literals need be revealed, nor does information on the positions
of literals appearing in 3-clauses. In other words, we have to assume that the
pattern in which literals are paired in 2-clauses is conditional, though the pattern
need not reveal the pairing of literals of opposite logical sign. This is still a severe
restriction on the randomness of the formula. Below, we formalize the notion of
pattern.

Fix an even integer 2n representing the number of literals of a formula, and
an integer c3 representing the number of 3-clauses in a formula. A pattern for
2-clauses and degree sets that is transparent with respect to negations (pattern,
in short) is a set of unordered pairs C2 of integers from {1, . . . , 2n}, representing
the collection of 2-clauses of the formula, together with a collection of sets D3

i ⊆
{1, . . . , 2n}, i = 0, . . . , c3, such that

∑
i i|D3

i | = 3c3, representing the collection
of sets of literals whose number of occurrences in 3-clauses is i.

Now fix a pattern P as described above. A random formula φ conditional on
P is constructed as follows: randomly choose c3 unordered triplets from 1, . . . , 2n
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so that all integers in each D3
i appear in exactly i such triplets; denote this

set by C3; randomly select a one-to-one and onto mapping neg : {1, . . . , n} →
{n+1, . . . , 2n} representing the negations; in the tuples of C3 and of C2, replace
each k = 1, . . . , n with variable xk and each neg(k), k = 1, . . . , n, with its negation
xk, and denote by C3 and C2, respectively, the sets of clauses thus obtained; let
the formula φ be the one that has as 3-clauses and as 2-clauses the sets C3 and
C2, respectively. Notice that since the negation function “neg” was random, a
literal and its negation may appear in the same clause. If we wish to avoid this,
“neg” may instead be a random one-to-one and onto mapping made conditional
on the fact that for no i = 1, . . . , n can both i and neg(i) appear in the same
tuple of either C3 or C2. Based on the method of proof of the previous theorem,
one can obtain the following result that answers an open question posed by
Molloy [8].

Theorem 4.2. Let φ be a random {3, 2}-CNF formula conditional on a given
pattern P , as described above. For arbitrary i and j, choose at random a literal
t with i occurrences in 3-clauses and j occurrences in 2-clauses. Assign to t
the value True and perform the necessary deletions and shrinking of clauses
accompanied by repeated setting to True of literals in 1-clauses, as long as 1-
clauses exist. The new formula is then random, conditional on its new pattern
P ′.

Proof Again, we introduce a structure S that contains groups of sub-registers
corresponding to literals and to clauses. This time, the exposed degree sub-
registers of a literal t contain two integers: one giving the number of occur-
rences of t in 3-clauses and the other giving the number of occurrences of t
in 2-clauses. Furthermore, the group of literal sub-registers of t contains in-
formation on which 3-clauses and which 2-clauses include t. The information
regarding 3-clauses is unexposed. The information regarding 2-clauses, how-
ever, must be exposed because after an algorithmic step, it can be inferred
from the knowledge of the previous and current values of the registers giving
the type of each clause (3-clause or 2-clause) and the degrees of the literals.
One may readily confirm that nothing can then be inferred about the un-
exposed registers after the application of an algorithmic step. It is also im-
mediately apparent that the information that can be extracted from such a
structure S is given by the pattern P.

Note that if the algorithm does not make use of the number of occurrences
of literals separately in 3-clauses and 2-clauses, but only needs the total number
of occurrences of a literal in the formula, then the conditional does not have
to include the pairing of literals in 2-clauses. It is sufficient in this case for the
conditional to contain the total degree sequence, the number of 3-clauses, and
the number of 2-clauses.
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Finally, as a further application, let us see what information must be placed
in the conditional for an algorithm deleting vertices of a specified w-degree from
a random B&W graph, as discussed in section 2.

Given a B&W-graph G, letW ⊆ G be the subgraph comprised of the vertices
of G, with vertices marked according to whether or not they are all-white (in
the sense of G), and all white edges with at least one endpoint incident on an
all-white vertex. Call W the subgraph of w-degree witnesses. Without giving
details, one can again define a notion of random B&W graphs conditional on
the number of vertices, the total number of edges and the precise subgraph
of w-degree witnesses. Note that to construct the rest of the graph from this
information, one can arbitrarily place edges between vertices that are not all-
white and then arbitrarily color them black or white, taking care that at least
one black edge is incident on each vertex that is not all-white.

Then the following theorem holds. We omit its easy proof, as the notion of
B&W graphs was introduced only for illustrative purposes.

Theorem 4.3. If we delete a random vertex of a specified arbitrary w-degree from
a B&W graph that is random conditional on the number of vertices, the total
number of edges and the subgraph of w-degree witnesses, then the new graph is
random conditional on the new number of vertices, the new total number of edges
and the new subgraph of w-degree witnesses.

An analogous result holds if the deleted vertex has specified numbers of
white and black edges incident on it (the conditional in the latter case must be
augmented to contain the sequence dij giving the number of vertices with i white
and j black edges incident on them).

We conclude this chapter by the following

Informal Conjecture. The conditionals of theorems 4.1, 4.2, and 4.3 contain the
least information possible. With weaker conditionals, randomness would not be
retained.
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