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Abstract

Let M be a single s-t network of parallel links with load dependent latency functions shared by
an infinite number of selfish users. This may yield a Nash equilibrium with unbounded Coordination
Ratio [23, 43]. A Leader can decrease the coordination ratio by assigning flow αr on M , and then
all Followers assign selfishly the (1 − α)r remaining flow. This is a Stackelberg Scheduling Instance
(M, r, α), 0 ≤ α ≤ 1. It was shown [38] that it is weakly NP-hard to compute the optimal Leader’s
strategy.

For any such network M we efficiently compute the minimum portion βM of flow r > 0 needed
by a Leader to induce M ’s optimum cost, as well as her optimal strategy. This shows that the optimal
Leader’s strategy on instances (M, r, α ≥ βM ) is in P .

Unfortunately, Stackelberg routing in more general nets can be arbitrarily hard. Roughgarden pre-
sented a modification of Braess’s Paradox graph, such that no strategy controlling αr flow can induce
≤ 1

α times the optimum cost. However, we show that our main result also applies to any s-t net G. We
take care of the Braess’s graph explicitly, as a convincing example. Finally, we extend this result to k
commodities.

A conference version of this paper has appeared in [16]. Some preliminary results have also appeared
as technical report in [18].
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1 Introduction

In large scale networks such as Internet the users/providers have freedom on how to route their load. This
allows them to make their choices according to their own individual performance objectives, bringing the
network to fixed points most times worse than the optimum one [11]. Such selfish behavior is being studied
with the notion of Nash Equilibrium in the mathematical framework of Game Theory [9, 21, 22, 23, 27, 31,
32, 38, 45].

As a measure of how inefficient is the Nash equilibrium compared to the overall system’s optimum,
the notion of coordination ratio was introduced in the seminal paper of [23]. This work has been extended
(price of anarchy is another equivalent term) in [7, 6, 14, 26, 34, 33, 42, 39, 38, 43, 36]. The interested
reader can find nice presentations of this subject in the recent books [30, 42].

To improve the performance of the system under selfish behavior a great variety of methodologies have
been considered so far. These methodologies intent to bring the system to fixed points closer to its optimum
performance. The network administrator or designer can define prices, rules or even construct the network,
in such a way that induces near optimal performance when the users selfishly use the system. This can
be achieved through pricing policies [4], algorithmic mechanisms [12, 29, 28], network design [20, 36], or
routing small portion of the traffic centrally [24, 21, 38].

Particulary interesting is the last approach where the network manager affects the non-cooperative game.
The manager has the ability to control centrally a part of the system resources, while the remaining resources
are used by the selfish users. This approach has been studied through Stackelberg or Leader-Follower games
[24, 2, 21, 22, 38, 47]. One player (Leader) controls a portion of the system’s jobs and assigns them to
the system (Stackelberg assignment). The rest of the users (Followers) having in mind the assignment
of the Leader react selfishly and reach a Nash equilibrium. The assignment of Leader and Followers is
called Stackelberg Equilibrium. The goal of the Leader is to induce an optimal or near optimal Stackelberg
Equilibrium.

1.1 Motivation & related work

(i) Single-commodity networks with parallel links. Consider a system M of parallel links and a total of
flow r > 0 to be scheduled on M , denoted as a Scheduling Instance (M, r). Given an scheduling instance
(M, r), there is a unique Optimum assignment O of flow r > 0 on system M minimizing the total cost
C(O) incurred on system M . We study the case of an infinite number of selfish users, each assigning its
infinitesimal small portion of total flow r > 0 on links in M of currently minimum delay. Let the cost C(N)
of the Nash assignment N on the scheduling instance (M, r). Then,

C(N) = ε(M,r) × C(O) (1)

where ε(M,r) depends only on instance (M, r) and can be arbitrarily larger than 1 [43], but if all links in M
have linear load depended latency functions, then ε(M,r) ≤ 4/3 [23]. We try to obtain a more clear picture of
this degradation on system’s performance, measured by the factor ε(M,r), by studying Stackelberg Schedul-
ing Instances as in [38], and as in [21] where we focus on the case of an infinite number of users. According
to [38, 21] there is a central authority (Leader) that controls a portion 0 ≤ α ≤ 1 of the overall flow r > 0 to
be assigned on system M , while the rest (1−α)r of the flow is assigned by the infinite self-optimizing users
(Followers) on M . In [38] this is denoted as a Stackelberg Scheduling Instance (M, r, α), 0 ≤ α ≤ 1. This
means that each scheduling instance (M, r) corresponds to a family of Stackelberg scheduling instances
(M, r, α), parameterized with respect to α ∈ [0, 1]. Given a Stackelberg scheduling instance (M, r, α), the

1



goal of the Leader is to find an assignment (strategy) S of his flow αr on M , such that to induce a Follow-
ers’s assignment T of the remaining (1 − α)r flow, with cost C(S + T ) near to the optimum C(O) one.
That is

C(S + T ) ≤ ε(M,r,α) × C(O) (2)

Let us use the name “a-posteriori anarchy cost” for the quantity ε(M,r,α). Note that the a-posteriori anarchy
cost depends on the strategy chosen by the Leader and on the portion α of the flow that she controls.

M1 M2

O1 O2

M1 M2

N1

1/2 1/2

1

2N=0

Figure 1: Latencies are:
`1(x) = x, `2(x) = 1.

M1 M2

s=O2

M1

1/2

1

2

Figure 2: Leader’s strategy is:
S = 〈0, o2〉 = 〈0, 1/2〉.

M1 M2

s=O2

1/2

2
N1

1/2

Figure 3: S induces NE T =
〈o1, 0〉 = 〈1/2, 0〉.

Example [37, pp. 9] (Stackelberg parlance on Pigou’s example). In Fig. 1, link M1 is faster
than M2, thus the selfish flow N floods M1 (Fig. 1-down). A bad operating point arises:
C(N) > C(O), where the optimum O is to balance r = 1 to both links (Fig. 1-up). This
induces the worst anarchy cost ε(M, 1) = 4/3. A way out is in Fig. 2: Leader routes 1/2 of r
into slow link M2. This is a wise strategy. Since, in Fig. 3, the remaining free 1/2 flow induces
the optimum operating point and -the best possible- a posteriori anarchy cost ε(M,1,1/2) = 1.

More precisely, in [42, Th. 6.4.4] it was proved that ε(M,r,α) ≤ 1
α , 0 < α ≤ 1 for arbitrary latency functions,

and if restricted to instances with linear latencies then ε(M,r,α) ≤ 4
3+α [42, Th. 6.4.5]. From Expression

(2), we realize that the portion α captured by the Leader “pays” an upper bound on system’s degradation
factor ε(M,r,α) which is smaller than the plain one in Expression (1), see also [24]. More precisely, [38]
presented the algorithm LLF that, on input a Stackelberg scheduling instance (M, r, α), computes a Leader’s
strategy S inducing Nash assignment T with performance guarantee C(S + T ) ≤ 1

αC(O). However, on
the same Stackelberg scheduling instance (M, r, α) there may exist a better Leader’strategy S′ inducing T ′

such that C(S′ + T ′) < C(S + T ), see footnote 6 in [38]. This means that LLF cannot always compute
the optimal strategy. Also, there may exist a strategy S′′, escaping from LLF, such that C(S′′ + T ′′) =
C(O). Such limitations are depicted in the negative result in [38] stating that the problem of computing
the Optimal Stackelberg strategy on a given Stackelberg scheduling instance (M, r, α) is weakly NP -hard.
A way out of this negative result was a FPAS devised in [24]. On approximating the optimal strategy, it
is difficult to decide whether an arbitrary link receives a-posteriori induced flow or not, which reduces to a
multidimensional knapsack problem in [24]. Our approach here eludes this difficulty by carefully identifying
the corresponding subsets M>0(M=0) via recursively assigning “wise” amounts of flow per proper subset
of links, see Section 7.3.

(ii) s-t networks. Finally, an important question of [38] that motivated us is the extension of the above
results to arbitrary network graphs, closer to the nature of real networks. Given an arbitrary single source-
destination (s, t)-network G, can a Leader wisely assign here α portion on some edges, inducing a selfish
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s → t routing of the remaining flow with best possible cost? In [42, Example 6.5.1] it was exhibited a
simple 4-nodes graph where no strategy can guarantee cost 1

α times the optimum one. Notably, this 4-node
graph is reminiscent to the one of Braess’s Paradox. Before the publication of this work in [16, 18], no
performance guarantee as a function of the centrally controlled portion α was known for (s, t)-nets.

After the publication of our work in [16, 18] a series of papers explored further important issues
on Stackelberg routing on more general network topologies. For general networks and linear latencies,
Karakostas and Kolliopoulos [19] bounded the anarchy cost via strategies SCALE and LLF. They also ex-
tended these results to more general latencies. In this vain, Swamy [46] obtained similar bounds for serial-
parallel graphs with arbitrary latencies, while for more general graphs, he obtained latency-specific bounds
on PoA. Recently, Fotakis [13] investigated similar strategies for atomic congestion games. The papers
[5] and [3] are related to the aforementioned results, both investigating further the performance of strategy
SCALE and a variation of LLF on general nets. Finally, our work is related to the recent paper of Sharma
and Williamson [44]. They compute, on parallel links with linear latencies, the corresponding minimum
portion of controlled flow sufficient to improve on the system’s cost with respect to selfish routing.

(iii) Arbitrary multi-commodity nets. Even less was known for Stackelberg strategies on arbitrary net-
works before the publication of our work in [16, 18]. Some of the corresponding recent results in [3, 5, 19,
46] also extend to k commodities. More recently, [3] answered in the negative the [40, Open Problem 4]
and improved the bounds in [46].

2 Problem definition & results

Problem: The input is a scheduling instance (M, r) where r > 0 is the total flow and M is either m parallel
links, or an s-t network, or, even a multi commodity net, with arbitrary load dependent edge latencies as in
Sec. 4. The problem is to efficiently compute the minimum portion βM of flow r > 0 that a Leader must
control, as well as her optimal strategy S, in order to induce the overall optimum cost C(O) on (M, r). The
main result is Theorem 2.1.

Theorem 2.1 Let (M, r) be a multicommodity instance with k source/destination pairs si-ti on an arbitrary
network M , modeled as a directed graph. We can efficiently compute the minimum portion βM of flow
controlled by a Leader as to induce the optimum routing of total flow r > 0 on instance (M, r). We also
efficiently compute the associated optimal strategy of the Leader.

The proof appears in Section 5.1.
Direct consequences of this theorem are Corollaries 2.2 (s-t parallel links) and 2.3 (s-t network). In

particular, Corollary 2.2 shows that the algorithm OpTop efficiently solves the problem on parallel links. A
helpful1 illustration of OpTop appears in Section 3.1.

Algorithm: OpTop (M : parallel links, r : total flow.)
(1) Set r0 = r the total flow in M .

Compute the optimum assignment O := 〈oi : Mi ∈ M〉 on instance (M, r0). Set M ′ ≡ ∅.
(2) Compute the Nash assignment N := 〈ni : Mi ∈ M〉 on instance (M, r).
(3) For each link Mi ∈ M such that oi > ni set M ′ = M ′ ∪ {Mi}. If M ′ ≡ ∅ go to (5).
(4) Set M = M \M ′ and O := O \ {oi ∈ M ′} and r = r −∑

Mi∈M ′ oi. Set M ′ ≡ ∅ and go to (2).
(5) The portion of flow controlled by the Leader is βM = (r0 − r)/r0.

1At the end of this paper, Sec. 7 presents monotonicity properties of OpTop’s evolution. These properties may help to improve
intuition on Stackelberg strategies.
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Corollary 2.2 Let (M, r) be an s-t parallel-links instance. Algorithm OpTop runs in polynomial time and
computes the minimum portion βM of total flow r > 0 that a Leader must control to induce overall optimum
routing on (M, r), as well as the optimal Stackelberg strategy.

Corollary 2.2 implies that on all Stackelberg scheduling instances of the form (M, r, α ≥ βM ), a Leader
can enforce the Optimum cost C(O), and the problem of computing the Optimum Stackelberg strategy is
in P . This eludes the hardness result in [41, Theorem 6.1] and finally answers an open question in [37,
page 28]. In view of Expression (2), for such instances the factor ε(M,r,α≥βM ) is precisely 1. On the
contrary, for all Stackelberg sceduling instances (M, r, α < βM ) it is not possible for a Leader to enforce
the Optimum cost. Then in Expression (2) we get that ε(M,r,α<βM ) > 1, which means that such Stackelberg
scheduling instances are the really hard ones and we can try to attack these by sophisticated fully polynomial
approximation schemes [24]. Such non-optimizing behavior was presented also in [21], for the restricted
case of M/M/1 systems of distinct links. Notably, if such M/M/1 systems contain small groups of highly
appealing links or there are large groups of identical links then βM may be significantly small.

Generalizing the previous algorithm on s-t nets, we get algorithm MOP, where in turn, Corollary 2.2
shows that it efficiently solves the problem. A helpful illustration of MOP appears in Section 3.2.

Algorithm: MOP (G : an s-t net, r : total flow)
(1) Initialize Stackelberg strategy S = {}, centrally captured flow rS = 0.
(2) Compute the optimum assignment O := 〈oe : e ∈ G〉 on instance (G, r).
(3) Set cost `e(oe) on each edge e ∈ G, oe ∈ O.
(4) Compute the shortest paths in G with edge-costs `e(oe), e ∈ G. Let PO

s→t the set of shortest paths.
(5) Control flow OP > 0 on each non shortest path P 6∈ PO

s→t.
(6) Set r′ the uncontrolled flow which routes through shortest paths PO

s→t.
(7) Return the Leader’s portion βG = 1− r′

r .

Corollary 2.3 Let instance (M, r) on a s-t network M . Algorithm MOP computes in polynomial time the
minimum portion βM of Leader’s flow, sufficient to induce the optimum routing of flow r > 0 on network G,
as well as the optimal strategy of the Leader.

Corollary 2.3 implies that, despite the negative result depicted in [42, Example 6.5.1], algorithm MOP
efficiently computes the optimal strategy on arbitrary nets, yielding approximation guarantee 1, see in this
respect the open problem in [37, page 29]. In particular, we take care this bad example of net routing in
Section 3.2.

On hard instances of parallel-links. Trying to understand further the underlying complexity of hard in-
stances (M, r, α < βM ), we focus on parallel links, with appropriate load dependent latency functions that,
hopefully, may admit efficient computation of the optimal strategy. Our motivation is the case of simple
followers (which is identical to an infinite number of followers that we consider here) studied in Section 8
in [21].

Theorem 2.4 The optimal Stackelberg strategy is computed in polynomial time on any instance (M, r, α <
βM ) with m parallel links where each link has linear latency `i(x) = ax+ bi, a ≥ 0, bi ≥ 0, i = 1, . . . , m.

The proof appears in Section 6.1. This theorem squeezes “efficiency” from the class of linear latencies,
shown hard in the reduction in [41, Theorem 6.1].
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Remark 2.5 The results of this paper concern instances with strictly increasing latencies, pervasive in
real-world networks, see the classical [1] work of Patriksson [35, Ch. 4] and also the pioneering work of
Dafermos et al. [8, Sec. 1.3]. A property important to our analysis, is that on such instances Optimum O
and NE N edge flows are unique. In [17] we extend such instances, while preserving uniqueness of optimum
edge flows, by even allowing edges with constant latencies.

3 Examples on computing the price of Optimum

3.1 s-t parallel links

Algorithm OpTop of Corollary 2.2 works as follows:

1. Compute the Optimum O := 〈o1, . . . , om〉 (Fig. 4-up) & Nash N := 〈n1, . . . , nm〉 (Fig. 4-down).

2. Detect the under-loaded (Def. 4.3) links Mi ∈ M with ni < oi (Fig. 4, links M4,M5).

3. Play Stackelberg strategy si = oi per under-loaded link Mi ∈ M (Fig. 5-up).

4. Discard these under-loaded links and the flow assigned to them (Fig. 5-down).

5. Assign the remaining flow recursively to the simplified subnetwork of links.

6. Terminate if the simplified subnetwork has all the links optimum-loaded (Fig. 6).

M1 M2 M3 M4 M5

O1 O2 O3 O4 O5

M1 M2 M3 M4 M5

N1 N3
N4

N5

~0.35
~0.23 ~0.17

~0.10
~0.13

~0.41
~0.20

~0.09

=0

N3

~0.27

Under-loaded

Figure 4: `1(x) = x, `2(x) =
3/2x, `3(x) = 2x, `4(x) =
5/2x + 1/6, `5(x) = 7/10.

M1 M2 M3 M4 M5

s=O4
s=O5

M1 M2 M3

~0.10
~0.13

OpTop loads & discards

4 5

Figure 5: Up: OpTop optimally
loads M4,M5. Down: OpTop
discards M4,M5.

M1 M2 M3

N= O
1 N= O N= O

~0.35
~0.23 ~0.17

1 2 2 3 3

Figure 6: OpTop terminates:
the remaining 1−O4−O5 self-
ish flow just induced NE equal
to the Optimum.

3.2 s-t networks

Let Ps→t be the s → t paths on instance (G, r). Algorithm MOP of Corollary 2.3 works as follows:

1. Compute the optimum flow O, assigning flow oe and latency `e(oe) per edge e ∈ G (Fig. 7-(a)).

2. Compute the shortest paths Os→t ⊆ Ps→t with respect to costs `e(oe), ∀e ∈ G, (see Fig. 7-(b)).

3. Play the Stackelberg strategy assigning the optimal flow OP > 0 on each path P 6∈ Os→t (Fig. 7-(c)).

4. The Price of Optimum βG = (the optimal flow on all non-shortest paths)/r (Fig. 7-(d)).
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0, x ∈ [0, 3

4
− ε]

arbitrary, x ∈ (3

4
− ε, 3

4
)

1 − ε, x ∈ [3
4
,∞]

Figure 7: The total flow is r = 1. Details on this instance can be found in [42, Example 6.5.1].
(a) The optimal edge-flows are: os→v = 3

4−ε, os→w = 1
4 +ε, ov→w = 1

2−2ε, ov→t = 1
4 +ε, ow→t = 3

4−ε.
(b) The shortest path induced by optimum flow O is: P0 = s → v → w → t, with flow OP0 = 1

2 − 2ε.
(c) Non-shortest paths are: P1 = s → v → t & P2 = s → w → t, with flows OP1 = 1

4 +ε and OP2 = 1
4 +ε.

(d) The Price of Optimum is: βG = r−OP0
r .

Remark 3.1 In s-t parallel links with arbitrary latency functions, a simple algorithm controls α ∈ [0, 1]
portion of flow and induces an equilibrium with cost≤ 1

α times the optimum one ( 1
α approximation guaran-

tee). Roughgarden showed [42, Example 6.5.1] that the above bound is not possible to hold for s-t networks.
This was demonstrated with a selfish routing example on the graph in Fig. 7. The importance of our example
here stems from the fact that on this particular graph in Fig. 7, MOP achieves the optimum cost (thus, its
approximation guarantee equals 1, which is ≤ 1

α , ∀α ∈ [0, 1)).

4 Model

We briefly present the model below, discussed thoroughly in [42].
s-t parallel links: We have m parallel links M = {M1, . . . , Mm} connecting a source s to a sink vertex t.
An infinite number of users wish to route from s to t, each controlling an infinitesimal small portion of a total
flow r > 0. Each link Mi ∈ M on flow xi has standard latency function: `i(xi) ≥ 0 differentiable, strictly
increasing2 and xi`i(xi) convex on xi. Any assignment of jobs to the links in M is represented as a feasible
m-vector X = 〈x1, . . . , xm〉 ∈ Rm such that X ≥ 0 and

∑m
i=1 xi = r. A routing instance is annotated

as (M, r). The Cost of a feasible assignment X ∈ Rm on instance (M, r) equals C(X) =
∑m

i=1 xi`i(xi).
The minimum cost is incurred by a unique feasible assignment O ∈ Rm called the Optimum. The unique
feasible assignment N ∈ Rm defines a Nash Equilibrium (NE), if no user can find a link with latency <
than any other loaded link. A consequence is:

Remark 4.1 All loaded links by N have latency LN , while the empty ones have latency ≥ LN , where
LN > 0 is an appropriate constant.

A Stackelberg strategy S = 〈s1, . . . , sm〉 is a feasible flow of a portion βr of r > 0 on M,β ∈ [0, 1]. In
other words,

∑m
i=1 si = βr and si ≥ 0 per link Mi ∈ M . Let T = 〈t1, . . . , tm〉 be the induced NE (INE) by

strategy S. Hence, T satisfies
∑m

i=1 ti = (1 − β)r with ti ≥ 0 per link i ∈ M , and by rephrasing Remark
4.1, we get:

2See Remark 2.5.
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Remark 4.2 All loaded links by T have latency LS , while the empty ones (by T ) have latency ≥ LS , where
LS > 0 is an appropriate constant depending on S.

The flow S + T is called Stackelberg Equilibrium with cost C(S + T ) =
∑m

i=1(si + ti)`i(si + ti).

Definition 4.3 Link Mi ∈ M is called over-loaded if ni > oi, under-loaded if ni < oi, otherwise is called
optimum-loaded, i = 1, . . . ,m.

Definition 4.4 Link Mi ∈ M is frozen if Stackelberg strategy S assigns to it load si ≥ ni where N is the
initial Nash assignment. Otherwise Mi is unfrozen.

Multicommodity networks: A network can be modeled as a directed graph G(V,E) with set of vertices
V and edges E. There are k source-destination pairs of vertices3 (s1, t1), . . . , (sk, tk) and no self loops are
allowed. Pi is the set of all paths amongst (si, ti), i = 1, . . . , k, and P =

⋃
i Pi. An infinite number of

users wish to route from each si to ti, each controlling an infinitesimal small portion of total flow ri > 0.
Let f = 〈fP : P ∈ P〉 be a flow r =

∑k
i=1 ri to the paths in P , where fP denotes the flow traveling

through path P ∈ P . The flow fe on edge e ∈ E is the flow it receives from all paths in P traversing
e. On a pair (si, ti), we let f i be the restriction of f to Pi, i = 1, . . . , k. The total of flow wishing to
travel through source-destination pair (si, ti) is ri and f is feasible if the flow it assigns on the paths in Pi

is ri. Edges are endowed with latency functions as in the parallel-links model above4. The latency of a
path P ∈ Pi with respect to flow f is the sum of its edge-latencies `P (f) =

∑
e∈P `e(fe). The cost of a

flow f is C(f) =
∑

e∈E `e(fe)fe =
∑

P∈P `P (f)fP . The unique Optimal flow O is the one minimizing
the cost C(·) of scheduling flow r > 0 on network G and can be efficiently computed. A feasible flow
N is a Nash equilibrium on G if an only if for every commodity i ∈ {1, . . . , k} and paths P1, P2 ∈ Pi

with fP1 > 0 we have `P1(f) ≤ `P2(f). In other words, in each source-destination pair (si, ti) no flow
traveling through loaded path P1 ∈ Pi can find any other path P2 ∈ Pi with < latency. A Stackelberg
strategy S = 〈sP : P ∈ P〉 on instance (G, r) is a feasible assignment of a portion βr, β ∈ [0, 1] of the
total flow r > 0 on the paths in P . A Leader dictates a weak Stackelberg strategy if on each commodity
i = 1, . . . , k controls a fixed α portion of flow ri, α ∈ [0, 1]. Also, on a strong Stackelberg strategy a Leader
controls αiri flow in commodity i such that

∑k
i=1 αi = α. Let a Leader dictating flow se on edge e ∈ E.

Let T = 〈τ1, . . . , τm〉 be the induced NE (INE) by strategy S of the remaining (1− β)r selfish flow. The a
posteriori latency ˜̀

e(τe) of edge e, with respect to the induced selfish flow T , equals ˜̀
e(τe) = `e(τe + se).

In the a-posteriori Nash equilibrium T , all si-ti paths traversed by the selfish users in commodity i have a
common latency, which is at least the latency of any empty path in commodity i = 1, . . . , k. The induced
cost of flow S + T is

∑
e∈E(τe + se)× ˜̀

e(τe).

Remark 4.5 In [13, 24, 41] the NE N and Optimum O flows are given as input. On the basis these flows,
subsequent Stackelberg strategies are efficiently computed. In general, O and N flows can be efficiently
computed and more details can be found in [42, Fact 2.4.9, Cor. 2.6.7], see also [42, Sec. 2.8]. For strictly
increasing latencies, the corresponding edge-flows are unique [42, Cor. 2.6.4]. This extends to real-world
instances endowed with edges with increasing latencies [17].

5 Proof of the main result on k commodities

In this section we prove main Theorem 2.1, which yields Cor. 2.2 and 2.3.
3si denotes a source vertex, while se the Leader’s flow on edge e and their meaning will be clear from the context.
4See Remark 2.5.
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5.1 Proof of Theorem 2.1

Let P(i)
s→t be the set of all si-ti paths on a k-commodity instance G, i = 1, . . . , k. On commodity i,

we efficiently compute5 the subset PO,(i)
s→t of shortest paths PO,(i)

s→t ⊆ P(i)
s→t with respect to optimum costs

`e(oe), ∀e ∈ G.
Leader must control under strategy S the optimum flow OP assigned by O on every non shortest path

P ∈ P(i)
s→t \ PO,(i)

s→t ,∀i.
First, suppose that exists path P ∈ P(i)

s→t such that Leader controls flow SP > OP under strategy S.
Then the induced flow S + T will differ from the unique optimum flow O at least on this particular path P ,
yielding suboptimal cost. Therefore it is meaningful for Leader, ∀P ∈ P(i)

s→t, to assign only flow SP ≤ OP

under any strategy S she employs.
Now, suppose that in commodity i there exists non shortest path P0 ∈ P(i)

s→t \ PO,(i)
s→t such that Leader

controls flow SP0 < OP0 under strategy S. The remaining uncontrolled flow OP0 −SP0 on this non shortest
path will opt for a currently shortest path in PO,(i)

s→t . Then the induced flow S + T will differ from the
unique optimum flow O on this sub-optimally loaded path P0. Furthermore, Leader need not waste any flow
SP ≤ OP on any shortest path P ∈ PO,(i)

s→t , because in this way path P still remains a shortest one, and thus,
any OP0−SP0 uncontrolled flow in the aforementioned non shortest P0 will opt for P , yielding S +T 6= O.

It follows that the only choice for the Leader is to optimally load every non shortest path P ∈ P(i)
s→t \

PO,(i)
s→t per commodity i.

6 s-t parallel links on hard instances (M, r, α < βM)

Here we prove Theorem 2.4. Consider an instance (M, r) of m parallel links, with latency functions `i(x) =
ax + bi, a ≥ 0, bi ≥ 0, i = 1, . . . , m. With no loss of generality, assume that the constant terms of the
latencies are strictly increasing, that is, bi < bi+1, per link i = 1, . . . ,m− 1.

In Lemma 6.1 we show that on any instance (M, r, α < βM ) there is a Leader’s optimal strategy that
partitions M = {M1, . . . ,Mi0 , . . . , Mm} around some link Mi0 such that subsystem M>0(i0) (containing
links appealing to Followers) is M>0(i0) = {M1, . . . , Mi0} and subsystem M=0(i0) (containing links that
Followers dislike) is M=0(i0) = {Mi0+1, . . . , Mm} .

Lemma 6.1 There exists an optimal strategy of S of the leader, such that all links in M=0 have indices
greater than ones of the links in M>0. This strategy can be computed in polynomial time.

Proof. Let S be an optimal strategy for the Leader and T the corresponding induced Nash assignment.
Suppose that S does not satisfy the property of Lemma 6.1, with no loss of generality, assume that M1 ∈
M=0 (which means t1 = 0) and M2 ∈ M>0 (which means t2 > 0), see Fig. 8. The partial cost of S + T on
subsystem {M1,M2} equals:

s1`1(s1) + (s2 + t2)`2(s2 + t2) =
s1`

1 + (s2 + t2)`2 = A (3)

with `1 ≥ `2

5Implementing Dijkstra’s algorithm, for example as in [10], compute subgraph G ⊆ G containing all edges traversed by a
shortest path with respect to edge costs incurred by O. Per source si of commodity i, compute (free flow) the flow by O going
through edges in G adjacent to si. This gives the controlled flow βGr, which is r minus the total free flow. Leader assigns this βGr
controlled flow on G by loading se = oe, ∀e 6∈ G, satisfying the standard multicommodity flow constraints.
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We show how to reassign the Leader’s flow s1 + s2 on subsystem {M1,M2}, in a way that t1 > 0 (hence
satisfying the property of Lemma 6.1), inducing partial cost ≤ A and latency ≤ `2 on the most appealing
link. In this way, we get a new Leader strategy, with cost ≤ A, that satisfies the property described in
Lemma 6.1.

First, interchange the loads between M1 and M2, i.e. load s1 goes from M1 to M2 and load s2 + t2 goes
from M2 to M1, see Fig. 9. This decreases the latency on M1 to `1′ < `2. Also it increases the latency on
M2 to `2′ > `1. Since the latency functions have parallel plots, we can remove load ε ≥ 0 from M2 till the
latency it experiences drops from `2′ to `1 and place it to M2 raising its latency from `1′ to `2, see Fig. 10.
The new cost on {M1,M2} is:

(s2 + t2 + ε)`1(s2 + t2 + ε) + (s1 − ε)`2(s1 − ε) =
(s2 + ε + t2)`2 + (s1 − ε)`1 = A + ε(`2 − `1) ≤ A,

since `2 ≤ `1, ε ≥ 0

6.1 Proof of Theorem 2.4

Given an instance (M, r, α), fix a partition M>0(i0) = {M1, . . . ,Mi0} and M=0(i0) = {Mi0+1, . . . ,Mm}
of system M (by Lemma 6.1 there are ≤ m such partitions). We wish to find 0 ≤ εi0 ≤ αr such that the
partial cost on subsystem (M>0(i0), (1 − α)r + εi0) by selfishly routing (1 − α)r + εi0 flow on it (such
that no machine in M>0(i0) remains empty), added to the partial cost on subsystem (M=0(i0), αr − εi0),
when optimally assigning αr − εi0 flow on it, is minimized. The constraint is that the common latency in
(M>0(i0), (1− α)r + εi0) must be at most the latency of any link in (M=0(i0), αr − εi0), otherwise users
in M>0(i0) will opt for machines in M=0(i0) destroying the induced assignment.

9



The cost on subsystem (M>0(i0), (1−α)r + εi0) reduces to computing the cost of the Nash assignment
of flow (1 − α)r + εi0 onto subsystem M>0(i0). The cost on subsystem (M=0(i0), αr − εi0) reduces to
computing the Optimum assignment of flow αr − εi0 onto subsystem M=0(i0). Such computations can be
done efficiently for linear latencies. The addition of both costs is acceptable, only if for the given value of
εi0 , all links in M>0(i0) become loaded, and their common latency Lεi0 is at most the minimum latency
experienced in any link in M=0(i0) (in case of violation of any such constraint, we set the cost equal to∞).

Notice here that for a given (M, r, α < βM ) and any index i0 ∈ {1, . . . ,m − 1}, the partial cost on
(M>0(i0), (1−α)r+εi0) is strictly increasing on εi0 , while the partial cost on (M=0(i0), αr−εi0) is strictly
decreasing on εi0 . This allows as to efficiently compute the value ε∗i0 that minimizes the sum C(ε∗i0) of the
partial costs.

The optimal Leader strategy is determined by the tuple (ι, ει), ι ∈ {1, . . . ,m − 1}, 0 ≤ ει ≤ αr such
that C(ει) = min{C(ε∗1), . . . , C(ε∗m−1)}.

7 Miscellaneous: more on OpTop & parallel links

The hardness of computing the optimal Leader’s strategy stems from a variant of the PARTITION problem
([41, Theorem 6.1]). Intuitively, the exponentially many ways for the Leader to place her αr flow on the m
links make elusive the identification of the optimal strategy.

Section 7.2 helps to significantly prune the search space, where Theorem 7.2 identifies all useful strate-
gies. Any useful strategy S induces Nash T with cost C(S +T ) 6= C(N), N is the initial equilibrium when
all users are free. According to this theorem6, C(S + T ) 6= C(N) holds only if strategy S assigns load
sj > nj to at least one link Mj (freezes link Mj , Def. 4.4), where nj equals the initial Nash load.

Theorem 7.2 forces Leader to freeze at least one link (assign more than Nash load), otherwise the
induced cost C(S + T ) equals the Nash cost C(N).

Having played S, Leader now faces the difficulty of identifying, amongst the links loaded by S, those
that will (or not) receive induced selfish flow (see the discussion in [24, Section 3.2, 2nd paragraph] and
also here in Section 7.3) and subsequently ruin (or maintain) her assignment. The way out is presented in
Section 7.3. In this section, Theorem 7.4 and Lemma 7.5 will help Leader escape this difficulty and will
allow her to dynamically discover her optimal strategy as OpTop evolutes. Theorem 7.4 and its extension
Lemma 7.5 prove that as soon as a link Mj gets load sj ≥ nj (link Mj becomes frozen) then no induced
selfish load (tj = 0) will be assigned to it, irrespectively of the assignment S to the remaining links.

Leader takes advantage of the discussions in Sections 7.2 and 7.3 and exploits link-by-link her optimal
strategy S, as described in Section 7.4: Leader is forced by Theorem 7.2 to overload sj > nj at least
one link Mj (otherwise the induced cost remains C(N)). Any frozen link Mj must be optimum-loaded
sj : nj < sj = oj (Definition 4.3). Otherwise, the flow sj : nj < sj 6= oj it receives is not possible to
be affected by the induced selfish play, as Theorem 7.4 and Lemma 7.5 demonstrate, implying suboptimal
C(S + T ) > C(O) induced cost (since ∃j : sj 6= oj).

Hence, the only option for the Leader is to recursively assign optimal load sj = oj to any link Mj

currently under-loaded nj < oj and simplify the game by removing such Mj’s, see Section 7.4, which
combines the results of Sections 7.2 and 7.3.

6After the publication of our work a more clear picture on the property C(S +T ) 6= C(N) was provided. In [44, Eq. (1)] it was
shown that any useful strategy S inducing C(S + T ) < C(N) must control at least the minimum Nash load mini=1,...,m{ni|ni <
oi} on any under-loaded link Mi (Def. 4.3), i = 1, . . . , m.
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7.1 A monotonicity property

Now we give a simple proof for a monotonicity property that will be important to our proof methodology.
A similar property was proved in [25, Theorem 3] via alternating paths for general s-t nets. Previously, this
was also shown with methods of sensitivity analysis in [15]. After the publication of our work, the authors
in [44] gave an alternative proof.

Proposition 7.1 If on (M, r′), (M, r) holds r′ ≤ r, for the respective NEs N,N ′ holds n′i ≤ ni, ∀Mi ∈ M .

Proof. N is Nash equilibrium of flow r on M and by Definition 4.1, ∃ LN > 0, such that for each link
Mi ∈ M if ni > 0 then `i(ni) = LN , otherwise `i(ni) = `i(0) ≥ LN . Let

MN+
= {Mi ∈ M : ni > 0} and MN−

= {Mi ∈ M : ni = 0} (4)

Similarly for equilibrium N ′ of the flow r′, let LN ′ > 0 the corresponding constant. To reach a contradiction,
suppose that ∃ Mi0 ∈ M such that n′i0 > ni0 . Then `i0(n

′
i0

) = LN ′ > `i0(ni0) ≥ LN , since each `i(·)
is strictly increasing. Then, each link Mi ∈ MN+

must have load n′i > ni under N ′, otherwise it will
experience latency `i(n′i) ≤ `i(ni) = LN < LN ′ which is impossible, since N ′ is a Nash equilibrium.
Therefore, we reach a contradiction since we get r′ ≥ ∑

Mi∈MN+ n′i >
∑

Mi∈MN+ ni = r.

7.2 Identifying the useful strategies

Luckily, by the Nash assignment N of the users, all links may end up optimum-loaded (Def. 4.3). In this
way, N ≡ O and the cost C(N) of the system is minimized, that is C(N) = C(O). In general N 6≡ O, since
the selfish users prefer and thus over-load fast links, while dislike and under-load slower ones, increasing
the cost C(N) > C(O). The crucial role of strategy S is to wisely pre-assign load si ≥ 0 to each link
Mi ∈ M . This is successful to the extent that the induced Nash assignment T made by the users will
assign an additional load ti ≥ 0 to each Mi, yielding the nice property si + ti = oi for each i = 1, . . . , m.
Intuitively, strategy S biasses the initial Nash assignment N to the induced one T , in a way that S +T ≡ O,
minimizing the induced overall cost C(S + T ) = C(O) on system M .

Theorem 7.2 describes each Stackelberg strategy S inducing Nash assignment T with cost C(S + T ) =
C(N). In other words, Theorem 7.2 describes exactly all those useless strategies that induce cost indifferent
from C(N). Then, it is useless for OpTop to employ such a strategy S when trying to escape from a
particular Nash equilibrium N with C(N) > C(O).

Theorem 7.2 If for strategy S holds ∀j, sj ≤ nj then for the induced Nash assignment T it holds ∀j, nj =
sj + tj . In other words, the initial Nash assignment N will coincide to S + T .

Proof. Since N is a Nash equilibrium on the links in M with
∑m

i=1 ni = r, then there exists a constant
LN > 0, such that for each link Mj ∈ M that receives load nj > 0 it holds `j(nj) = LN . That is, all loaded
links incur the same latency LN to the system M . Consider an arbitrary Stackelberg strategy S, assigning
load sj ≤ nj to each Mj ∈ M with

∑m
i=1 si = βr, β ∈ [0, 1]. Since for each Mj ∈ M it holds sj ≤ nj

then ∃ tj ≥ 0 such that tj = nj − sj and also
∑m

i=1 ti = (1−β)r. Let T = 〈t1, . . . , tm〉 be this assignment
on M . Obviously, for the same constant LN > 0 as above, it holds: `j ((nj − sj) + sj) = `j(nj) = LN ,
for each Mj ∈ M with tj > 0. This means that T is a Nash equilibrium on system M and also S +T ≡ N .

Definition 7.3 Each Stackelberg strategy S that satisfies Theorem 7.2 is called useless-strategy, otherwise
is called useful-strategy.
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7.3 Each frozen link gets no induced selfish flow

It is helpful to quote here the main difficulty on approximating the optimal strategy, as described in [24,
Sections 4.1-4.2]. Let S∗ an optimal strategy, T ∗ the induced Nash, and subset M>0(M=0) of links that
do (not) get induced selfish flow. The hard part is to decide whether link i belongs to M>0 or to M=0. By
observing that all links in M>0 (or M=0) have common latency `i(si + ti) = L∗ (or common marginal cost
(si`i(si))

′ = D∗), the authors in [24] reduce such decisions to a multidimensional knapsack problem.
This section eludes this difficulty by carefully identifying the corresponding subsets M>0(M=0) via

recursively assigning “wise” amounts of flow per proper subset of links. Intuitively, subset (M>0)M=0

stands for (un)frozen links, defined bellow.
In the sequel, Theorem 7.4 and Lemma 7.5 demonstrate an invariant property of frozen links: a frozen

link belongs to M=0, irrespectively of Leader’s play to remaining links.

Theorem 7.4 If strategy S freezes (Def. 4.4) every link it assigns flow then all frozen links get no induced
selfish flow.

Proof. Let the Nash assignment N = 〈n1, . . . , nm〉 on instance (M, r). Strategy S = 〈s1, . . . , sm〉 freezes
every link it assigns load, that is, either sj ≥ nj or sj = 0,∀j. We show that on each frozen link Mj ∈ M
the induced Nash assignment T assigns flow tj = 0.

N is a Nash equilibrium, and by Definition 4.1, ∃ LN > 0 : ∀Mi ∈ M , if ni > 0 then `i(ni) = LN ,
otherwise `i(ni) ≥ LN . Fix a Stackelberg strategy S and let the subsystems of frozen and unfrozen links:

MS+
= {Mi ∈ M : si ≥ ni} and MS− = {Mi ∈ M : si = 0} (5)

partitioning system M . Each frozen link Mi ∈ MS+
receiving induced load ti ≥ 0 experiences a posteriori

higher latency (less appealing) than the initial common value LN , since:

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN (6)

On the contrary, on each unfrozen link Mj ∈ MS− its a posteriori latency function remains the same as
before applying strategy S (since sj = 0):

`S−
j (tj) = `j(tj + sj) = `j(tj) (7)

The induced Nash assignment T by strategy S assigns the remaining selfish flow on M . This flow is ≤ the
initially

∑
Mj∈MS− nj selfish flow assigned under N only on unfrozen links in MS− , since by the definition

of MS+
,MS− in (5) it holds:

r −
m∑

i=1

si = r −
∑

Mj∈MS+

sj ≤
∑

Mj∈MS−
nj (8)

Taking advantage (7) and (8), Proposition 7.1 implies that the remaining free flow that appears in LHS of
(8), even if it is assigned selfishly only on the subsystem MS− of unfrozen machines, then ∀Mj ∈ MS− it
will yield induced flow 0 < tj ≤ nj . Therefore ∀Mj ∈ MS− : tj > 0 ⇒ `j(tj) ≤ `j(nj) = LN and by (6)
we conclude that no induced selfish flow on any unfrozen link in MS− has incentive to route through any
frozen machine in MS+

.

Lemma 7.5 If strategy S have frozen (Def. 4.4) some (and not all) of the links it assigns flow then frozen
links get no selfishly induced flow.
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Proof. Suppose that strategy S assigns on each link Mj either sj ≥ nj or even sj < nj (freezes only
some of the links it assigns flow). We show that the induced Nash T assigns tj = 0 on each frozen link
Mj : sj ≥ nj .

N is the initial Nash equilibrium, and by Definition 4.1, ∃ LN > 0 such that for each link Mi ∈ M , if
ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN . Let the subsystems of frozen and unfrozen links:

MS+
= {Mi ∈ M : si ≥ ni} and MS− = {Mi ∈ M : si < ni}

Similarly as in (6), each frozen link Mi ∈ MS+
receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN (9)

However, here we do not have the nice fact as in (7), since now the link latency function in MS− have been
changed by S (since now may be sj 6= 0 for link Mj ∈ MS− ) and we can not directly apply Proposition
7.1. We can circumvent this, reworking the proof of Proposition 7.1, as follows.

Suppose that ∃Mi0 ∈ MS− : si0 + ti0 > ni0 (thus ti0 > 0, since si0 < ni0). Then `i0(si0 + ti0) >
`i0(ni0) and since `i0(ni0) ≥ LN we get `i0(si0 + ti0) > LN . From this, for any link Mj ∈ MS− , it must
hold: `j(sj + tj) > LN , since T is the induced equilibrium. This implies sj + tj > nj > 0 for each link
Mj ∈ MS− ∩MN+

, recall (4) defining subsystems MN+
,MN−

. Also, for each link Mj ∈ MS− ∩MN−

we have sj ≤ nj = 0 and thus tj ≥ nj = 0. We conclude that if ∃Mi0 ∈ MS− : si0 + ti0 > ni0 , then
(selfish & controlled) flow in unfrozen machines in MS− must be:

∑

Mi∈ MS−∩MN+

(si + ti) +
∑

Mi∈ MS−∩MN−
(si + ti) >

∑

Mi∈MS−
ni

This is a contradiction, because the remaining flow than can be scheduled on all unfrozen links in MS− is:

r −
∑

Mi∈MS+

si ≤
∑

Mi∈MS−
ni

since by definition of MS+
, it holds

∑

Mi∈MS+

si ≥
∑

Mi∈MS+

ni

7.4 Proof of Corollary 2.2

Here we combine the results proved in Sections 7.2 and 7.3.
First comes Theorem 7.2 (Sec. 7.2). It forces OpTop to freeze at least one link, otherwise OpTop

induces equilibrium identical the initial one (a useless strategy, Def. 7.3). Now, any useful strategy must
freeze all currently under-loaded (Def. 4.3) links to their optimum flow. Otherwise, Theorem 7.4 and
Lemma 7.5 (Sec. 7.3), demonstrate that any non optimally frozen link will stuck to its suboptimal flow.
Thus, the induced equilibrium will not yield system’s optimum.

As soon as OpTop freezes all currently under-loaded links, it safely discards them from the system:
there is no way for their flow to change. This yields a simpler subsystem.

OpTop recursively freezes to their optimal flows all under-loaded links and discards them from the
system at hand, until it encounters a subsystem with no under-loaded links
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