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Abstract

It was only recently shown by Shi and Wormald, using the differential equation
method to analyse an appropriate algorithm, that a random 5-regular graph asymptoti-
cally almost surely has chromatic number at most 4. Here, we show that the chromatic
number of a random 5-regular graph is asymptotically almost surely equal to 3, provided
a certain four-variable function has a unique maximum at a given point in a bounded
domain. We also describe extensive numerical evidence which strongly suggests that
the latter condition holds. The proof applies the small subgraph conditioning method
to the number of locally rainbow balanced 3-colourings, where a colouring is balanced
if the number of vertices of each colour is equal, and locally rainbow if every vertex is
adjacent to at least one vertex of each of the other colours.

1 Introduction

The chromatic number of random regular graphs has attracted much interest in recent years.
For the uniform model Gn,d of d-regular graphs on n labelled vertices, recent work has focussed
on the chromatic number for fixed d. All necessary background with respect to random regular
graphs as well as the pioneering results about their chromatic number and other parameters
can be found in the comprehensive review paper by the last author [17].
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It is widely known that for d ≥ 2 a random d-regular graph is a.a.s. not bipartite, and
thus has chromatic number at least 3. (We say an event holds asymptotically almost surely
(a.a.s.) if it holds with probability tending to 1 as n →∞. In these asymptotics for Gn,d we
assume nd is always even for feasibility.) Molloy and Reed (see [10]) gave a lower bound on
the chromatic number for general d, and in particular they showed that for a random 6-regular
graph it is a.a.s. at least 4. The basic ingredient of the proof was the first moment method:
showing that the expected number of 3-colourings of a random regular graph converges to
zero.

Achlioptas and Moore [2] proved that random 4-regular graphs have chromatic number 3
w.p.p. (i.e. with probability bounded away from 0 for large n, which they refer to as ‘with
positive probability’). The proof was algorithmic in the sense that it used a backtracking-free
algorithm based on Brelaz’ heuristic. Subsequently, Achlioptas and Moore [3] showed that
the chromatic number of a d-regular graph (d ≥ 3) is a.a.s. k or k + 1 or k + 2, where k is the
smallest integer such that d < 2k ln k. They also showed that if furthermore d > (2k−1) ln k,
then a.a.s. the chromatic number is either k + 1 or k + 2. They also obtained an upper bound
on the probability that it is k + 2, which showed that 5-regular graphs can be 4-coloured
w.p.p. in the multigraph model that is commonly used to analyse random regular graphs.
This was subsequently improved by Shi and the last author [14, 15], who showed that the
chromatic number of a random d-regular graph is a.a.s. 3 for d = 4, 4 for d = 6, and either
3 or 4 for d = 5. (In addition, they showed that a.a.s. the chromatic number of a d-regular
graph, for all other d up to 10, is restricted to a range of two integers.) Their proofs were
algorithmic.

The above results leave the main outstanding open question on the chromatic number of
low-degree random regular graphs as follows: is the chromatic number of a 5-regular graph
a.a.s. 3?

Previous attempts of some of the authors of the present paper to answer the above ques-
tion in the negative, using refinements of the first moment method, failed. These attempts
computed the expected number of successively more restricted types of 3-colourings (such
that whenever a generic 3-colouring exists, at least one of the restricted type exists as well),
and aimed at proving that it is a.a.s. equal to zero. All attempts however gave expected values
that tend to ∞.

These failures also led to various innovative attempts to design an algorithm that would
be amenable to rigorous mathematical analysis and that would at least w.p.p. produce a
3-colouring for 5-regular graphs. These attempts also failed.

Both the above failures were given a well founded empirical explanation by work in physics.
Building on a statistical mechanics analysis of the space of truth assignments of the 3-SAT
problem, which has not been shown yet to be mathematically rigorous, and on the Survey
Propagation (SP) algorithm for 3-SAT inspired by this analysis (see e.g. [9] and the refer-
ences therein), Krza̧ka la et al. [8] provided strong evidence that 5-regular graphs are a.a.s.
3-colourable by an SP algorithm. They also showed that the space of assignments of three
colours to the vertices (legal or not, i.e. with no two adjacent vertices with the same colour
or not) consists of clusters of legal colour assignments inside which one can move from point
to point by steps of small Hamming distance. However, to go from one cluster to another by
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such small steps, it is necessary to go through assignments of colours that grossly violate the
requirement of legality (high-energy colour assignments). Also, the number of clusters that
contain points with energy that is a local, but not global, minimum is exponentially large.
As a result, local search algorithms are easily trapped into such local minima (metastable
states).

In this article we reduce the problem of proving that random 5-regular graphs are a.a.s.
3-colourable to a problem of a totally different nature, involving simply showing that the
maximum of a given function on a given bounded domain occurs at a given location. (In
addition we describe extensive calculations which strongly support the hypothesis that the
maximum does occur at the given location.) To achieve this, we study locally rainbow bal-
anced colourings of a 5-regular graph, where a colouring is balanced if the number of vertices
of each colour is equal, and locally rainbow if every vertex is adjacent to vertices of all the
other colours. We compute the expectation EY and variance σ2 of the number Y of such
colourings asymptotically. Assuming a hypothesis stated below, we prove that σ2 is asymptot-
ically a constant times (EY )2. A standard second moment inequality states that Y is nonzero
with probability at least (EY )2/(EY 2), which is hence bounded away from 0. Instead of this
result, we obtain the stronger result, that Y is a.a.s. nonzero, by using the small subgraph
conditioning method (see [17]). Previous applications of this method have almost all been
to cases where the random variable Y counts subgraphs of some type, usually regular span-
ning subgraphs. Just a few cases have applied it to other random variables, beginning with
numbers of independent sets [4]. The application in the present paper has a more significant
consequence.

The reason behind the choice of this particular subset of colourings (balanced and locally
rainbow) is that our approach does not work when applied to the full set of colourings. In fact,
the second moment of the number of ordinary 3-colourings grows large exponentially faster
than the square of its expectation (see the last section in [3]). Restricting the analysis to
locally rainbow colourings makes the expectation smaller but fortunately the second moment
is decreased even further and the requirements of our method are met. The extra condition
that colourings are balanced just makes the computations simpler.

For our calculations, we use the well-known pairing or configuration model Pn,d which was
first introduced by Bollobás [5]. A pairing in Pn,d is a perfect matching on a set of dn points
which are grouped into n cells of d points each. A random pairing naturally corresponds
in an obvious way to a random d-regular multigraph (possibly containing loops or multiple
edges), in which each cell becomes a vertex. Colourings of the multigraph then correspond to
assignments of colours to the cells of the model. The reader should refer to [17] for aspects
of the pairing model not explained here.

The application of the small subgraph conditioning method calls for the computation of
joint moments of the numbers of locally rainbow balanced 3-colourings and short cycles. It
also requires an upper bound on the second moment of Y , the number of locally rainbow
balanced 3-colourings of the random 5-regular pairing Pn,5. The estimation of the second
moment amounts essentially to counting the number of pairs of such colourings on 5-regular
graphs. To give an exact expression for E(Y 2) we had to sum over a large number of variables
(9 × 36). These variables express the number of vertices that have a given pair of colours
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(out of the nine possible pairs) and also have a given distribution of their five edges with
respect to the pair of colours on the other endpoint of these edges. (As we will see there are
36 possible distributions.) The computation of the asymptotic value of this expression (even
within a polynomial factor) entails the computation of the global maximum of a function of
9 × 36 variables. In Section 5 we show how to reduce this computation to the computation
of the maximum of a four-variable continuous function F defined over a closed and bounded
convex domain. As the definitions of F and its domain are technically involved, we postpone
presenting them until Section 5, at which point the motivation behind the technicalities
becomes clearer. For the sake of easy reference, we repeat these definitions, and also give an
equivalent definition of F , in Section 7.

Regarding the maximization of F , we show that the boundary of its domain contains no
local maximizer and that the point (1/9, 1/9, 1/9, 1/9) in the interior of its domain is a local
maximizer (by showing that the Hessian of ln F is negative definite at this point). Although
the definition of F involves another function with hundreds of variables, we are able to obtain
information on its values by a rather roundabout route. By numerically computing its value
at a huge number of locations over a fine grid of its domain, we obtain strong numerical
evidence for the following.

Hypothesis 1.1 (Maximum Hypothesis) The four-variable function F (n) has a unique
global maximum over its domain at the point (1/9, 1/9, 1/9, 1/9).

We point out that for the case of the ordinary (not balanced locally rainbow) colourings there
exists an analogue to function F which also has a local maximum at the point (1/9, 1/9, 1/9, 1/9)
but unfortunately this is not the global maximum. Provided that the Maximum Hypothesis
holds, we can establish the chromatic number of the random 5-regular graph a.a.s.

Theorem 1.1 Under the Maximum Hypothesis, the chromatic number of Gn,5 is a.a.s. 3.

Thus, we have reduced the problem of proving that Gn,5 a.a.s. has chromatic number 3, to
showing that the maximum of a smooth function in a bounded domain occurs at the very
place that numerical calculations suggest.

In the rest of this article we prove Theorem 1.1 and describe why we are convinced that
the function has its maximum at the required location. In Section 2 we explain the small
subgraph conditioning method and show how it is used to prove Theorem 1.1 in the case that
n is divisible by 6, using the relevant result from [17]. This assumes the results of certain
calculations that are performed in Sections 3 to 5. In Section 3 we compute joint moments
of the numbers of locally rainbow balanced 3-colourings and short cycles. We develop an
exact expression for the second moment E(Y 2) in Section 4 and determine its asymptotic
value, under the Maximum Hypothesis, in Section 5. The argument for n not divisible by
6 is supplied in Section 6. Finally, in Section 7 we present the empirical validation of the
Maximum Hypothesis.

2 Small subgraph conditioning

The small subgraph conditioning method was introduced by Robinson and the last author [12,
13]. See [7, Chapter 9] and [17] for a full exposition.
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The setting for the method is as follows. A random variable, Y , counts occurrences of some
structure, and depends on a parameter n which tends to ∞. The expectation EY tends to
infinity, and we want to show that P(Y > 0) → 1. The small subgraph conditioning method
applies when the variance of Y is of the same order as (EY )2. The main computation required
is the asymptotic value of some joint moments of the numbers of certain small subgraphs and
the random variable Y . The result which the method depends on can be stated as follows (a
consequence of [17, Corollary 4.2]). (We use [x]m := x(x− 1) · · · (x−m + 1) to denote falling
factorials.)

Theorem 2.1 Let λk > 0 and δk ≥ −1 be real numbers for k = 1, 2, . . . and suppose that for
each n there are random variables Xk = Xk(n), k = 1, 2, . . . and Y = Y (n), all defined on the
same probability space G = Gn such that Xk is nonnegative integer valued, Y is nonnegative
and EY > 0 (for n sufficiently large). Suppose furthermore that

(i) For each j ≥ 1, the variables X1, . . . , Xj are asymptotically independent Poisson random
variables with EXk → λk,

(ii) if µk = λk(1 + δk), then

E(Y [X1]m1 · · · [Xj]mj
)

EY
→

j∏
k=1

µmk
k (2.1)

for every finite sequence m1, . . . ,mj of nonnegative integers,

(iii)
∑

k λk δk
2 < ∞,

(iv) E(Y 2)/(EY )2 ≤ exp(
∑

k λk δk
2) + o(1) as n →∞.

Then P(Y > 0 | E) → 1, where E is the event ∧δk=−1{Xk = 0}.

Proof of Theorem 1.1 (for n divisible by 6) For the application in the present article we
use the probability space Gn = Pn,5 with Y counting the number of locally rainbow balanced
3-colourings and Xk counting the number of k-cycles for fixed k ≥ 1. We assume from now
until the very end of this proof that n is divisible by 6. We next discuss how the four conditions
of Theorem 2.1 are verified in this setting.

It is well-known (e.g., see [17]) that condition (i) is satisfied by λk = 4k/(2k). In (3.1) and
(3.2) we will see that condition (ii) holds for the function

δk = 15−k + 2(−5)−k + 2(−3)−k. (2.2)

Substituting this function into conditions (iii) and (iv), we see that the sum is∑
k

λkδ
2
k =

∑
k

(5− 1)k

2k

(
15−k + 2(−5)−k + 2(−3)−k

)2
=

∑
k

1

2k

((
4

225

)k

+ 4

(
−4

45

)k

+ 4

(
−4

75

)k

+ 4

(
4

9

)k

+ 8

(
4

15

)k

+ 4

(
4

25

)k
)

.
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Using the identity
∑

k
1
2k

xk = −1
2

ln(1− x), this sum becomes

∑
k

λkδ
2
k =

−1

2
ln

((
221

225

)(
49

45

)4(
79

75

)4(
5

9

)4(
11

15

)8(
21

25

)4
)

= ln

(
313513

76114792
√

13 · 17

)
. (2.3)

To verify condition (iv), we will need the asymptotic values of the first and second moments
of Y . Later in this article we will prove that

EY ∼

√
223653

113

1

(2πn)2

(
25

24

)n

(2.4)

and, under the Maximum Hypothesis,

E(Y 2) ∼ 22319516

76117792
√

13 · 17

1

(2πn)2

(
25

24

)n

. (2.5)

We compute the ratio
E(Y 2)

(EY )2
∼ 313513

76114792
√

13 · 17
,

which matches (2.3), establishing condition (iv). Having verified the four conditions, we may
apply the small subgraph conditioning method to conclude P(Y > 0 | E) → 1, where E is the
event ∧δk=−1{Xk = 0}.

To interpret the event E in the conclusion, we note that δ1 = −1 and for k ≥ 2 we have

|δk| ≤ 15−2 + 2(5)−2 + 2(3)−2

< 1.

So the conclusion reads P (Y > 0 | X1 = 0) → 1. Because P (X2 = 0) is bounded away from
0 for large n, it follows that Y > 0 a.a.s. for the simple graphs Gn,5. This proves Theorem 1.1
provided that n is divisible by 6.

The cases that n is 2 or 4 mod 6 are treated in Section 6. This is done by modifying
certain parts of the argument for n ≡ 0 (mod 6) to handle a small number of precoloured
vertices, and then applying an asymptotic equivalence between random graph spaces.

3 Joint moments

The goal of this section is to compute asymptotic values of some joint moments for the random
variables which count locally rainbow balanced 3-colourings and short cycles in random regular
graphs.

On the space Pn,5, let Y be the random variable counting the number of locally rainbow
balanced 3-colourings. We begin by computing the asymptotic value of EY .
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Lemma 3.1

EY ∼
(

n

n/3, n/3, n/3

)
(5n/6)!3

|Pn,5|
A(n)

where

A(n) =

(
3
√

2√
11πn

30n/3

)3

.

Proof. To compute this expected value we must count, for each of the
(

n
n/3,n/3,n/3

)
ways to

assign vertices to equal-sized colour classes, the number of pairings which make the colouring
locally rainbow and balanced. All these assignments are equivalent, so fix one of them.
Because the three colour classes have equal size, the number of edges between any two colours
classes must be 5n/6. In our discussion, the points in a vertex inherit the colour of that
vertex.

To count the pairings which make the colouring locally rainbow and balanced we proceed
in two steps. First, at each vertex v, we choose for each point in v the colour of the point
it is paired with. This must be done carefully to ensure that each vertex will be adjacent to
at least two colours and that the number of edges between the colour classes will be 5n/6 as
required. Then, for each pair of colour classes, we pair up the appropriate points between
these classes in one of (5n/6)! ways. Thus, the second step gives us a factor of (5n/6)!3.

To determine the number of choices in the first step, we observe that each colour class
produces an equivalent contribution. We fix one colour class, say colour 1, and construct the
ordinary generating function which counts the number of ways of choosing the colour of the
neighbour of each point within the class, with the indeterminate x marking one of the two
possible colours. At each vertex, each of the 5 points can be assigned a mate (i.e. the other
point in its pair) of either one of the two colours, provided that not all of the points are
assigned to the same colour. Thus the contribution of each vertex to the generating function
is (x + 1)5 − x5 − 1, giving us the generating function(

(x + 1)5 − x5 − 1
)n/3

.

Exactly 5n/6 of these choices must be for the colour marked by x, so the total number of
choices for the first step is (letting square brackets denote extraction of a coefficient)

N = [x5n/6]
(
(x + 1)5 − x5 − 1

)n/3

for each colour class. Combining these results, we have

EY =

(
n

n/3, n/3, n/3

)
(5n/6)!3

|Pn,5|
N3.

Using the saddle-point method (see e.g. Section 12.1 in [11]) we will estimate N using a
contour integral along the path |z| = 1. We begin by substituting z = exp(iθ) and expanding
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in θ.

N =
1

2πi

∫
|z|=1

((z + 1)5 − z5 − 1)
n/3

z5n/6
dz

=
1

2π

∫ π

−π

e−iθ5n/6
(
(eiθ + 1)5 − eiθ5 − 1

)n/3
dθ

=
1

2π
(25 − 2)n/3

∫ π

−π

exp

(
−45 + 4(5)− (5 + 1)21+5

24(25 − 2)2
nθ2 + O(nθ3)

)
dθ

=
1

2π
30n/3

∫ π

−π

exp

(
−11

72
nθ2 + O(nθ3)

)
dθ.

For |θ| ≤ n−2/5, the contribution to the integral is asymptotically

I =
1

2π
30n/3

∫ ∞

−∞
exp

(
−11

72
nθ2

)
dθ

=
1

2π
30n/3

√
72π

11n

=
3
√

2√
11πn

30n/3.

For |θ| > n−2/5, the absolute value of
(
(eiθ + 1)5 − eiθ5 − 1

)n/3
is

|eiθ|n/3

∣∣∣∣ 5−1∑
j=1

(
5

j

)
eiθj

∣∣∣∣n/3

≤
(
25 − 4 + |eiθ + 1|

)n/3

≤
(

25 − 4 +
√

2 + 2 cos (n−2/5)

)n/3

=

(
30− 1

4
n−4/5 + O

(
n−8/5

))n/3

= 30n/3 exp

(
n

3
ln

(
1− 1

120
n−4/5 + O

(
n−8/5

)))
= 30n/3 exp

(
− 1

360
n1/5 + O

(
n−3/5

))
,

which is o(I). Therefore the expression for I gives the correct asymptotic estimate for N ,
which is

N ∼ 3
√

2√
11πn

30n/3.

Combining this with our above results, we get Lemma 3.1.

8



From Lemma 3.1 it is easy to deduce the asymptotic value of EY as stated in (2.4).
Simply substitute |Pn,5| = (5n)!/(25n/2(5n/2)!) and apply Stirling’s formula. We omit the
calculations.

We now move closer to our goal of computing joint moments for locally rainbow balanced
3-colourings and short cycles. For fixed k ≥ 1, let the random variable Xk count the number
of k-cycles in Pn,5. We will actually work with rooted oriented cycles, which introduces a
factor of 2k into the counting. It will be helpful to have the following definition. For a rooted
oriented cycle in a coloured graph, define its colour type to be the sequence of colours on
its vertices. To calculate the expected value of Y Xk, we will count, for each locally rainbow
balanced 3-colouring and each rooted oriented k-cycle, the number of pairings which contain
this cycle and respect this colouring.

As before, there are
(

n
n/3,n/3,n/3

)
ways to choose the balanced 3-colouring. All are equiv-

alent, so fix one. To enumerate the cycles and pairings which respect this colouring, we will
sum over all colour types T . Once a colour type has been chosen, each vertex of the cycle
can be placed in the pairing model by choosing a vertex of the correct colour and an ordered
pair of points in that vertex to be used by the cycle. Hence, in total, there are asymptotically
(5× 4× n/3)k ways to place the rooted oriented cycle in the pairing model. We now have

E(Y Xk) ∼ 1

2k

(
n

n/3, n/3, n/3

)(
20n

3

)k
1

|Pn,5|
∑

T

f(T ),

where f(T ) is the number of pairings which respect a fixed colouring and fixed rooted oriented
cycle of colour type T and make the colouring locally rainbow.

To estimate the function f(T ), we will again fix one colour class j and construct an ordinary
generating function. The generating function will count the number of ways of choosing the
colour of the neighbour of each point within the class, with the indeterminate x marking one
of the two possible colours.

For j = 1, 2, 3, let αj(T ) count the number of j-coloured vertices in colour type T whose
two neighbours in the cycle have different colours. Let α′j(T ) count the number of j-coloured
vertices in colour type T whose two neighbours in the cycle both have the colour marked by x.
Let α′′j (T ) count the remaining j-coloured vertices in T . We also define βj(T ) = α′j(T )+α′′j (T ).

For any vertex through which the cycle does not pass, the contribution to the generating
function is, as before, (x + 1)5 − x5 − 1. For a cycle vertex whose neighbours in the cycle
have different colours, we can assign the neighbour colours for the remaining points in any
way, giving us (x + 1)3. But for a cycle vertex whose neighbours in the cycle have the same
colour, we must ensure that this vertex gets at least one neighbour of a different colour so
that the colouring is locally rainbow. This gives us (x + 1)3 − x3 if the neighbours have the
colour marked by x, and (x + 1)3 − 1 otherwise. Combining these functions, the number of
ways of choosing the neighbour of each point within colour class j is given by the coefficient
of x5n/6 in the expression(
(x + 1)5 − x5 − 1

)n/3−αj(T )−α′j(T )−α′′j (T ) (
(x + 1)3

)αj(T ) (
(x + 1)3 − x3

)α′j(T ) (
(x + 1)3 − 1

)α′′j (T )
.

Earlier in this section we used the saddle-point method to estimate a similar coefficient.
A simple comparison with that previous application makes it easy to see that the current
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coefficient is asymptotically

30n/3−αj(T )−βj(T )8αj(T )7βj(T )3
√

2√
11πn

.

After the colour of the neighbour of each point has been chosen, it remains to pair up
the points between each two colour classes. Since the k pairs in the cycle have already been
chosen, the number of ways to do this is asymptotically

(5n/6)!3

(5n/6)k
.

Putting α(T ) = α1(T ) + α2(T ) + α3(T ) and β(T ) = β1(T ) + β2(T ) + β3(T ), we conclude
that

f(T ) ∼ 30n−α(T )−β(T )8α(T )7β(T )33
√

2
3(√

11πn
)3 × (5n/6)!3

(5n/6)k

∼ A(n)
(5n/6)!3

(5n/6)k

(
8

30

)α(T )(
7

30

)β(T )

.

Letting cα = 8/30 and cβ = 7/30, it remains to estimate

S =
∑

T

cα(T )
α c

β(T )
β

where the sum is taken over all colour types T . In other words, we need to enumerate the
colour types, introducing a factor of cα for each cycle vertex whose neighbours have different
colours, and a factor of cβ for each of the remaining cycle vertices.

It is helpful to view each colour type as a sequence of ordered pairs of colours: the colours
at the endpoints of each edge, taken in the order induced by the orientation of cycle. One
could consider each possible pair to be a state in a Markov chain. Number the states as
follows.

state pair of colours
1 12
2 21
3 31
4 13
5 23
6 32

Each colour type on k vertices then corresponds to a sequence of k + 1 states where the
first state equals the last state. For example, consider the colour type with colour sequence
1, 2, 3, 2. It corresponds to the state sequence 1, 5, 6, 2, 1. The transition from state 1 to state
5 represents to a vertex (of colour 2) whose neighbours in the cycle have different colours (1
and 3); hence it should introduce a factor of cα. Thus, in the matrix below, the entry at
position (1, 5) is cα. In this way we can construct a matrix which accounts for all possible
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transitions, and use it to obtain the desired enumeration. The above sum S equals Tr(Mk),
where Tr denotes the trace, and M is the “transition” matrix

0 cβ 0 0 cα 0
cβ 0 0 cα 0 0
cα 0 0 cβ 0 0
0 0 cβ 0 0 cα

0 0 cα 0 0 cβ

0 cα 0 0 cβ 0

 .

The eigenvalues of this matrix are cβ + cα, −cβ + cα, −1
2
cα + 1

2

√
−3c2

α + 4c2
β, and −1

2
cα −

1
2

√
−3c2

α + 4c2
β. The last two eigenvalues have multiplicity 2. Thus

S = (cβ + cα)k + (−cβ + cα)k

+ 2

(
−1

2
cα +

1

2

√
−3c2

α + 4c2
β

)k

+ 2

(
−1

2
cα −

1

2

√
−3c2

α + 4c2
β

)k

.

Since cβ + cα = 7/30 + 8/30 = 1/2, we may write

S =
1

2k
(1 + δk)

where
δk = 15−k + 2(−5)−k + 2(−3)−k (3.1)

which is (2.2).
We conclude that

E(Y Xk) ∼ 1

2k

(
n

n/3, n/3, n/3

)(
20n

3

)k
1

|Pn,5|
A(n)

(5n/6)!3

(5n/6)k
S,

and hence, combining this result with the previous lemma,

E(Y Xk)

EY
∼ 1

2k
8kS

∼ 4k

2k
(1 + δk) .

The above argument is easily extended to work for higher moments, by counting the pairings
that contain a given locally rainbow balanced 3-colouring and set of oriented cycles of the
appropriate lengths. The contribution from cases where the cycles intersect turn out to be
negligible, for the following reasons. Suppose that the cycles form a subgraph H with ν
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vertices and µ edges, and the total length of cycles is ν0. Then in the case of disjoint cycles,
ν = µ = ν0. A factor of Θ(nν−ν0) is lost if there is a reduction in the number of vertices of
H, compared with the disjoint case, because of the reduced number of ways of placing the
cycles on the coloured vertices. Similarly, a factor Θ(nν0−µ) is gained in the function f for the
reduction in the number of edges of H, because of the corresponding increase in the number of
points to be paired up at the end. Thus, the contribution from such an arrangement of cycles
to the quantity being estimated is of the order of nν−µ times that of the contribution from
disjoint cycles. In all non-disjoint cases, H has more edges than vertices, since its minimum
degree is at least 2, and it has at least one vertex of degree at least 3. There are only finitely
many isomorphism types of H to consider, so the contribution from the case of disjoint cycles
is of the order of n times the rest. The significant terms in this case decompose into a product
of the factors corresponding to the individual cycles. Consequently, we obtain the following
result, as required for (2.1) in accordance with (2.2):

E(Y [X1]m1 · · · [Xj]mj
)

EY
∼

j∏
k=1

(
4k

2k
(1 + δk)

)mk

. (3.2)

4 Exact Expression for the Second Moment

Given a pairing P ∈ Pn,5, let RP be the class of locally rainbow balanced 3-colourings of P .
Let Y be the random variable that counts the number of locally rainbow balanced 3-colourings
in Pn,5. Then, it is easily shown that

E(Y 2) =
|{(P, C1, C2) | P ∈ Pn,5, C1, C2 ∈ RP}|

|Pn,5|
. (4.1)

Below we assume we are given a pairing P and two locally rainbow balanced 3-colourings C1

and C2 on P . Recall that a pairing is a perfect matching on 5n points which are organized
into n cells of 5 points each. For i, j = 0, 1, 2, let V i,j be the set of cells coloured with i and j
with respect to colourings C1 and C2, respectively. Let ni,j = |V i,j|/n and let Ei,j be the set
of points in cells of V i,j. Since C1 and C2 are balanced, we have∑

i

ni,j = 1/3, ∀j,
∑

j

ni,j = 1/3, ∀i, (4.2)

and therefore
∑

i,j ni,j = 1. Also, for r, t ∈ {−1, 1}, let Ei,j
r,t be the set of points in Ei,j which

are matched with points in Ei+r,j+t. (Here and throughout the article, the arithmetic in the
indices is modulo 3.) Let mi,j

r,t = |Ei,j
r,t |/n. For fixed i and j, it is convenient to think of

the four variables (mi,j
r,t)r,t∈{−1,1} as the entries of a 2× 2 matrix. The rows and columns are

indexed by -1 and 1, with -1 for the first row or column. We have that
∑

r,t m
i,j
r,t = 5ni,j, and

therefore
∑

i,j,r,t m
i,j
r,t = 5. And, since matching sets of points should have equal cardinalities,

we also have that
mi,j

r,t = mi+r,j+t
−r,−t . (4.3)
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Let v be a cell in V i,j. The spectrum s of cell v is a 2 × 2 nonnegative integer matrix. The
rows and columns are indexed by -1 and 1, with -1 for the first row or column. Cell v is said
to have spectrum s if sr,t out of its five points, r, t ∈ {−1, 1}, are matched to points in cells of
V i+r,j+t. The sum of the entries of s is 5 because of the 5-regularity of the graph. Each row
and column sum is at least 1 because both C1 and C2 are locally rainbow. We let S denote
the set of possible spectra. One can check that |S| = 36.

For each i, j ∈ Z3 and spectrum s ∈ S, we denote by di,j
s the scaled (with respect to n)

number of cells which belong to V i,j and have spectrum s. We have

mi,j =
∑
s∈S

di,j
s s, (4.4)

ni,j =
∑
s∈S

di,j
s , (4.5)

and therefore
∑

i,j,s di,j
s = 1.

Throughout this paper we refer to the set of the nine numbers ni,j as the set of the overlap
variables. We also refer to the set of the thirty-six numbers mi,j

r,t as the set of the matching
variables. We refer to the 9× 36 numbers di,j

s as the spectral variables.
We consider the polytope

D =
{

(di,j
s )i,j∈Z3,s∈S ∈ R324 : di,j

s ≥ 0 ∀i, j, s,
∑

j,s di,j
s = 1

3
∀i,∑

i,s di,j
s = 1

3
∀j,

∑
s sr,td

i,j
s =

∑
s s−r,−td

i+r,j+t
s ∀i, j, r, t

}
,

and the discrete subset

I = D ∩
(

1

n
Z324

)
.

In view of (4.2)–(4.5), note that I contains the set of sequences (di,j
s )i,j∈Z3,s∈S that correspond

to some pair of locally rainbow balanced 3-colourings. Given a fixed sequence (di,j
s ) ∈ I, let

us denote by
(

n
(di,j

s n)

)
the multinomial coefficient that counts the number of ways to distribute

the n vertices into classes of cardinality di,j
s n for all possible values of i, j and s. Define mi,j

by (4.4). Also let
(
5
s

)
stand for 5!/

∏
r,t sr,t! .

Let N = |{(P, C1, C2) | P ∈ Pn,5, C1, C2 ∈ RP}|. By counting the ways to assign spectra
to cells, and then colours to points in cells given their spectra, and finally the number of
matchings between colour classes, we have

N =
∑
I

{(
n

(di,j
s n)

)(∏
i,j,s

(
5

s

)di,j
s n
)(∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2

)}
. (4.6)

Dividing this by |Pn,5| = (5n)!/(25n/2(5n/2)!), we obtain

E(Y 2) =
25n/2(5n/2)!

(5n)!

∑
I

{(
n

(di,j
s n)

)(∏
i,j,s

(
5

s

)di,j
s n
)(∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2

)}
. (4.7)
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5 Asymptotic Value of E(Y 2)

In this section, we complete the proof of the main theorem given in Section 2 by showing that
equation (2.5) holds, assuming the Maximum Hypothesis.

For sake of simplicity, we will often write d to denote the tuple (di,j
s )i,j∈Z3,s∈S . Let us

consider the function

F̂ (d) =

∏
i,j,s

((
5
s

)
di,j

s

)di,j
s

(∏
i,j,r,t

(
mi,j

r,t

) 1
2
mi,j

r,t

)
,

defined in D, where mi,j
r,t denotes

∑
s sr,td

i,j
s as before. Throughout this article we observe the

conventions that 00 = 1 and 0 ln 0 = 0.
We define

f(d) = ln F̂ (d) =
∑
i,j,s

di,j
s

(
ln

(
5

s

)
− ln di,j

s

)
+
∑
i,j,r,t

1

2
mi,j

r,t ln mi,j
r,t,

g(d) =

∏
i,j,r,t

(
mi,j

r,t

)1/4∏
i,j,s(d

i,j
s )1/2

, h(n) = 2−1/2(2πn)−305/2 5−5n/2. (5.1)

Lemma 5.1 The second moment satisfies

E(Y 2) = h(n)
∑
d∈I

q(n,d)ef(d)n (5.2)

where, as n → ∞ and uniformly over all d, q(n,d) = O(n162) and q(n,d) ∼ g(d) provided
all di,j

s and mi,j
r,t are bounded away from 0.

Proof. We apply Stirling’s formula and perform simple manipulations to (4.7) to obtain:

E(Y 2) =
25n/2(5n/2)!n!

(5n)!

∑
d∈I


∏

i,j,s

(
5
s

)di,j
s n

(di,j
s n)!

(∏
i,j,r,t

(
(mi,j

r,tn)!
)1/2

)
∼
√

πn 5−5n/2
∑
d∈I

 (n/e)n

(n/e)5n/2

∏
i,j,s

(
5
s

)di,j
s n

(di,j
s n)!

(∏
i,j,r,t

(
(mi,j

r,tn)!
)1/2

)
= h(n)

∑
d∈I

(2πn)153(n/e)n

(n/e)5n/2

∏
i,j,s

(
5
s

)di,j
s n

(di,j
s n)!

(∏
i,j,r,t

(
(mi,j

r,tn)!
)1/2

) . (5.3)

Now we need to uniformly approximate the factorial of several numbers not necesarily growing
large with n. Stirling’s formula also implies k! =

√
2πη(k)(k/e)k for all k ≥ 0, where η(k) ∼ k

if k →∞, and η(k) = Θ(k + 1) for all k ≥ 0. (In particular, η is nonzero.) So we have∏
i,j,s

(
5
s

)di,j
s n

(di,j
s n)!

(∏
i,j,r,t

(
(mi,j

r,tn)!
)1/2

)
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=

∏
i,j,s

(
5
s

)di,j
s n√

2πη(di,j
s n)

(
di,j

s n
e

)di,j
s n


∏

i,j,r,t

√2πη(mi,j
r,tn)

(
mi,j

r,tn

e

)mi,j
r,tn
1/2

=
(n/e)5n/2

(2πn)153(n/e)n

∏
i,j,r,t(η(nmi,j

r,t)
1/4n−1/4)∏

i,j,s(η(ndi,j
s )1/2n−1/2)

∏
i,j,s

((
5
s

)
di,j

s

)di,j
s n
(∏

i,j,r,t

(
mi,j

r,t

)mi,j
r,tn/2

)

=
(n/e)5n/2

(2πn)153(n/e)n
q(n,d)ef(d)n

for a function q of the type in the statement of the lemma. Combining this with (5.3) yields
the statement of the lemma.

Notice that the number of terms in (5.2) is at most (n + 1)324, since each coordinate of
any d ∈ I must be a rational in 1

n
Z between 0 and 1. We consider the maximum base of the

exponential part of the terms in (5.2), taken over all points in the polytope D:

M = max
d∈D

{
5−5/2ef(d)

}
.

This is well defined, due to the compactness of the domain and the continuity of the expression.
Note that the exponential behavior of the second moment is governed by M since the number
of terms in the sum in (5.2) is polynomial with respect to n.

In the next subsection we determine the value of M under the Maximum Hypothesis. In
the following subsection, based on that fact and using a Laplace-type integration argument,
we compute the sub-exponential factors in the asymptotic expression of the second moment,
and obtain (2.5).

5.1 Computing M

We will maximize F̂ in two phases. In the first one, we will maximize F̂ assuming the matching
variables mi,j

r,t are fixed constants. These constants must be compatible with the polytope D
over which F̂ is defined, so we define M to be the set of vectors m of 2×2 matrices (mi,j)i,j∈Z3

such that (4.4) holds for some d ∈ D.
We will often consider variables di,j

s and mi,j
r,t for fixed i, j ∈ Z3. To simplify notation, we

delete the indices i and j when they are fixed throughout the formula. We also define, for
any 0 < c ∈ R,

D′(c) = {(ds)s∈S ∈ R36 : ds ≥ 0 ∀s,
∑

s

ds = c},

and let M′(c) be the set of 2 × 2 matrices m such that (4.4) holds for some (ds)s∈S ∈ D′(c)
(after deleting superscripts i and j). We will use d to denote both points in D and D′(c).
The meaning will be clear from the context.

In order to give an alternative characterization of the matching variables mi,j
r,t, we consider
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the following equations for all ordered pairs (i, j), i, j ∈ Z3, and all r, t ∈ {−1, 1}:

mi,j
r,t ≥ 0,

mi,j
r,t + mi,j

r,−t ≤ 4(mi,j
−r,t + mi,j

−r,−t),

mi,j
r,t + mi,j

−r,t ≤ 4(mi,j
r,−t + mi,j

−r,−t).

(5.4)

That is, for all such i and j, the entries of mi,j are nonnegative, neither row sum is greater
than 4 times the other, and neither column sum is greater than 4 times the other.

Lemma 5.2 Let c > 0 ∈ R. The set M′(c) can be alternatively described as the polytope
containing all matrices m such that ∑

r,t

mr,t = 5c, (5.5)

and the constraints in (5.4) hold. Similarly, M is the polytope containing all vectors m of
matrices mi,j such that ∑

i,r,t

mi,j
r,t = 5/3,

∑
j,r,t

mi,j
r,t = 5/3, (5.6)

and the constraints in (4.3), (5.4) hold.

Proof. Let A be the set of matrices m satisfying (5.4) and (5.5).
M′(c) ⊆ A :

Let m be a matrix in M′(c). Then, for some d ∈ D′(c), we have∑
r,t

mr,t =
∑
r,t

∑
s

sr,tds =
∑

s

∑
r,t

sr,tds =
∑

s

5ds = 5c,

and (5.5) is satisfied. Moreover, we observe that for any spectrum s, we have

sr,t ≥ 0, sr,t + sr,−t ≤ 4(s−r,t + s−r,−t) and sr,t + s−r,t ≤ 4(sr,−t + s−r,−t).

Then m must satisfy the constraints in (5.4), since it is a positive linear combination of
spectra, and m ∈ A.
A ⊆M′(c) :

A is a polytope and so it is the convex hull of its vertices:[
c 0
0 4c

]
,

[
0 c
c 3c

]
,

[
0 c
4c 0

]
,

[
c 0
3c c

]
,

[
0 4c
c 0

]
,

[
c 3c
0 c

]
,

[
4c 0
0 c

]
,

[
3c c
c 0

]
Each of these vertices v has the shape of some spectrum s times c. By making ds = c and
ds′ = 0 for s′ 6= s, we show that v ∈M′(c).

Moreover, we observe that M′(c) is a convex set, since it is the image of D′(c) under a
linear mapping. Then M′(c) must contain the convex hull of the vertices of A, and thus A.

The second statement in the lemma follows easily from this and from the definition of M.
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For any fixed m ∈M, let F̃ (m) be the maximum of F̂ restricted to d ∈ D such that (4.4)
holds. To express F̃ (m) in terms of m, we will use the matrix function

Φ

[
x y
z w

]
=

∑
s∈S

(
5

s

)
xs−1,−1ys−1,1zs1,−1ws1,1

= (x + y + z + w)5 − (x + y)5 − (x + z)5

− (y + w)5 − (z + w)5 + x5 + y5 + z5 + w5 (5.7)

and, for each of the nine possible pairs (i, j), i, j ∈ Z3, consider the 4× 4 system

µi,j
r,t

∂ Φµi,j

∂µi,j
r,t

= mi,j
r,t, r, t = −1, 1, (5.8)

in the matrix variables µi,j.

Lemma 5.3 For any m in the interior of M, each of the nine systems in (5.8) has a unique
positive solution. Moreover, in terms of the solutions of these systems,

F̃ (m) =
∏
i,j,r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

,

and the equation remains valid for m on the boundary of M if the expression on the right is
extended by continuity.

Proof. We assume that m is a fixed vector in the interior of M. In order to compute F̃ (m),
it is sufficient to maximize the function F̂ (d) for nonnegative di,j

s subject to (4.4), since the

other constraints are trivially satisfied. We observe that the factor
∏(

mi,j
r,t

) 1
2
mi,j

r,t is constant,

and that variables di,j
s with different pairs of indices (i, j) appear in different factors of F̂ and

also in different constraints. Thus, it is sufficient to maximize, separately for each i, j ∈ Z3,
the function

Gi,j =
∏
s∈S

((
5
s

)
di,j

s

)di,j
s

, (5.9)

over nonnegative di,j
s subject to the matrix constraint (4.4). From now on in this proof, we

fix i and j and thus omit superscripts as discussed above.
Let R be the polytope containing all d = (ds)s∈S such that ds is nonnegative for all s ∈ S,

and satisfying (4.4). The fact that m is in the interior of M implies that R contains points
with all the ds strictly positive. In fact, the interior of R consists of all those points in R
with this property.

For any point d0 on the boundary of R we select a segment joining d0 with some interior
point. We observe that, in moving along the segment from the interior of R towards d0, the
directional derivative of ln G contains the sum of some bounded terms plus some terms of the
type ln ds with positive coefficient, which become large as we approach d0. Hence, G does
not maximize at the boundary of R.
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We temporarily relax the constraint (4.4) and observe that the Hessian of ln G is negative
definite for any tuple of positive ds. Hence ln G is strictly concave in that domain and also
in the interior of R, since linear constraints do not affect concavity. Thus, the maximum of
G is unique and occurs in the only stationary point of ln G in the interior of R.

We are now in a good position to apply the Lagrange multipliers method to look for
stationary points of ln G. We consider

ln G =
∑

s

ds

(
ln

(
5

s

)
− ln ds

)
, (5.10)

for positive ds subject to the four constraints:

Lr,t =
∑

s

sr,tds −mr,t = 0, r, t ∈ {−1, 1}. (5.11)

For each one of the four constraints Lr,t in (5.11) a Lagrange multiplier is λr,t introduced.
Then we obtain the following equations:

ln

(
5

s

)
− 1− ln ds =

∑
r,t

λr,tsr,t, ∀s ∈ S (5.12)

which, together with the constraints (5.11) have a unique solution when d is the only sta-
tionary point of ln G. Let us define µr,t = exp(−λr,t − 1/5). After exponentiating (5.12), and
noting that the sum of the sr,t is 5, we have

ds =

(
5

s

)∏
r,t

(µr,t)
sr,t , ∀s ∈ S, (5.13)

and combining this with (5.11) gives

mr,t =
∑

s

(
sr,t

(
5

s

)∏
r′,t′

(µr′,t′)
sr′,t′

)
, r, t ∈ {−1, 1}

= µr,t
∂

∂µr,t

∑
s

((
5

s

)∏
r′,t′

(µr′,t′)
sr′,t′

)
, r, t ∈ {−1, 1}. (5.14)

By construction, this system has a unique positive solution, and (5.13) gives the maximizer
of G in terms of this solution. From (5.7), we observe that (5.14) is exactly the same system
as the one in (5.8).

Now the maximum of G can be obtained by plugging (5.13) into (5.9), resulting in

max
d∈R

G(d) =
∏
r,t

(
1

µr,t

)mr,t

, (5.15)

and the required expression for F̃ (m) follows by elementary computations.
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Let us now define for any d ∈ D′(1/9) the auxiliary function

Ĝ(d) =

∏
s

((
5
s

)
ds

)ds
(∏

r,t

(mr,t)
1
2
mr,t

)
, (5.16)

where mr,t =
∑

s sr,t ds. (Recall that 00 = 1.)

Lemma 5.4 The function Ĝ takes its maximum on D′(1/9) in the interior of D′(1/9).

Proof. It is easy to see that the boundary of D′(1/9) comprises the points where for at least
one s, ds = 0 and

∑
s ds = 1/9. We observe that it is sufficient to prove the statement for

ln Ĝ. The continuity of ln Ĝ at the boundary points of D′(1/9) follows from the fact that

lim
x→0

xx = 1.

After proving ln Ĝ is continuous at the boundary of D′(1/9), take any d on the boundary.
Here ds0 = 0 for some s0. Then ds1 > 0 for some s1 since the sum of entries of d is 1/9. At
any point d such that ds > 0,

∂ ln Ĝ

∂ds

= ln

(
5

s

)
− 1− ln ds +

5

2
+
∑
r,t

1

2
sr,t ln mr,t. (5.17)

(Note: if ds > 0 then all the mr,t corresponding to a nonzero sr,t are also necessarily nonzero.)
As a first case, suppose none of the mr,t is zero at d. Then at a point d + εEs0 − εEs1

(here Es denotes the vector with 1 in its s coordinate and zero elsewhere) ∂ ln Ĝ
∂ds0

− ∂ ln Ĝ
∂ds1

→∞
as ε → 0. (Since the first partial goes to ∞ and the second is bounded.) Hence there is no
maximum at d.

Next suppose precisely one mr,t is zero at d (fix such values of r and t). Pick an s such
that sr,t = 1. Then ds = 0 at d. So rename s as s0 and use the above argument, choosing

again any s1 with ds1 > 0. Now the unbounded terms in ∂ ln Ĝ
∂ds0

are − ln ds0 + 1
2
(s0)r,t ln mr,t

and we have mr,t ≥ ds0 because (s0)r,t = 1. It follows that there is no maximum at d.
For two different mr,t equal to zero at d, pick the spectrum s0 to have 1 in one of the

corresponding positions, and zero in the other. Then the same argument as above gives the
result.

So no local maximum occurs on the boundary. The result follows.

Lemma 5.5 The function Ĝ has a unique maximum in D′(1/9) at the point where all the ds

are equal to
(
5
s

)
/8100. The function value at the maximum is (55/225/24)1/9.

Proof. We note that (4.4) maps the interior of D′(1/9) into the interior of M′(1/9). As a
result and in view of Lemma 5.4, the maximum of Ĝ, under mapping (4.4), does not occur
on the boundary of M′(1/9).

19



Assume that m is a fixed matrix in the interior of M′(1/9). We first maximize Ĝ in
D′(1/9) subject to the matrix constraint (4.4). Denote this maximum by G̃(m). By arguing
as in the proof of Lemma 5.3, we have

G̃(m) =
∏
r,t

(
(mr,t)

1
2

µr,t

)mr,t

,

where the µr,t are the unique positive solution of the system in (5.8) after deleting superscripts
i and j. Moreover, the maximizer is given in terms of this solution by (5.13).

We now maximize G̃ in the interior of M′(1/9), by applying the Lagrange multiplier
method to

ln G̃(m) =
∑
r,t

mr,t

(
1

2
ln mr,t − ln µr,t

)
,

subject to ∑
r,t

mr,t = 5/9.

We need some preliminary computations. By adding the four equations in (5.8) and taking
into account (5.7), we have

5Φ(µ) =
∑
r,t

mr,t.

In view of this, we have for all r, t ∈ {−1, 1}∑
r′,t′∈{−1,1}

mr′,t′
∂ ln µr′,t′

∂mr,t

=
∑

r′,t′∈{−1,1}

mr′,t′

µr′,t′

∂µr′,t′

∂mr,t

=
∑

r′,t′∈{−1,1}

∂Φ(µ)

∂µr′,t′

∂µr′,t′

∂mr,t

=
∂Φ(µ)

∂mr,t

=
1

5
. (5.18)

This allows us to compute

∂ ln G̃(m)

∂mr,t

=
1

2
ln mr,t +

1

2
− ln µr,t −

∑
r′,t′

mr′,t′
∂ ln µr′,t′

∂mr,t

=
1

2
ln mr,t − ln µr,t +

3

10
, (5.19)

and obtain the equations

1

2
ln mr,t − ln µr,t +

3

10
= λ, ∀r, t ∈ {−1, 1}, (5.20)

where λ is the Lagrange multiplier introduced by the single constraint. After exponentiat-
ing (5.20), and defining λ′ = exp(λ− 3/10), we can write

√
mr,t

µr,t

= λ′, ∀r, t ∈ {−1, 1}. (5.21)
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We relabel the entries of the matrices m and µ as[
m1 m2

m3 m4

]
,

[
µ1 µ2

µ3 µ4

]
.

Combining (5.21) and (5.8) and after some manipulations, we get

µi
∂Φ

∂µj

− µj
∂Φ

∂µi

= 0, ∀i, j ∈ {1, . . . , 4}.

We can factorize the following equation:

µ1
∂Φ

∂µ4

− µ4
∂Φ

∂µ1

= 0,

and get
(µ1 − µ4) P = 0,

where

P = 120 µ1 µ2 µ3 µ4 + 20 µ1
3 µ2 + 20 µ1

3 µ3 + 25 µ1
3 µ4 + 30 µ1

2 µ2
2

+30 µ1
2 µ3

2 + 35 µ1
2 µ4

2 + 5 µ4
4 + 20 µ1 µ2

3 + 20 µ1 µ3
3

+25 µ1 µ4
3 + 5 µ1

4 + 60 µ1
2 µ2 µ3 + 80 µ1

2 µ2 µ4 + 80 µ1
2 µ3 µ4

+60 µ2
2 µ3 µ4 + 60 µ1 µ2

2 µ3 + 90 µ1 µ2
2 µ4 + 60 µ1 µ2 µ3

2

+80 µ1 µ2 µ4
2 + 90 µ1 µ3

2 µ4 + 80 µ1 µ3 µ4
2 + 60 µ2 µ3

2 µ4

+60 µ2 µ3 µ4
2 + 20 µ2

3 µ3 + 20 µ2
3 µ4 + 30 µ2

2 µ3
2 + 30 µ2

2 µ4
2

+20 µ2 µ3
3 + 20 µ2 µ4

3 + 20 µ3
3 µ4 + 30 µ3

2 µ4
2 + 20 µ3 µ4

3,

which is strictly positive, so µ1 = µ4. Similarly, we can factorize

µ2
∂Φ

∂µ3

− µ3
∂Φ

∂µ2

= 0,

and get
(µ2 − µ3) Q = 0,

where

Q = 120 µ1 µ2 µ3 µ4 + 20 µ1
3 µ2 + 20 µ1

3 µ3 + 20 µ1
3 µ4 + 30 µ1

2 µ2
2

+30 µ1
2 µ3

2 + 30 µ1
2 µ4

2 + 5 µ3
4 + 5 µ2

4 + 20 µ1 µ2
3 + 20 µ1 µ3

3

+20 µ1 µ4
3 + 90 µ1

2 µ2 µ3 + 60 µ1
2 µ2 µ4 + 60 µ1

2 µ3 µ4

+80 µ2
2 µ3 µ4 + 80 µ1 µ2

2 µ3 + 60 µ1 µ2
2 µ4 + 80 µ1 µ2 µ3

2

+60 µ1 µ2 µ4
2 + 60 µ1 µ3

2 µ4 + 60 µ1 µ3 µ4
2 + 80 µ2 µ3

2 µ4

+90 µ2 µ3 µ4
2 + 25 µ2

3 µ3 + 20 µ2
3 µ4 + 35 µ2

2 µ3
2 + 30 µ2

2 µ4
2

+25 µ2 µ3
3 + 20 µ2 µ4

3 + 20 µ3
3 µ4 + 30 µ3

2 µ4
2 + 20 µ3 µ4

3,
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which is also stricly positive, so µ2 = µ3. Finally, we substitute µ4 by µ1 and µ3 by µ2 in

µ1
∂Φ

∂µ2

− µ2
∂Φ

∂µ1

= 0,

and then factorize it to obtain
(µ1 − µ2) R = 0,

where
R = 70 µ1

4 + 275 µ1
3 µ2 + 415 µ1

2 µ2
2 + 275 µ1 µ2

3 + 70 µ2
4,

which is again strictly positive, so µ1 = µ2. Hence, all the µi are equal (and all the mi are
equal).

Since the mi are equal and sum to 5/9, each must equal 5/36. Substituting this value into
any of equations (5.8), and remembering that the µi are equal, gives each µi = 2−2/53−4/55−2/5.
This shows that the Lagrange multiplier problem has a unique solution. This solution must
correspond to the unique stationary point of G̃ in the interior of M′(1/9), which must then
be a maximum.

Finally, (5.13) gives the maximizer of Ĝ in D′(1/9) when the mr,t (and the µr,t) are fixed

to be equal. The maximum value of Ĝ is computed from its definition.

Now we recall the definition of the nine overlap variables from Section 4. We observe
that (4.5) maps D into a polytope of dimension 4. The vectors (ni,j) in this polytope can be
expressed in terms of four variables by

n0,2 = 1/3− n0,0 − n0,1, n1,2 = 1/3− n1,0 − n1,1, n2,0 = 1/3− n0,0 − n1,0,

n2,1 = 1/3− n0,1 − n1,1, n2,2 = n0,0 + n0,1 + n1,0 + n1,1 − 1/3, (5.22)

where the variables n0,0, n0,1, n1,0 and n1,0 take arbitrary nonnegative real values such that

n0,0+n0,1 ≤ 1

3
, n1,0+n1,1 ≤ 1

3
, n0,0+n1,0 ≤ 1

3
, n0,1+n1,1 ≤ 1

3
, n0,0+n0,1+n1,0+n1,1 ≥ 1

3
.

(5.23)
We are now in a good position to define the function F used in the statement of the Maximum
Hypothesis. We first define the domain of F . This is the set of all nonnegative real vectors
n = (n0,0, n0,1, n1,0, n1,1) satisfying (5.23). For each n in the domain of F , we compute the
nine overlap variables from (5.22) and define F (n) to be the maximum of F̂ (d) over D subject
to the constraints in (4.5). This definition of F is repeated in Section 7, which also contains
an alternative equivalent definition.

Let b = (bi,j
s )s∈S,i,j∈Z3 be the point in D where bi,j

s =
(5

s)
8100

for all i, j, s. Now we return to
our main function f , which was defined in (5.1).

Lemma 5.6 Under the Maximum Hypothesis, the function f has a unique maximizer in D
at b. Moreover, M := maxd∈D

{
5−5/2ef(d)

}
= 25/24.

Proof. Recall that f = ln F̂ . The Maximum Hypothesis implies that any maximizer of F̂
on D must satisfy

∑
s∈S di,j

s = 1/9, for all i, j ∈ Z3. Let us momentarily relax the constraints
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in (4.3), and maximize each factor

Ĝi,j(d) =

∏
s

((
5
s

)
di,j

s

)di,j
s

(∏
r,t

(mi,j
r,t)

1
2
mi,j

r,t

)
,

separately in D′(1/9). In view of Lemma 5.5, b is the unique maximizer and the maximum
value of each factor is (55/225/24)1/9. We observe that the constraints in (4.3) are also sat-
isfied by b. Therefore b is the unique maximizer of F̂ and the maximum function value is(
(55/225/24)1/9

)9
= 55/225/24.

5.2 Subexponential Factors

Here we complete the computation of the asymptotic expression of E(Y 2) under the Maximum
Hypothesis by using a standard Laplace-type integration technique.

First we need the following result, whose proof we omit

Lemma 5.7 The following system of 24 equations in the variables di,j
s has rank 23:∑

s

st
1d

i,j
s −

∑
s

s−t
−1d

i+1,j+t
s = 0 ∀i, j, t,

∑
j,s

di,j
s = 1/3 ∀i,

∑
i,s

di,j
s = 1/3 ∀j.

Moreover, after relabelling the variables as d1, . . . , d324, the solutions can be expressed by

d1, . . . , d301 free,

dk = Lk(d1, . . . , d301, 1/6), k = 302, . . . , 324,

where Lk are linear functions with coefficients in Z.

Hereinafter, we relabel di,j
s as d1, . . . , d324 in the sense of Lemma 5.7. The bi,j

s are also relabelled
as b1, . . . , b324 accordingly. (Recall that bi,j

s was defined as
(
5
s

)
/8100.) For a point d =

(d1, . . . , d324) ∈ D, the first 301 coordinates will be often denoted by d̃ = (d1, . . . , d301) for
simplicity.

Let ε > 0 be fixed but small enough. We consider the cube of side 2ε centered on b̃

Q̃ = {(d1, . . . , d301) ∈ R301 : dk ∈ [bk − ε, bk + ε], ∀k}

and the discrete subset

J̃ = Q̃ ∩
(

1

n
Z301

)
.

Let us define their extension to higher dimensions:

Q = { (d1, . . . , d324) ∈ R324 : (d1, . . . , d301) ∈ Q̃,

dk = Lk(d1, . . . , d301, 1/6), ∀k = 302, . . . , 324},
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where the Lk’s are as in Lemma 5.7, and

J = Q∩
(

1

n
Z324

)
.

Note that b is an interior point of D, and that for each k the function Lk(·, 1/6) is continuous.
Then, if ε is chosen small enough, we can ensure that for some δ > 0

∀d ∈ Q, dk > δ and |dk − bk| < δ, k = 1, . . . , 324, (5.24)

and hence Q ⊂ D. Moreover, since n is always divisible by 6, for each k the function Lk(·, 1/6)
maps points from 1

n
Z301 into 1

n
Z, and so J ⊂ I.

Now recalling the definitions of f , g and h in (5.1), we define for any (d1, . . . , d301) ∈ Q̃

f̃(d1, . . . , d301) = f(d1, . . . , d324)
g̃(d1, . . . , d301) = g(d1, . . . , d324)

, where dk = Lk(d1, . . . , d301, 1/6), ∀k = 302, . . . , 324.

From Lemma 5.6 and by straightforward computations we obtain the following:

Lemma 5.8 The following statements hold:

• Under the Maximum Hypothesis, f has a unique maximum in D at b.

• Under the Maximum Hypothesis, f̃ has a unique maximum in Q̃ at b̃, with ef(b) =
ef̃(b̃) = 25

24
55/2 ≈ 58.2309.

• The Hessian H̃ of f̃ at b̃ is negative definite, and
det H̃ = −2175310785310712111413 · 17 794.

• g̃(b̃) = 29035585171 6= 0.

• Both f̃ and g̃ are of class C∞ in Q̃.

We compute the contribution to E(Y 2) of the terms around b and get the following.

Lemma 5.9 Under the Maximum Hypothesis,

∑
d∈J

q(n,d)ef(d)n ∼ (2πn)301/2√
| det H̃|

g̃(b̃)enf̃(b̃) =
23319516(2πn)301/2

76117792
√

2 13 · 17

(
25

24

)n

55n/2.

Proof. From (5.24), we see that for all d ∈ J ⊂ Q we must have dk > δ ∀k. Thus, by their
definition, all the mi,j

r,t are bounded away from 0, q(n,d) ∼ g(d) and we can write∑
d∈J

q(n,d)ef(d)n ∼
∑
J

g(d)enf(d) =
∑
J̃

g̃(d̃)enf̃(d̃). (5.25)
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We note that both f̃ and g̃ and its partial derivatives up to any fixed order are uniformly
bounded in the compact set Q̃. Then, by repeated application of the Euler-Maclaurin sum-
mation formula (see [1], p. 806), we have asymptotically as n grows large∑

J̃

g̃(d̃)enf̃(d̃) ∼ n301

∫
Q̃

g̃(x̃)enf̃(x̃)dx̃. (5.26)

We observe from Lemma 5.8 that we are in good condition to apply Laplace’s method as
developed in the multivariate case by Wong [16, Theorem IX.5.3]. We obtain∫

Q̃
g̃(x̃)enf̃(x̃)dx̃ ∼ 1√

| det H̃|

(
2π

n

)301/2

g̃(b̃)enf̃(b̃). (5.27)

The result follows from (5.25), (5.26), (5.27) and Lemma 5.8.

Now we deal with the remaining terms of the sum.

Lemma 5.10 Under the Maximum Hypothesis, there exists some positive real α < ef(b) s.t.∑
I\J

q(n,d)ef(d)n = o (αn).

Proof.
Let B be the topological closure of D\Q. We recall from Lemma 5.8 that f has a unique

maximum in D at point b /∈ B. Then, since B is a compact set and f is continuous, there
must be some real β < f(b) such that f(x̄) ≤ β ∀x̄ ∈ B. Now we observe that all terms in
the sum

∑
I\J q(n,d)ef(d)n can be uniformly bounded by Cn162eβn, for some fixed constant

C. Note furthermore that there is a polynomial number of terms (at most (n + 1)324) in the
sum. Hence, the result holds by taking for instance α = (eβ + ef(b))/2.

From Lemmata 5.9 and 5.10,

∑
I

g(d)ef(d)n ∼ 23319516(2πn)301/2

76117792
√

2 13 · 17

(
25

24

)n

55n/2

and finally, from this and Lemma 5.1, we conclude the following.

Theorem 5.1 Under the maximum hypothesis,

E(Y 2) ∼ 22319516

76117792
√

13 · 17

1

(2πn)2

(
25

24

)n

,

which is (2.5).
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6 . . . and for n not divisible by 6

Since 5-regular graphs have an even number of vertices, we only need to consider n ≡ 2 or 4
(mod 6).

One possibility is to rework the whole argument of this paper but with slightly unbalanced
colourings. Instead, the asymmetry in the argument can be somewhat reduced by using an
argument relating different models of random regular graphs. We first treat the case n ≡ 0
(mod 6) in more depth, and prove the following.

Theorem 6.1 Fix nonnegative integers j∗12, j∗23 and j∗13 and set j∗ = j∗12 + j∗23 + j∗13. Consider
the 5-regular graphs with n ≡ 0 (mod 6) vertices and a distinguished ordered set of j∗ edges,
no two being incident with the same vertex. Let G be chosen uniformly at random from such
structures. Under the Maximum Hypothesis, G a.a.s. has a 3-colouring in which the first j∗12
distinguished edges have end vertices coloured 1 and 2, the next j∗23 have end vertices coloured
2 and 3, and the rest have end vertices coloured 1 and 3.

Proof. Consider the probability space Ωn with uniform probability distribution, and whose
underlying set consists of pairings in Pn,5 with an ordered set J of j∗ distinguished pairs

of points, such that no two pairs in J are incident with the same vertex. Let Ŷ denote
the number of locally rainbow balanced 3-colourings of a pairing containing J , in which the
distinguished pairs join vertices of the preassigned colours. We will show that

EŶ ∼ 3−j∗EY, (6.1)

that (3.2) holds with Y replaced by Ŷ (and no other adjustment), and that under the Maxi-
mum Hypothesis,

E(Ŷ 2) ∼ 9−j∗E(Y 2). (6.2)

The theorem then follows immediately by the argument in the last few sentences of the proof
of Theorem 1.1.

To show (6.1), we apply the same method as in the proof of Theorem 1.1. First, rework
the proof of Lemma 3.1, but after assigning vertices to colour classes, select which pairs are
in J . This can be done in asymptotically (5n/3)2j∗ ways, since each distinguished pair must
join points belonging to vertices of two given colour classes, and if such pairs of vertices are
randomly chosen, a.a.s. no vertex is repeated. Then, for those vertices containing a point in a
pair in J , the generating function (x+1)5−x5−1 is adjusted to either (x+1)4−x4 or (x+1)4−1
since the choice of colour for the mate of one of the points is already determined. (Compare
this with the similar adjustments made in the derivation of (3.2).) Finally, the (remaining
parts of the) matchings between colour classes are chosen as before, so between two colour
classes where there are j0 distinguished edges, the number of matchings is (5n/6−j0)!. On the
other hand, the total number of choices of the pairing with the ordered set J distinguished is
asymptotically (5n/2)j∗|Pn,d|, since we can choose first the pairing and next the distinguished
edges at random. These will satisfy the nonadjacency condition a.a.s.

Comparing with the computation of EY , this produces

EŶ ∼ (5n/3)2j∗152j∗

302j∗(5n/6)j∗(5n/2)j∗
EY = 3−j∗EY,
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as required for (6.1).
To verify (3.2) with Ŷ in place of Y , we note that the calculation of E(Ŷ Xk) requires the

same modifications as EŶ . In particular, the same adjustment of factors in the generating
functions is warranted. So E(̂Y Xk) ∼ 3−j∗EŶ . The same argument shows that

E(Ŷ [X1]m1 · · · [Xj]mj
) ∼ 3−j∗E(Y [X1]m1 · · · [Xj]mj

)

and thus (3.2) holds with Y replaced by Ŷ . As before, δk is defined by (3.1).
To estimate E(Ŷ 2), there is no need to adjust the formulae in Section 4, though that would

be one way to achieve the result. Instead, note that, corresponding to (4.1),

E(Ŷ 2) =
|{(P, C1, C2, J) | P ∈ Pn,5, J ∈ JP , C1, C2 ∈ RP,J}|

|{(P, J) | P ∈ Pn,5, J ∈ JP}|
,

where JP denotes the set of ordered j∗-subsets of pairs of P that do not contain common
vertices, and RP,J denotes the set of locally rainbow balanced 3-colourings of P that give the
required colours to the ends of edges in J . Since almost all choices of j∗ pairs do not intersect
at vertices, we have

|{(P, J) | P ∈ Pn,5, J ∈ JP}|
|Pn,5|

∼
(

5n

2

)j∗

.

On the other hand, we show below that

|{(P, C1, C2, J) | P ∈ Pn,5, J ∈ JP , C1, C2 ∈ RP,J}|
|{(P, C1, C2) | P ∈ Pn,5, C1, C2 ∈ RP}|

∼
(

5n

18

)j∗

. (6.3)

Comparing with (4.1) then gives (6.2).
To complete the proof of the theorem, it is only required to show (6.3). We may rewrite

the numerator on its left side as ∑
|{(P,C1,C2)|P∈Pn,5,C1,C2∈RP }|

h(P, C1, C2) (6.4)

where h gives the number of choices of the ordered set J of j∗ pairs that have the required
colours at their ends in both colourings C1 and C2. It is easy to see, from Lemmata 5.1 and 5.6,
that under the maximum hypothesis, the contribution to E(Y 2) from d where di,j

s ∼ bi,j
s is

E(Y 2)(1 + o(1)). For such points of the domain, all mi,j
r,t are asymptotically equal to 5/36

and all ni,j are asymptotically equal to 1/9. Thus, considering how (4.1) led to Lemma 5.1,
almost all of the triples (P, C1, C2) being summed over in (6.4) have asymptotically 5n/36
edges between any two parts V i,j and V i′,j′ in the partition of vertices generated by C1 and
C2. For these triples, h(P, C1, C2) is asymptotic to (5n/18)j∗ , since two adjacent vertices of
the same two colours in both C1 and C2 can have either the same colour or opposite colours
in the two colourings. On the other hand, it is immediate that

h(P, C1, C2) = O(nj∗)
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and hence the contribution to (6.4) from the other d is negligible. Thus the expression in (6.4)
is asymptotic to (

5n

18

)j∗

|{(P, C1, C2) | P ∈ Pn,5, C1, C2 ∈ RP}|.

and (6.3) follows.

Proof of Theorem 1.1 (for n not divisible by 6) We use the type of argument employed
at the end of Section 3 of [13]. Suppose n ≡ 2 (mod 6). Take a random 5-regular graph
G with n vertices, and assume without loss of generality (by relabelling vertices say) that
the last two vertices, call them u and v, are adjacent in G. Delete u and v, and join up the
former neighbours of u using two new edges, and the same with the former neighbours of v, in
each case randomly choosing how to pair up the four neighbours. Leave the four added edges
as a distinguished ordered set of edges, the first two joining former neighbours of u and the
last two similarly for v. It is easy to show and well known that a given vertex of a random
5-regular graph is a.a.s. not in a cycle of length less than 4 (or 100, for that matter). It follows
that a.a.s. no multiple edges occur due to the new edges, and furthermore that a.a.s. the new
edges are not adjacent to each other. Throw the graph away if either of these two properties
fails to hold. The result is a random 5-regular graph with an ordered set of distinguished
edges, no two adjacent. Let us call this G′.

The distribution of G′ is not uniform, as it is for the random structures in Theorem 6.1.
The probability that G′ occurs is proportional to the number of ways of reinstating the edges
to u and v. This is the same for all graphs in which there are no edges joining any vertices
incident with the distinguished edges. Almost all choices of a set of distinguished edges in a
regular graph will have this property, and so it follows that any property a.a.s. true for the
random structures in Theorem 6.1 with j∗ = 4 is a.a.s. true for G′.

Thus, by Theorem 6.1, G′ a.a.s. has a 3-colouring such that the first two distinguished
edges join vertices of colours 1 and 2, and the others join vertices of colours 1 and 3. Then
by we can use exactly this colouring on V (G) \ {u, v}, and colour u with colour 2 and v with
colour 1, to obtain a 3-colouring of G.

For n ≡ 4 (mod 6), we may apply exactly the same argument, but deleting two pairs of
adjacent vertices rather than one pair.

7 The Maximum Hypothesis and its Empirical Valida-

tion

In this section we describe the evidence which supports the Maximum Hypothesis. The
hypothesis asserts that for a certain four-variable function F (n) on a bounded domain, F (n)
has a unique global maximum at the point (1/9, 1/9, 1/9, 1/9). There are two equivalent
definitions for the function F , which give two possible approaches to numerical verification
of the Maximum Hypothesis. All the relevant definitions and equations are repeated here, so
that the definition of F in this section is self-contained.
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We first define the domain of F . This is the set of all nonnegative real vectors n =
(n1, . . . , n4) satisfying

n1 + n2 ≤
1

3
, n3 + n4 ≤

1

3
, n1 + n3 ≤

1

3
, n2 + n4 ≤

1

3
, n1 + n2 + n3 + n4 ≥

1

3
. (7.1)

For each n in the domain of F , we define the following nine values

n0,0 = n1, n0,1 = n2, n0,2 = 1/3− n1 − n2

n1,0 = n3, n1,1 = n4, n1,2 = 1/3− n3 − n4

n2,0 = 1/3− n1 − n3, n2,1 = 1/3− n2 − n4, n2,2 = n1 + n2 + n3 + n4 − 1/3
(7.2)

We need some more definitions before stating how to compute F at any point in its domain.
A spectrum s is a 2× 2 nonnegative integer matrix such that each row and column sum is

at least 1, and the sum of all four entries is 5. We index the rows and columns by −1 and 1,
with −1 for the first row or column. So

s =

[
s−1,−1 s−1,1

s1,−1 s1,1

]
.

Let S denote the set of all spectra, including

[
4 0
0 1

]
,

[
3 0
1 1

]
and so on. Note that |S| = 36.

(This definition of spectrum is the same as the one presented in Section 4).
For each ordered pair (i, j), i, j ∈ Z3, and spectrum s ∈ S, introduce a real variable di,j

s ,
called a spectral variable. Also define matrices mi,j by

mi,j =
∑
s∈S

di,j
s s. (7.3)

(cf. (4.4))
Consider the following as constraints for all i and j:∑

s∈S

di,j
s = ni,j, di,j

s ≥ 0 ∀s ∈ S, (7.4)

where the constants ni,j are defined in (7.2), and

mi,j
r,t = mi+r,j+t

−r,−t , for i, j ∈ {0, 1, 2} and r, t ∈ {−1, 1}, (7.5)

where the arithmetic in the indices is modulo 3.
For a sequence d of variables di,j

s satisfying the above constraints, let F̂ (d) be the function
defined as

F̂ (d) =

∏
i,j,s

((
5
s

)
di,j

s

)di,j
s

(∏
i,j,r,t

(mi,j
r,t)

1
2
mi,j

r,t

)
. (7.6)

(We follow the convention that 00 equals 1.) Note that F̂ is a function of 9× 36 constrained
variables. Since F̂ is continuous in the compact domain defined by the constraints, it must
have a maximum. Then, we set F (n) to be the value of this maximum.
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In Section 5 we defined the same function F̂ (d) but extended it to the larger domain D
where the ni,j are not fixed but rather take any value in (7.2).

For the second definition of F , define the matrix function (also defined as (5.7))

Φ

[
x y
z w

]
= (x+y+z+w)5−(x+y)5−(x+z)5−(y+w)5−(z+w)5+x5+y5+z5+w5. (7.7)

For each of the nine possible pairs (i, j), i, j ∈ Z3, let µi,j and mi,j be 2 × 2 matrices whose
rows and columns are indexed by −1 and 1 (as in the first definition of F ). For each such
(i, j), consider the 4× 4 system (cf. (5.8))

∂ Φµi,j

∂µi,j
r,t

µi,j
r,t = mi,j

r,t, r, t = −1, 1. (7.8)

As in (5.4), we consider the following constraints, for all such i and j, and all r, t ∈ {−1, 1},

mi,j
r,t ≥ 0,

mi,j
r,t + mi,j

r,−t ≤ 4(mi,j
−r,t + mi,j

−r,−t),

mi,j
r,t + mi,j

−r,t ≤ 4(mi,j
r,−t + mi,j

−r,−t).

(7.9)

For each n in the domain of F , we define M(n) to be the set of all vectors m = (mi,j)i,j∈Z3

of 2× 2 matrices mi,j satisfying (7.9), (7.5), and also∑
r,t

mi,j
r,t = 5ni,j, (7.10)

where the constants ni,j are defined in (7.2). We observe that M(n) is a polytope of dimension
9. Given a vector m of matrices (mi,j)i,j∈Z3 in the interior of M(n), define

F̃ (m) =
∏
i,j,r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

, (7.11)

with the µi,j
r,t given in terms of the mi,j

r,t by (7.8) and required to be strictly positive. In

Section 5, we show that for m in the interior of M(n) the µi,j
r,t variables are determined

uniquely, and that F̃ can be continuously extended to the boundary points of the polytope.
Our second definition of F (n) is the maximum of F̃ (m) over all m lying in M(n). This

is well defined by continuity of the function and compactness of the domain.
We observe that Lemma 5.3 shows the equivalence of these two alternative definitions of

F .
One important piece of evidence supporting the Maximum Hypothesis is the following

theorem.

Theorem 7.1 The function F (n) has a local maximum at the point (1/9, 1/9, 1/9, 1/9).
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Proof. By Lemma 5.5, Ĝ(d) takes its maximum in D′(1/9) uniquely at the point where all
the ds are equal to

(
5
s

)
/8100. It follows by continuity of F̂ that the only values of F̂ that can

contribute to the maximum value of F in a neighbourhood of (1/9, 1/9, 1/9, 1/9) must come
from d in a neighbourhood of (

(
5
s

)
/8100)s∈S . The Hessian, computed using Maple, shows that

F̂ has a local maximum here, so the local maximum of F at (1/9, 1/9, 1/9, 1/9) follows.

Next, we describe the empirical evidence that F has a unique maximum at (1
9
, 1

9
, 1

9
, 1

9
).

Let n be any fixed vector in the domain of F . Recall the definition of M′(c) from Sec-
tion 5.1. We observe that the projection of M(n) to the (i, j) coordinate is M′(ni,j). Let us
momentarily relax the constraints in (7.5), and consider separately each factor

G̃i,j =
∏
r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

to be defined in M′(ni,j). We note that M′(ni,j) is a polytope of dimension 3, so Gi,j can be
written in terms of three free variables. In order to show that ln G̃i,j is concave, it is sufficent
to see that the 3×3 Hessian matrix is negative definite over the domain. This was numerically
confirmed with the help of a computer. Having experimentally confirmed the concavity of the
logarithm of each factor of F̃ , we conclude the concavity of ln F̃ . Moreover, this concavity is
not affected by adding the constraints in (7.5), previously relaxed.

The procedure we use is based on the concavity of ln F̃ . We sweep the domain of F .
Variables n1, n2, n3, n4 take all nonnegative values satisfying (7.1) in a grid of 200 steps per
dimension. For each point n = (n1, . . . , n4) we compute F (n) as follows.

Procedure for computing F (n).

1. We compute the nine overlap variables ni,j from (7.2). (The sweep avoids a fine layer
of width 1/1000 around the boundary.)

2. We set m0 to be an interior point of M(n).

3. Starting from m0, we numerically maximize ln F̃ in M(n) by some Newton-like iterative
method. This should work reasonably well from the concavity of ln F̃ . As we observed
before, the maximization domain has dimension 9. In fact, the elements in M(n) can
be expressed in terms of the nine coordinates mi,j

1,1 by

mi,j
−1,−1 = mi−1,j−1

1,1

mi,j
1,−1 = 1

2
(ai,j + ai+1,j−1 − ai−1,j+1)

mi,j
−1,1 = 1

2
(ai,j + ai−1,j+1 − ai+1,j−1) ,

where
ai,j = 5ni,j −mi,j

1,1 −mi−1,j−1
−1,−1 .

Then we must write ln F̃ in terms of the mi,j
1,1 and, at each step of the maximization,

compute the gradient with respect to these nine variables. From the proof of Lemma 5.5
and in view of (5.19), we can get rid of the derivatives of the µi,j

r,t and express this gradient
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just in terms of the mi,j
r,t and µi,j

r,t. Hence, each iteration of the maximization algorithm
requires the solution of the nine 4×4 sytems in (7.8), which are known to have a unique
positive solution.

The maximum obtained is F (n).

Recall from Lemma 5.6 that F (1
9
, 1

9
, 1

9
, 1

9
) = 55/225/24 ≈ 58.2309. The values of F we

obtained by this procedure for each n were always below F (1
9
, 1

9
, 1

9
, 1

9
). There were some points

in the domain where a value over 58 was obtained. These points were all near (1
9
, 1

9
, 1

9
, 1

9
).

Around these points we made an additional scan of the neighbourhood with stepsize 1/8000.
The values obtained were always less than F (1

9
, 1

9
, 1

9
, 1

9
).
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