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Abstract. We give a deterministic polynomial-time algorithm which for
any given average degree d and asymptotically almost all random graphs
G in G(n,m = |4n]) outputs a cut of G whose ratio (in cardinality)
with the maximum cut is at least 0.952. We remind the reader that it
is known that unless P=NP, for no constant ¢ > 0 is there a Max-CuT
approximation algorithm that for all inputs achieves an approximation
ratio of (16/17) + € (16/17 < 0.94118).

1 Introduction

There is a vast and growing literature on approximation algorithms for NP-hard
problems. Both in the direction of designing algorithms that give good approxi-
mations, as well as in the direction of showing, under a putative hypothesis like
P+#NP, that no approximation better than a given bound exists. In this work, we
concentrate on the problem of MAX-CUT, that of partitioning the vertex set V'
of a graph G = (V, F) in two parts so that the number of edges joining vertices
in different parts is as large as possible. In more colorful language, MAX-CUT is
the problem of coloring the vertices of a graph with two colors (red or blue) so
that the bichromatic edges are as many as possible. It is probably needless to
elaborate on the interest, from the point of view of either theory or practice, of
the NP-hard optimization problem MAX-CUT. Just as an example, let us men-
tion the early considerations of MAX-CUT in relation to circuit layout design
and Statistical Physics mentioned in [I] (as pointed out in [4]). In the language
of Statistical Physics, MAX-CUT is equivalent to computing the ground energy
of the antiferromagnetic Ising model defined on graphs [15].
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For maximization problems, like MAX-CUT, we say that an algorithm A
achieves an approximation ratio 0 < « < 1, if for any input I, the output
of the algorithm A(I) on I relates to an optimum solution OPT(I) for I as in:

A

joPT(1)] ~

Similarly, we define the approximation ratio of minimization problems. For gen-
eral graphs, the best MAX-CUT approximation algorithm is, for more than a
decade now, the one by Goemans and Williamson [12], which can achieve a ratio
arbitrarily close (from below) to

. 2
aqwW = mlnogggﬂw T— > (0.87856.
Under the “Unique Games” and the “Majority is Stablest” conjectures, the above
approximation ratio was shown to be optimal by Khot et al. [16] (however, very
recently a hypothesis only slightly stronger than the Unique Games conjecture
was falsified [5]).

Also by a now classical inapproximability result by Hastad [13] and Trevisan et
al. [20], unless P#£NP, MAX-CUT cannot be approximated for general graphs by
a deterministic algorithm that attains a ratio strictly exceeding 16/17 (16/17 <
0.94118).

Let now G(n;d) be the probability space of random graphs with n vertices
and m = [ 2n] edges selected uniformly at random. It is convenient for the prob-
abilistic calculations to allow repetitions and even self-loops in the selection of
edges. This does not affect the results as such selections happen with vanish-
ingly small probability as n grows large. We say that a property £ holds for
asymptotically almost all (a.a.a.) random graphs from G(n;d) if lim, Pr[G €
G(n;d) & & holds for G] = 1. Notice that the negative result for approximation
ratios > 16/17 does not exclude the possibility of a deterministic algorithm that
achieves a ratio of (16/17) + ¢ (c a positive constant) for a.a.a. input instances
from G(n;d), for any given fixed d (see e.g. the pioneering work of Frieze and
McDiarmid on graph algorithms on random instances [I1]).

With respect to a different problem, namely MAX-SAT, Fernandez de la Vega
and Karpinski [§] analyzed an algorithm that achieves an approximation ratio
of 8/9 for a.a.a. instances, with any given ratio of clauses to variables (Hastad
[13] has proved that there is no approximation algorithm for MAX-SAT whose
ratio strictly exceeds 7/8). The ratio of 8/9 was further improved to 19/20 by
Interian [I4]. These algorithms for MAX-SAT are Davis-Putnam-style heuristics
that do not take into account the number of occurrences of the variable selected
to be assigned the value “true” at each step.

Similar heuristics, that ignore degree considerations of the vertices to be put
into each part of the cut under construction, have been analyzed for the case
of MAx-CuT, or more general versions of it like MAX-k-CUT, in various papers
(see [I5L6L[7]), giving a series of interesting lower bound results for the optimal
cut. The fact that degree considerations are not taken into account in these
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algorithms, greatly simplifies their probabilistic analysis. However, as far as the
question of the ratio of the size of the output of these algorithms to the size
of the optimal cut is concerned, they all yield values that are far below the
Hastad threshold, even below the Goemans-Williamson ratio, for values of the
average degree in a sizable interval. Also heuristics that take into account degree
considerations, but for different graph problems, are analyzed in the work of Beis
et al. and others (see [2[3] and references therein).

To break the Hastad barrier for MAX-CUT (for a.a.a. input instances with any
given d), it became necessary to follow a double front approach. On one hand,
since the size of optimum cut is not known, we had to find improved upper
bounds for the optimum cut. On the other, we had to considerably improve the
known algorithmic lower bounds. So that using both bounds we could come up
with a ratio that exceeds 16/17. Both upper and lower bounds are computed not
for the graph itself, but for its 2-core, the maximum induced subgraph whose
vertices have degree at least 2. The reason being that, as it is easy to prove, the
edges of a graph not belonging to its 2-core, belong to any max cut. Therefore,
once we have a max cut of the 2-core, then a max cut of the original graph
can be found by adding to the cut the edges that are outside the 2-core. This
pruning preprocessing phase considerably improves the bounds, but necessitates
carrying our analysis not in G € G(n; d), but in the uniform probability space of
graphs with a given degree sequence. Our algorithm for the lower bound takes
into account the degree of each vertex. The numerical analysis makes use of
computer aided computations.

The approximation ratio we get, besides crossing the Hastad threshold, sub-
stantially improves the Goemans-Williamson value (0.87856) and thus, to the
best of our knowledge, constitutes the first after more than a decade improve-
ment of the approximation ratio of MAX-CuT, valid for general graphs (but only
for a.a.a. input instances with any given average degree). In the next section we
give some necessary formal definitions, state the main result and give some pre-
liminary facts. The main tools of the proof are given in the sections that come
after the next one.

2 Preliminaries

Definition 1. Given a cut C of a graph G, the cut size of C, denoted by |C|, is
the number of edges of G that connect vertices in different parts of C (bichromatic
edges).

We now give definitions of a.a.a. upper and lower bounds that are given as

percentages of (scaled with respect to) m, the number of edges.

Definition 2. A function ub : Rt — RT a.a.a. defines a scaled (with respect to
the number of edges m) upper bound ub(d) for the mazimum cut size mc(G) of
a random graph G € G(n;d) if

1i7IlnPr [G € G(n;d) & (ub(d) 4+ o(1))m > me(G)] = 1,Vd > 0.
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Definition 3. Given (i) a function 1b : Rt — RT and (ii) a deterministic
algorithm A that on input a graph G outputs a cut A(G) of G, we say that A
a.a.a. establishes a scaled (with respect to the number of edges m) lower bound
Ib(d) on the mazimum cut size of a random graph in G € G(n;d) if

HrILnPr [G € G(n;d) & (Ib(d) —o(1))m < |A(G)|] = 1,Vd > 0.

Proposition 1. If there are functions ub and 1b and an algorithm A as in
Definitions (@) and (3), then ¥d and Ve > 0, A achieves an approzimation ratio

111?3(((3)) — ¢ for MAX-CUT for a.a.a. input instances G € G(n;d).
Proof. Immediate from the definitions. O

Theorem 1. There are functions ub and lb and an algorithm A as in Defini-

tions (2) and (3) such that Vd, itg(((ji)) > 0.952.

Proof. For the case when d < 1, then by the proof in [7, Theorem 19] we know
that the cut obtained by considering (i) all edges of the tree-components of G,
(ii) all edges of its even cyclic components and (iii) all edges but one of its
odd cyclic components has cardinality equal to the total number of edges of G
within an o(1) additive term. This procedure defines the algorithm 4. Also, we
set ub(d) =1b(d) = 1.

For the case of large d, first observe that by coloring red an arbitrary half of
the vertices of G, we get a trivial lower bound 1b(d) = (1/2) —e, for any € > 0. By
combining this trivial lower bound with the upper bound ub(d) = 1/2++/(In2/d)
[], we easily get by solving for d the equation

1/2 16
1/2+/(n2/d) 17

that the Theorem holds for d > 710,

As for the interval 1 < d < 710, in Section @] we define the function ub, while
in Section Bl we describe and analyze the algorithm A and define the function Ib.
The computations involved are computer-aided (but the probabilistic analysis
and the derivations of all formulas are analytic). The computer-aided analysis
shows that the for d > 20, the ratio 113;((‘2)) is bounded below by numbers greater

than 0.952 by 0.01 or more. Actually for d > 20, easier upper and lower bound

functions, some of which already given in the literature [I5,[61[7], yield a ratio

% that easily exceeds 0.952. So in the following sections we concentrate in

the interval [1,20], where the real difficulty lies, i.e. the interval where the ratio
1b(d)
ub((d)
approaches from above the value 0.952. |

for the improved upper and lower bound functions that we define closely

Corollary 1 (Main Result). There is a deterministic algorithm A such that
for any average degree d > 0, A achieves an approximation ratio 0.952 for MAX-
CuT for a.a.a. random graphs in G(n;d).

Proof. Immediate from Theorem [l and Proposition [l O
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3 The 2-Core

The 2-core of a graph G is defined to be the largest induced subgraph of G
with minimum degree at least 2. For technical reasons, we use an essentially
equivalent but formally slightly different definition:

Definition 4. Given a graph G = (V, E) the 2-core of G, denoted by Ko(G), is
the unique subgraph Ko(G) = (V, E'), where E’ is the mazimum (with respect to
set-inclusion) subset of E so that with respect to Ko(G) all vertices in V' have
degree either zero (isolated vertices) or degree at least 2.

By our definition, the 2-core results by edge-deletions only (and no change in
the set of vertices) and the resulting graph has either isolated vertices or vertices
of degree at least 2 (retaining throughout our analysis the same set of vertices
avoids unnecessary technical complications).

It immediately follows by well known results that Ka(G) can be obtained from
G by recursively deleting one at a time and in any order edges that are incident
on vertices of degree 1. By assumption, when we delete the edge incident on a
vertex v of degree 1, v remains in the graph (but becomes isolated).

Consider now the uniform probability space of graphs such that the number
of vertices of degree i is (e~%(d"/i!)+0(1))n, i.e. graphs whose degree sequence is
Poisson distributed with mean d. It is known that a.a.a. graphs in G(n;d) have
a Poisson distributed degree sequence with mean d.

In general, let G(n; (d;)i=o,... m) be the uniform probability space of graphs
with n vertices and scaled degree sequence (d;);=o.... m (i.e. the number of vertices
of degree i is (d;+0(1))n; d; are assumed to be independent of n). For such graphs
we use the configuration model which models random pairings of copies of the
vertices, the number of copies of each vertex being equal to its degree. It is well
known that results that hold for a.a.a. such pairings in the configuration model,
also hold for a.a.a. uniformly distributed simple graphs with the same degree
sequence.

It is known that if G is random with a Poisson degree sequence, then K»(G)
is random in G(n; (d;)i=o,....m) for the same n and a new degree sequence, for
which d; = 0. To compute the new degree sequence, we follow the technique of
differential equations of Wormald [21]: we write differential equations that give
the dynamics each d; during the execution of the edge-deletion process. The
solution of the differential equations give the final values of d; within o(1), for
i =0,...,n— 1. These values hold for a.a.a. input graphs. Our analysis closely
follows the methodology given by Mitzenmacher [I7] for the case of deletion
of pure literals from 3-SAT formulas. We symbolically solve the resulting sys-
tem of differential equations. Actually, the system of differential equations in
our case is easier to obtain and solve, as we do not have the complication of
handling the negation of a deleted literal. For reasons of space, we avoid the
details (that follow standard techniques) and only give the final result without
proof:



Approximating Almost All Instances of MAX-CuT 437

Theorem 2. The number of vertices of degree i =0, ..., m of the 2-core K2(G)
d

of a random graph G in G(n,m = [§n]) is a.a.a. (d; + o(1))n, where

—iWy(d+1+ Wy) when i =0,

d; ={ 0 when ¢ = _1, (1)
7%7@%@1 when i > 2,

and where Wy is LambertW(—de~?%), i.e. the value of the principal branch of
Lambert’s W-function at —de~?. Also the number of deleted edges during the edge

deletion process that yields the 2-core a.a.a. is <7Wd — V;—g + 0(1)) n. Finally, a

property holds a.a.a. for Ko(G) iff it holds a.a.a. for a random graph conditional
its degree sequence is as described in Equation () above.

It can be easily seen that the number of the edges that are deleted to yield the
2-core are part of any maximum size cut. Therefore, the size of the max cut of
G can be obtained from the size of the max cut of K3(G) by adding to the latter

the number (—Wd - V;—j + 0(1)) n. It easily follows that:

Proposition 2. If the functions ub(d) and 1b(d) give scaled (with respect to the
number of edges m) upper and lower, respectively, bounds for the size of the maz
cut of a random graph conditional its degree sequence is that of Theorem[2, then

the functions ub(d)+2 (—W - V;—j) /d and 1b(d)+2 (—W - V;—j) /d give scaled
(with respect to the number of edges m) upper and lower bounds, respectively,
for the size of the maximum cut of a random graph in G(n,m = L%nj)

The previous proposition allows us to work with a random graph conditional its
degree sequence is as in Theorem

4 The Upper Bound

For a random graph in G(n, m = |4n]), a simple application of the first moment

method gives that the maximum cut is no more than < % + 1“72> %n for a.a.a.

input instances with average degree d, for d > 41n 2 [4]. This bound is established
by estimating the probability of existence of a cut of a given size z by the
expectation of the number of cuts of size z. However, first moment estimations
are in general, and in this particular case as well, rather gross.

Another well known approach to the question of finding an upper bound for
the optimum cut is by semidefinite relaxation of the problem [I2]. However, it
is in general difficult to estimate the average-case (or typical-case, i.e. a.a.a.-
instances-case) output of a semidefinite program. A related result can be found
in [6, Theorem 4], which however gives an estimation of the SDP upper bound
of MAX-CUT in terms of an unspecified constant only. An earlier bound was ob-
tained by Linear Programming relaxation [I], but with respect to sparse graphs
it is shown in [I9] that the upper bound obtained by an LP relaxation of MaAX-
CurT is a.a.a. at most the total number of edges, i.e. no information is obtained.
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So we have to resort to other means in order to compute a better bound suited
for typical-case considerations. We compute the expected number of majority
cuts of given size z for a random graph conditional its degree sequence is as in
Theorem

Definition 5. A cut is called a majority cut if (i) at least half of the edges
incident on any vertex are bichromatic (i.e., they connect vertices in different
parts of the cut) and (ii) any vertex of even degree whose exactly half of its
incident edges are bichromatic is necessarily colored red (i.e., it belongs to a
prescribed part of the cut).

Theorem 3. If a cut of size z exists then also a majority cut of size at least z
exists.

Proof. Given a cut which is not necessarily a majority cut move —one at a time
and recursively— vertices that violate any of the two conditions of Definition
to the other part of the cut. In any such move, the cut size either remains
constant or strictly increases. Also, the process cannot continue indefinitely, as
at each move either (i) the cut size increases strictly (when we move a vertex
with a minority of bichromatic incident edges), or alternatively (ii) the cut size
remains constant but the cardinality of the vertices colored red strictly increases
in comparison to its immediately previous value (when we move to the red color
a vertex with equal number of bichromatic and monochromatic incident edges).
To prove more formally that the process does not continue indefinitely, introduce
as the potential of a cut the pair of numbers (c,r), where ¢ is the current size
of the cut and r is the current cardinality of red vertices, order the set of these
pairs lexicographically and observe that each move of a violating vertex to the
other part drives the cut to a strictly higher potential, because each move either
strictly increases ¢, or keeps ¢ constant and strictly increases r (in comparison
to its previous value). Therefore there must be a stopping time. (|

Let G(n; d, 2-core) denote the uniform probability space of the 2-core of a random
graph in G(n,m = [%n]) (see Theorem [l and Proposition 2l of Section ). In the
sequel, let G be a random graph in G(n;d, 2-core).

Let C¢(G) be the class of all majority cuts of G with cut size at least (m,
where ( is a real in [0,1] and ¢(m = {|(d/2)n] is an integer in {0,...,m}. We
will compute an a.a.a. scaled upper bound ub(d) to the values of ¢ for which
Cc(G) # O (which by Theorem [ is also an a.a.a. scaled upper bound to the
maximum cut size of G) by finding a minimum value of ¢ such that:

lim Pr{|C:(G)] > 0] =0 (2)
Towards this end, first observe that the following Markov-type inequality holds:
Pr{|C¢(G)| > 0] < Ex(|C¢(G))). 3)

Therefore, to find a minimum ¢ for which Equation [ holds, it is sufficient to
find a minimum ¢ for which

lim Ex(|C¢(G)]) = 0. (4)
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Let now &(boo, b11,b01) be the expected number of majority cuts whose edges
connecting two red (respectively, blue, of different color) vertices have cardinality
exactly boon (respectively, biin, boin), where bgg, b11, bo1 belong to the interval
[0,1] and sum to the scaled number of edges d/2. It is easy to see that Equation
@) holds iff the following is true:

lim( max {5(b00,b11,b01)}) ~0. (5)

n \ (m<bo1m,boo,b11

The analytic computation of &€ (bgo, b11,bo1) and the computer-aided numerical
calculation of the smallest ¢ for which Equation (&) holds follow techniques
previously used in [10] (see also [9]). Details are omitted for reasons of space.

In Figure [Il we indicatively plot ub(d) for values of d € [1,20], juxtaposing it
with the plot of the scaled with respect to m upper bound % +/ 7 In2 ohtained
n [4] by the simple first moment method.

Fig 1. The upper bound ub(d) given in Section [ (solid line) versus the upper bound
14 \/ o2 given in [4] (dashed line) for values of average degree d € [1, 20]

5 The Algorithmic Lower Bound

In this section we describe an algorithm A that on input a the 2-core K3(G)
of a random graph G in G(n;d) outputs a coloring C' of the vertices of K3(G)
with one of the colors in {R, B} (i.e. C is a cut). We remind the reader that by
Theorem 2] K3(G) can be assumed to be random conditional its degree sequence
is as in Equation (). Let |A(K2(G))| be the size of the cut C, i.e. the number
of its bichromatic edges. From |A(K2(G))|, we can then compute a scaled lower
bound of the max cut of the original graph G by Proposition

The algorithm A colors the vertices of K3(G) one at a step. Let d(v) be the
degree of the vertex v in Ko(G). At any step ¢ of the algorithm, let U? be the set
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of yet uncolored vertices of K5(G). For v € U, let d%(v) (d%(v), respectively)
be the number of vertices that are neighbors of v and are already colored with R
(B, respectively). Also let df;(v) = d(v) —dl (v) — dl5 (v), i.e. d};(v) is the number
of neighbors of v in K»(G) that are yet uncolored. Finally let the discrepancy
Al(v) of a vertex v € U' be |d%(v) — di3(v)|. The algorithm A at any step ¢
first locates the vertices v € U'™! that have the largest discrepancy A*~!(v)
and chooses among them one with the lowest dfjl(v). It then assigns to v the
color R if d'; ! (v) > d!; ! (v) and B otherwise. Intuitively, A at any step greedily
maximizes the difference of the number of edges to be placed in the cut from the
number of edges to remain out of it. At the same time, it minimizes the impact
of each color assignment to future assignments.

The algorithm A is described in pseudo-code in Algorithm [l Its analysis
is based on the method of differential equations. The equations give a lower
bound on the size of the maximum cut of K(G). They are analytically ob-
tained and numerically solved (details are omitted for reasons of space). In
Figure 2 we give a plot of the final value of lb(d) (i.e. the value obtained
after applying Proposition (@) for d € [1,20] compared with the values of
the algorithms in Coja-Oghlan et al. [6] and Coppersmith et al. [7]. To cor-
roborate the results obtained by numerically solving the analytically derived
differential equations, we performed simulation experiments. The simulations
gave, as expected, the same values for Ib(d) as the numerical solutions of the
differential equations. In Table [l we juxtapose the simulation results with
the results obtained from the differential equations, for certain indicative val-
ues of d.

L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

Fig. 2. Our values of the lower bound Ib(d) (solid line), obtained by the numerical solu-
tion of differential equations (and corroborated by simulation experiments), juxtaposed
with the corresponding values obtained by simulating the algorithms in Coja-Oghlan
et al. [6] (dashed line) and Coppersmith et al. [7] (dotted line), for values of average
degree d € [1, 20]
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Algorithm. A(K»(G) = (Vk,, Ex,),C)

t=0; U= Viky; /* Initialize the set of yet uncolored vertices of K2(G) */
for all v € Vg, do /* Initialize the number of neighbors of each vertex v of
Ka(G) */

dyy (v) = d(v); dg(v) =0; dp(v) = 0;
end for
while U* # () do  /* while there are uncolored vertices */

t=1t+1,

Locate all vertices v € U'~! having the largest discrepancy Atfl(v);
Among them, arbitrarily choose a vertex v with the lowest dfjl(v);
if di'(v) > dl; '(v) then
Cv] = R; /* Assign color R to v */
/* Update the number of colored R and yet uncolored neighbors of each neighbor
uof v*/
for each vertex u adjacent to v do
i) = i (u) + 1
dis(w) = diy(u) — 1;

end for
else
Clv] = B; /* Assign color B to v */
/* Update the number of colored B and yet uncolored neighbors of each neighbor
uof v*/

for each vertex u adjacent to v do
dzB(u) = d:Bj(u) +1;
dty(u) = diy (u) - 1;
end for
end if
Ut =U""\ {v}; /* Update the set of yet uncolored vertices of K2(G) */
end while

Algorithm 1. Algorithm A takes as input the 2-core K2(G) of a random graph G =
(V, E) and returns a coloring C' of its vertices

6 Conclusion and Discussion

Putting together the computations of the previous sections, we reach the con-
clusion that for every average degree d > 0, a.a.a. % > 0.952. Therefore our
main result, Corollary [Il has been proved. In Figure [3] we give a plot of the
ratio ub(d)/1b(d) for various values of d, especially close to the average densities
where the ratio approaches (from above) the Hastad threshold. Theoretically it
is conceivable that there might exist a deterministic algorithm that a.a.a. com-
putes exactly the maximum cut size of a random graph or, more realistically,
offers a Polynomial Time Approximation Scheme to it (PTAS). We believe that
for at least certain values of d there is no such PTAS valid a.a.a. However it
is conceivable that for every given ¢ > 0, one might come with an algorithm
that yields an a.a.a. approximation scheme of ratio €. Finally, when d is not
constant, but approaches infinity with n (dense graphs), then it is known that
a.a.a. (1/2)|E| < |E|((1/2) + o(1)) [18].
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Table 1. Simulation experiment results (SE) versus numerical solution of the differ-
ential equations (DE) for indicative values of average degree d

d| 20 35| 4.0/ 45| 50| 6.0/ 8.0| 10.0] 12.0] 14.0
SE |0.945(0.850(0.829(0.813|0.798|0.773|0.738|0.713|0.696|0.681
DE|0.945|0.851|0.830(0.813|0.798|0.774/0.738|0.713|0.695|0.681

0.92

Fig. 3. The approximation ratio 1b(d)/ub(d), for values of average degree d € [1, 20].
The lower dashed line corresponds to Hastad inapproximability threshold 16/17, while
the upper dashed line to our approximation ratio 0.952.

We believe that these results can also be extended to the case of d-regular
graphs. We are currently working on this. Also these results extend to k-MAX-
Cur for k > 2.
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