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1 The upper bound

We have n vertices, out of which n0n are red, n1n are blue and n0 +n1 = 1. Also, we have bn
edges, out of which b00n are red-red, b11n are blue-blue, b01n = b10n are red-blue (that equal
blue-red ones) and b01 + b00 + b11 = b.

We fix a degree sequence 〈d0n, d1n, . . . , dn−1n〉 where din equals the number of vertices
of degree i = 0, . . . , dn−1 such that

∑dn−1

i=0 di = 1 and 1
2

∑dn−1

i=0 idi = b.
We denote as δ(0, i, s) the scaled number of red colored vertices of degree i and s edges

towards blue colored vertices. Similarly we denote δ(1, i, s). Then for each i = 0, . . . , n−1, s =
0, . . . , i it holds:

di =
∑

s

(δ(0, i, s) + δ(1, i, s)) , i = 0, . . . , n− 1, s = 0, . . . , i.

b01 =
∑

i,s≤i

sδ(0, i, s), i = 0, . . . , n− 1, s = 0, . . . , i.

b10 =
∑

i,s≤i

sδ(1, i, s) = b01, i = 0, . . . , n− 1, s = 0, . . . , i.

b00 =
1
2

∑

i,s≤i

(i− s)δ(0, i, s), i = 0, . . . , n− 1, s = 0, . . . , i.

b11 =
1
2

∑

i,s≤i

(i− s)δ(1, i, s), i = 0, . . . , n− 1, s = 0, . . . , i. (1)

We define as

N = |{〈G,C〉 : G is a pairing and C a cut satisfying the constraints in (1)}| (2)

Then

N =
(

n

δ(k, i, s); k = 0, 1, i = 0, . . . , dn−1, 0 ≤ s ≤ i

)∏

i,s

(
i

s

)δ(0,i,s)+δ(1,i,s)

(b01n)!(2b00n)!!(2b11n)!!
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³
∏

i,s





( (
i
s

)

δ(0, i, s)

)δ(0,i,s)

×
( (

i
s

)

δ(1, i, s)

)δ(1,i,s)


× bb01

01 bb00
00 bb11

11 2b00+b11

eb
(3)

2 Majority cuts

When the b’s in (3) above are fixed and constant, we may maximize

N =
∏

k,i,s





( (
i
s

)

δ(k, i, s)

)δ(k,i,s)


 =

(
1
d0

)d0 ∏

k,i≥1,s





( (
i
s

)

δ(k, i, s)

)δ(k,i,s)


 (4)

where in Expression∗ (4) we have placed into color 0 all d0n isolated vertices. In other words,
the δ’s that rule the 0-degree vertices take the form:

δ(0, 0, 0) = d0, δ(1, 0, 0) = 0 (5)

• A majority cut has all the non-isolated k-colored vertices with at least half of their i
stemming semi-edges directed to (k + 1)-colored vertices. That is,

δ(k, i, s) = 0, ∀i even and 0 ≤ s ≤ i

2
− 1

δ(k, i, s) = 0, ∀i odd and 0 ≤ s ≤ i− 1
2

(6)

• Also a majority cut has no 1-colored vertex of even degree i with exactly i
2 stemming

semi-edges touching 0-colored vertices. That is, in addition to (6) we also require

δ(1, i,
i

2
) = 0, ∀i even (7)

The majority δ’s in (6) plus (7) will have to satisfy the b’s constraints:

Λi : di =

{ ∑
s≥ i

2
δ(0, i, s) +

∑
s≥ i

2
+1 δ(1, i, s), i even∑

s≥ i+1
2

δ(0, i, s) +
∑

s≥ i+1
2

δ(1, i, s), i odd

Λ01 : b01 =
∑

s≥ i
2

sδ(0, i = even, s) +
∑

s≥ i+1
2

sδ(0, i = odd, s)

Λ10 : b10 =
∑

s≥ i
2
+1

sδ(1, i = even, s) +
∑

s≥ i+1
2

sδ(1, i = odd, s)

Λ00 : b00 =
1
2




∑

s≥ i
2

(i− s)δ(0, i = even, s) +
∑

s≥ i+1
2

(i− s)δ(0, i = odd, s)




Λ11 : b11 =
1
2




∑

s≥ i
2
+1

(i− s)δ(1, i = even, s) +
∑

s≥ i+1
2

(i− s)δ(1, i = odd, s)


 (8)

∗It is easy to show the convexity of it with respect to δ’s. This is crucial for justifying the uniqueness of the
solution of the non-linear system (18). In other words, the local optimum computed via Lagrange multipliers
is also a global one.
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Taking the derivatives of the logarithm of (4)

∂ lnN

∂δ(k, i, s)
= ln

( (
i
s

)

δ(k, i, s)

)
− 1 =

1
2
(i− s)Λkk + sΛkk + Λi, k = 0, 1 (9)

By safely renaming the Lagrange multipliers in (9) we get
(

i
s

)

δ(k, i, s)
= ΛiΛ

− 1
2
(i−s)

kk Λ−s
kk

(10)

We plug (10) into (4) and using the constraints in (8) we can get

∏

k,i,s





( (
i
s

)

δ(k, i, s)

)δ(k,i,s)


 =

∏

k,i,s

{(
ΛiΛ

− 1
2
(i−s)

kk Λ−s
kk

)δ(k,i,s)
}

=
∏

i

(
Λ
P

k,s δ(k,i,s)

i

) ∏

k=0,1

(
Λ
− 1

2

P
i,s(i−s)δ(k,i,s)

kk Λ
−Pi,s sδ(k,i,s)

kk

)

=
∏

i

(
Λdi

i

) ∏

k=0,1

(
Λ−bkk

kk Λ−bkk

kk

)
(11)

We can simplify multiplier Λi in (11) by manipulating (10) as follows:

Λiδ(k, i, s) =
(

i

s

)
Λ

1
2
(i−s)

kk Λs
kk

∑

k,s

Λiδ(k, i, s) =





∑
s≥ i

2

(
i
s

)
Λ

1
2
(i−s)

00 Λs
01 +

∑
s≥ i+1

2

(
i
s

)
Λ

1
2
(i−s)

11 Λs
10, if i even

∑
s≥ i+1

2

(
i
s

)
Λ

1
2
(i−s)

00 Λs
01 +

∑
s≥ i+1

2

(
i
s

)
Λ

1
2
(i−s)

11 Λs
10, if i odd

Λidi =





Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c

(
Λ

1
2
11, Λ10

)
, i even

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−1

(
Λ

1
2
11, Λ10

)
, i odd

(12)

where

Φi,t(x, y) = (x + y)i −
t∑

s=0

(
i

s

)
ysxi−s (13)

By (12) for majority cuts the objective function (4) becomes:

∏

k,i,s





( (
i
s

)

δ(k, i, s)

)δ(k,i,s)


 =

∏

i








Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)

di




di




×
∏

k=0,1

(
Λ−bkk

kk Λ−bkk

kk

)

where Ii =
{

0, i even
1, i odd

(14)
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Expression (14) is implicit functions of the 4-tuple of the Lagrange multipliers

L = 〈Λ01, Λ10, Λ00, Λ11〉 (15)

We can derive implicitly the values of (15) as follows. For majority cuts, by (12) expression
(10) can be written:

δ(k, i, s) =
di

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)
(

i

s

)
Λ

1
2
(i−s)

kk Λs
kk

(16)

Majority 4 × 4. For the majority case, taking appropriate summations of the δ’s in (16)
and using the constraints (8) we can express each 4-tuple of given b’s

B(b) = 〈b01, b10, b00, b11〉 (17)

as functions of the Λ’s in (15).

b01 = Λ01 ×
dmax∑

i=1


di

{
Φi,b i+1

2
c−1

(
Λ

1
2
00, Λ01

)}′

Λ01

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)




b10 = Λ10 ×
dmax∑

i=1


di

{
Φi,b i+1

2
c−Ii

(
Λ

1
2
11,Λ10

)}′

Λ01

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)




b00 = Λ00 ×
dmax∑

i=1


di

{
Φi,b i+1

2
c−1

(
Λ

1
2
00, Λ01

)}′

Λ00

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)




b11 = Λ11 ×
dmax∑

i=1


di

{
Φi,b i+1

2
c−Ii

(
Λ

1
2
11,Λ10

)}′

Λ11

Φi,b i+1
2
c−1

(
Λ

1
2
00, Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11, Λ10

)


 (18)

2.1 Optimization via a 4× 4 system

The objective function (3) now becomes:

f(B(b)) =
(

1
2b

)b ∏

i

{
Φi,b i+1

2
c−1

(
Λ

1
2
00,Λ01

)
+ Φi,b i+1

2
c−Ii

(
Λ

1
2
11,Λ10

)}di

×
(

b01

Λ01

)b01 (
b00

Λ00

)b00 (
b11

Λ11

)b11 (
1

Λ10

)b10

2b00+b11 (19)

where for each fixed tuple of b’s as in (17) the corresponding Λ’s are computed by the numeric
solution of system (18).
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Optimization target. Given is a fixed constant b which denoted the density of the random
graph. The target is to compute the minimum b01 = b01(b) such that for all 4-tuples

B(b) = 〈b01, b10, b00, b11〉 with b10 = b01 and
b01

2
+

b10

2
+ b00 + b11 = b (20)

the majority function in (19) remains < 1.
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