Approximating almost all instances of MAX-CUT within a ratio above the Håstad threshold*

A.C. Kaporis ${ }^{\dagger}$
L.M. Kirousis ${ }^{\dagger \ddagger}$
E. C. Stavropoulos ${ }^{\dagger}$

August 24, 2006

1 The upper bound

We have n vertices, out of which $n_{0} n$ are red, $n_{1} n$ are blue and $n_{0}+n_{1}=1$. Also, we have $b n$ edges, out of which $b_{00} n$ are red-red, $b_{11} n$ are blue-blue, $b_{01} n=b_{10} n$ are red-blue (that equal blue-red ones) and $b_{01}+b_{00}+b_{11}=b$.

We fix a degree sequence $\left\langle d_{0} n, d_{1} n, \ldots, d_{n-1} n\right\rangle$ where $d_{i} n$ equals the number of vertices of degree $i=0, \ldots, d_{n-1}$ such that $\sum_{i=0}^{d_{n-1}} d_{i}=1$ and $\frac{1}{2} \sum_{i=0}^{d_{n-1}} i d_{i}=b$.

We denote as $\delta(0, i, s)$ the scaled number of red colored vertices of degree i and s edges towards blue colored vertices. Similarly we denote $\delta(1, i, s)$. Then for each $i=0, \ldots, n-1, s=$ $0, \ldots, i$ it holds:

$$
\begin{align*}
d_{i} & =\sum_{s}(\delta(0, i, s)+\delta(1, i, s)), i=0, \ldots, n-1, s=0, \ldots, i . \\
b_{01} & =\sum_{i, s \leq i} s \delta(0, i, s), i=0, \ldots, n-1, s=0, \ldots, i . \\
b_{10} & =\sum_{i, s \leq i} s \delta(1, i, s)=b_{01}, i=0, \ldots, n-1, s=0, \ldots, i . \\
b_{00} & =\frac{1}{2} \sum_{i, s \leq i}(i-s) \delta(0, i, s), i=0, \ldots, n-1, s=0, \ldots, i . \\
b_{11} & =\frac{1}{2} \sum_{i, s \leq i}(i-s) \delta(1, i, s), i=0, \ldots, n-1, s=0, \ldots, i . \tag{1}
\end{align*}
$$

We define as

$$
\begin{equation*}
N=\mid\{\langle G, C\rangle: G \text { is a pairing and } C \text { a cut satisfying the constraints in (1) }\} \mid \tag{2}
\end{equation*}
$$

Then

$$
N=\binom{n}{\delta(k, i, s) ; k=0,1, i=0, \ldots, d_{n-1}, 0 \leq s \leq i} \prod_{i, s}\binom{i}{s}^{\delta(0, i, s)+\delta(1, i, s)}\left(b_{01} n\right)!\left(2 b_{00} n\right)!!\left(2 b_{11} n\right)!!
$$

[^0]\[

$$
\begin{equation*}
\asymp \prod_{i, s}\left\{\left(\frac{\binom{i}{s}}{\delta(0, i, s)}\right)^{\delta(0, i, s)} \times\left(\frac{\binom{i}{s}}{\delta(1, i, s)}\right)^{\delta(1, i, s)}\right\} \times \frac{b_{01}^{b_{01}} b_{00}^{b_{00}} b_{11}^{b_{11}} 2^{b_{00}+b_{11}}}{e^{b}} \tag{3}
\end{equation*}
$$

\]

2 Majority cuts

When the b 's in (3) above are fixed and constant, we may maximize

$$
\begin{equation*}
N=\prod_{k, i, s}\left\{\left(\frac{\binom{i}{s}}{\delta(k, i, s)}\right)^{\delta(k, i, s)}\right\}=\left(\frac{1}{d_{0}}\right)^{d_{0}} \prod_{k, i \geq 1, s}\left\{\left(\frac{\binom{i}{s}}{\delta(k, i, s)}\right)^{\delta(k, i, s)}\right\} \tag{4}
\end{equation*}
$$

where in Expression* (4) we have placed into color 0 all $d_{0} n$ isolated vertices. In other words, the δ 's that rule the 0 -degree vertices take the form:

$$
\begin{equation*}
\delta(0,0,0)=d_{0}, \delta(1,0,0)=0 \tag{5}
\end{equation*}
$$

- A majority cut has all the non-isolated k-colored vertices with at least half of their i stemming semi-edges directed to $(k+1)$-colored vertices. That is,

$$
\begin{align*}
& \delta(k, i, s)=0, \forall i \text { even and } 0 \leq s \leq \frac{i}{2}-1 \\
& \delta(k, i, s)=0, \forall i \text { odd and } 0 \leq s \leq \frac{i-1}{2} \tag{6}
\end{align*}
$$

- Also a majority cut has no 1 -colored vertex of even degree i with exactly $\frac{i}{2}$ stemming semi-edges touching 0 -colored vertices. That is, in addition to (6) we also require

$$
\begin{equation*}
\delta\left(1, i, \frac{i}{2}\right)=0, \forall i \text { even } \tag{7}
\end{equation*}
$$

The majority δ 's in (6) plus (7) will have to satisfy the b 's constraints:

$$
\begin{align*}
& \Lambda_{i}: d_{i}= \begin{cases}\sum_{s \geq \frac{i}{2}} \delta(0, i, s)+\sum_{s \geq \frac{i}{2}+1} \delta(1, i, s), & i \text { even } \\
\sum_{s \geq \frac{i+1}{2}} \delta(0, i, s)+\sum_{s \geq \frac{i+1}{2}} \delta(1, i, s), & i \text { odd }\end{cases} \\
& \Lambda_{01}: b_{01}=\sum_{s \geq \frac{i}{2}} s \delta(0, i=\text { even, } s)+\sum_{s \geq \frac{i+1}{2}} s \delta(0, i=\text { odd, } s) \\
& \Lambda_{10}: b_{10}=\sum_{s \geq \frac{i}{2}+1} s \delta(1, i=\text { even, } s)+\sum_{s \geq \frac{i+1}{2}} s \delta(1, i=\text { odd, } s) \\
& \Lambda_{00}: b_{00}=\frac{1}{2}\left(\sum_{s \geq \frac{i}{2}}(i-s) \delta(0, i=\operatorname{even}, s)+\sum_{s \geq \frac{i+1}{2}}(i-s) \delta(0, i=\text { odd }, s)\right) \\
& \Lambda_{11}: b_{11}=\frac{1}{2}\left(\sum_{s \geq \frac{i}{2}+1}(i-s) \delta(1, i=\text { even, } s)+\sum_{s \geq \frac{i+1}{2}}(i-s) \delta(1, i=\text { odd }, s)\right) \tag{8}
\end{align*}
$$

[^1]Taking the derivatives of the logarithm of (4)

$$
\begin{equation*}
\frac{\partial \ln N}{\partial \delta(k, i, s)}=\ln \left(\frac{\binom{i}{s}}{\delta(k, i, s)}\right)-1=\frac{1}{2}(i-s) \Lambda_{k k}+s \Lambda_{k \bar{k}}+\Lambda_{i}, k=0,1 \tag{9}
\end{equation*}
$$

By safely renaming the Lagrange multipliers in (9) we get

$$
\begin{equation*}
\frac{\binom{i}{s}}{\delta(k, i, s)}=\Lambda_{i} \Lambda_{k k}^{-\frac{1}{2}(i-s)} \Lambda_{k \bar{k}}^{-s} \tag{10}
\end{equation*}
$$

We plug (10) into (4) and using the constraints in (8) we can get

$$
\begin{align*}
\prod_{k, i, s}\left\{\left(\frac{\binom{i}{s}}{\delta(k, i, s)}\right)^{\delta(k, i, s)}\right\} & =\prod_{k, i, s}\left\{\left(\Lambda_{i} \Lambda_{k k}^{-\frac{1}{2}(i-s)} \Lambda_{k \bar{k}}^{-s}\right)^{\delta(k, i, s)}\right\} \\
& =\prod_{i}\left(\Lambda_{i}^{\sum_{k, s} \delta(k, i, s)}\right) \prod_{k=0,1}\left(\Lambda_{k k}^{-\frac{1}{2} \sum_{i, s}(i-s) \delta(k, i, s)} \Lambda_{k \bar{k}}^{-\sum_{i, s} s \delta(k, i, s)}\right) \\
& =\prod_{i}\left(\Lambda_{i}^{d_{i}}\right) \prod_{k=0,1}\left(\Lambda_{k k}^{-b_{k k}} \Lambda_{k \bar{k}}^{-b_{k \bar{k}}}\right) \tag{11}
\end{align*}
$$

We can simplify multiplier Λ_{i} in (11) by manipulating (10) as follows:

$$
\begin{align*}
\Lambda_{i} \delta(k, i, s) & =\binom{i}{s} \Lambda_{k k}^{\frac{1}{2}(i-s)} \Lambda_{k \bar{k}}^{s} \\
\sum_{k, s} \Lambda_{i} \delta(k, i, s) & = \begin{cases}\sum_{s \geq \frac{i}{2}}\binom{i}{s} \Lambda_{00}^{\frac{1}{2}(i-s)} \Lambda_{01}^{s}+\sum_{s \geq \frac{i+1}{2}}\left(\begin{array}{l}
i \\
s \\
s
\end{array}\right) \Lambda_{11}^{\frac{1}{2}(i-s)} \Lambda_{10}^{s}, & \text { if } i \text { even } \\
\sum_{s \geq \frac{i+1}{2}}\binom{i}{s} \Lambda_{00}^{\frac{1}{2}(i-s)} \Lambda_{01}^{s}+\sum_{s \geq \frac{i+1}{2}}\binom{i}{s} \Lambda_{11}^{\frac{1}{2}(i-s)} \Lambda_{10}^{s}, & \text { if } i \text { odd }\end{cases} \\
\Lambda_{i} d_{i} & = \begin{cases}\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right), & i \text { even } \\
\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right), & i \text { odd }\end{cases} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi_{i, t}(x, y)=(x+y)^{i}-\sum_{s=0}^{t}\binom{i}{s} y^{s} x^{i-s} \tag{13}
\end{equation*}
$$

By (12) for majority cuts the objective function (4) becomes:

$$
\begin{align*}
\prod_{k, i, s}\left\{\left(\frac{\binom{i}{s}}{\delta(k, i, s)}\right)^{\delta(k, i, s)}\right\}= & \prod_{i}\left\{\left(\frac{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)}{d_{i}}\right)^{d_{i}}\right\} \\
& \times \prod_{k=0,1}\left(\Lambda_{k k}^{-b_{k k}} \Lambda_{k \bar{k}}^{-b_{k \bar{k}}}\right) \\
& \text { where } I_{i}= \begin{cases}0, & i \text { even } \\
1, & i \text { odd }\end{cases} \tag{14}
\end{align*}
$$

Expression (14) is implicit functions of the 4 -tuple of the Lagrange multipliers

$$
\begin{equation*}
\mathcal{L}=\left\langle\Lambda_{01}, \Lambda_{10}, \Lambda_{00}, \Lambda_{11}\right\rangle \tag{15}
\end{equation*}
$$

We can derive implicitly the values of (15) as follows. For majority cuts, by (12) expression (10) can be written:

$$
\begin{equation*}
\delta(k, i, s)=\frac{d_{i}}{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)}\binom{i}{s} \Lambda_{k k}^{\frac{1}{2}(i-s)} \Lambda_{k \bar{k}}^{s} \tag{16}
\end{equation*}
$$

Majority 4×4. For the majority case, taking appropriate summations of the δ 's in (16) and using the constraints (8) we can express each 4-tuple of given b 's

$$
\begin{equation*}
\mathcal{B}(b)=\left\langle b_{01}, b_{10}, b_{00}, b_{11}\right\rangle \tag{17}
\end{equation*}
$$

as functions of the Λ 's in (15).

$$
\left.\begin{array}{l}
b_{01}=\Lambda_{01} \times \sum_{i=1}^{d_{\text {max }}}\left(d_{i} \frac{\left\{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)\right\}_{\Lambda_{01}}^{\prime}}{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)}\right) \\
b_{10}=\Lambda_{10} \times \sum_{i=1}^{d_{\text {max }}}\left(d_{i} \frac{\left\{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)\right\}_{\Lambda_{01}}^{\prime}}{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)}\right) \\
b_{00}=\Lambda_{00} \times \sum_{i=1}^{d_{\text {max }}}\left(d_{i} \frac{\left\{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)\right\}_{\Lambda_{00}}^{\prime}}{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)}\right) \\
b_{11}=\Lambda_{11} \times \sum_{i=1}^{d_{\text {max }}}\left(d_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)\right\}_{\Lambda_{11}}^{\prime} \tag{18}\\
\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)
\end{array}\right)
$$

2.1 Optimization via a 4×4 system

The objective function (3) now becomes:

$$
\begin{align*}
f(\mathcal{B}(b))= & \left(\frac{1}{2 b}\right)^{b} \prod_{i}\left\{\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-1}\left(\Lambda_{00}^{\frac{1}{2}}, \Lambda_{01}\right)+\Phi_{i,\left\lfloor\frac{i+1}{2}\right\rfloor-I_{i}}\left(\Lambda_{11}^{\frac{1}{2}}, \Lambda_{10}\right)\right\}^{d_{i}} \\
& \times\left(\frac{b_{01}}{\Lambda_{01}}\right)^{b_{01}}\left(\frac{b_{00}}{\Lambda_{00}}\right)^{b_{00}}\left(\frac{b_{11}}{\Lambda_{11}}\right)^{b_{11}}\left(\frac{1}{\Lambda_{10}}\right)^{b_{10}} 2^{b_{00}+b_{11}} \tag{19}
\end{align*}
$$

where for each fixed tuple of b 's as in (17) the corresponding Λ 's are computed by the numeric solution of system (18).

Optimization target. Given is a fixed constant b which denoted the density of the random graph. The target is to compute the minimum $b_{01}=b_{01}(b)$ such that for all 4 -tuples

$$
\begin{equation*}
\mathcal{B}(b)=\left\langle b_{01}, b_{10}, b_{00}, b_{11}\right\rangle \text { with } b_{10}=b_{01} \text { and } \frac{b_{01}}{2}+\frac{b_{10}}{2}+b_{00}+b_{11}=b \tag{20}
\end{equation*}
$$

the majority function in (19) remains <1.

[^0]: *This research is partially supported by European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II), and particularly Pythagoras. The second author is also partially supported by Future and Emerging Technologies programme of the EU under contract 001907 "Dynamically Evolving, Large-Scale Information Systems (DELIS)."
 ${ }^{\dagger}$ University of Patras, Department of Computer Engineering and Informatics, GR-265 04 Patras, Greece, email: \{kaporis,kirousis, estavrop\}@ceid.upatras.gr.
 ${ }^{\ddagger}$ Research Academic Computer Technology Institute, P.O. Box 1122, GR-261 10 Patras, Greece.

[^1]: *It is easy to show the convexity of it with respect to δ 's. This is crucial for justifying the uniqueness of the solution of the non-linear system (18). In other words, the local optimum computed via Lagrange multipliers is also a global one.

