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Abstract—When learning how to play a strategy board game,
one can measure the relative effectiveness of the learned policies
by assessing how often a player wins and how easily these wins are
scored. Experimental evidence also shows that when one of the
competing players is trained by a sophisticated tutor, performance
benefits also flow to the opponent. We present comprehensive
experimental evidence that the level of tutor effectiveness is
best demonstrated by the improvement of the tutored players
opponent; this performance change is termed the pendulum
effect.
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I. INTRODUCTION

Motivation: Quite a few artificial intelligence techniques
have made significant inroads into problems that demonstrate a
human-computer interaction component. Learning how to play
games is a prime example of such an application; Shannon
[1] and Samuel [2] provided the first stimulating examples;
Deep Blue defeated Kasparov at chess in 1997 [3] and, more
recently, Schaeffer’s team solved checkers completely [4],
though the latter two are more indicative of the strength
of search techniques. Today, advances in machine learning
allow us to present “syllabus” of experience to a generic
learning mechanism and expect that it can formulate playing
knowledge.

Arguably one of the strongest contributions to that problem
was the development of the TD(λ) method for temporal dif-
ference reinforcement learning [5] [6], which was successfully
demonstrated in TD-Gammon for the game of backgammon
[7]; therein using reinforcement learning techniques and self-
playing, a performance comparable to that demonstrated by
backgammon world champions was achieved.

Implementing a computer’s strategy is a key point in
strategy games. By the term strategy we broadly mean the
selection of the computer’s next move based on a variety of
factors which can include its current situation, the opponent’s
situation and consequences of that move (or, possible next
moves of the opponent). In our research, we use a strategy
game to gain insight into how we can evolve game playing
capabilities, as opposed to how we program such capabilities
(maybe, using a heuristic). Although the operational goal of
achieving improvement (measured in a variety of ways) is
usually achieved in several experimental settings [8] [9] [10],
the actual question of which training actions help realize this
improvement is central if we attempt to devise an optimized
training plan. A possible instantiation of this optimizing prob-
lem might be: given the possibility of turning to an expert for

a limited number of games, is it better to ask the expert to
provide guidance at the start of a learning session, at the end
of it, or at intermediate points?

Exploiting expert interaction in trainable systems has been
recently described according to three major directions [11].
In the first one, inspired by mainstream personalization, one
collects raw items of user behavior and attempts to elicit
habit, structure, or intention from such data [12]. The second
direction is based on how control is exerted to generate actions
that minimize some measure of a knowledge gap [13]. A third
dimension is whether the expert tutor is a part of the training
mechanism at all times, maybe with continuous but simple
feedback [14].

A popular combination of these directions is to use an
expert for focused guidance and, subsequently, to use some
mechanism of self-improvement up to a point where, again,
the expert will be called into action to provide a correction
of direction, if required; this can go ad infinitum. So, the
line between what constitutes sparseness and what constitutes
density of learning examples (when the computer acts as a
student) is quite fine [15].

Our contribution: Our workbench on this field is a simple
board game, RLGame; for legacy reasons, the name draws
on reinforcement learning being used as the basic learning
mechanism [16]. Earlier evidence suggested that, when one
of the competing players is trained by a sophisticated tutor
(for example, as implemented by minimax), the other player
also benefits since it is forced into unexplored ground and
manages to learn new tactics that allow it to swiftly improve its
performance [17]. To stress the interestingness of such a clearly
observable change in performance between two competing
players, this was called the pendulum effect.

So, the contribution of this paper is the design and carrying
out of a comprehensive experimentation to investigate the
pendulum effect, associating it with the rational intuitions that
a tutor’s impact is best assessed by its absence and that one
learns better by facing a strong opponent. To arrive at these
results we have designed and carried out several millions of
games with diverse configurations in a distributed fashion over
a grid computing infrastructure.

II. A BRIEF BACKGROUND ON A GAME WORKBENCH

The RLGame [16] is played by two players on an n × n
square board. Two α× α square bases are on opposite board
corners; these are initially populated by β pawns for each
player, with the white player starting off the lower left base



and the black player starting off the upper right one. The goal
is to move a pawn into the opponent’s base or to force all
opponent pawns out of the board.

Fig. 1. Examples of game rules application

The base is considered as a single square, therefore a pawn
can move out of the base to any adjacent free square. Players
take turns and pawns move one at a time, with the white
player moving first. A pawn can move vertically or horizontally
to an adjacent free square, provided that the maximum (of
the horizontal and the vertical) distance from its base is not
decreased. A pawn that cannot move is lost (more than one
pawn may be lost in one move).

The leftmost board in Fig. 1 demonstrates a legal (“tick”)
and an illegal (“cross”) move for the pawn pointed to by
the arrow, the illegal move being due to the rule that does
not allow decreasing the maximum distance from the home
(black) base. The rightmost boards demonstrate the loss of
pawns, with arrows showing pawn casualties. A “trapped”
pawn automatically draws away from the game; so, when there
is no free square next to the base, the rest of the pawns of the
base are lost.

A. Learning considerations

We use reinforcement learning to decide the next move.
Since each player observes the full board, RL uses true “states”
of the environment; this ideal case underpins a lot of the
associated theory [6].

Temporal difference (TD) learning [5] is a combination of
Monte Carlo and dynamic programming ideas. TD methods
update estimates based in part on other learned estimates,
without waiting for a final outcome (bootstrapping). Whereas
Monte Carlo methods must wait until the end of the episode
to determine the increment to V (st) (only then is the reward
known), TD methods need wait only until the next time
step. Eligibility traces are one of the basic mechanisms of
reinforcement learning and can be seen as a temporary record
of the occurrence of an event, such as the visiting of a state.
When a TD error occurs, only the eligible states or actions are
assigned credit or blame for the error.

The value function on the game state space is approximated
with neural networks [6] [16], where each next possible move
and the current board configuration are fed as input and the
network outputs a score that represents a belief degree that one
will win by making that move. Learning employs an ε-greedy
policy with ε = 0.1 (the system chooses the best-valued action
with a probability of 0.9 and a random action with a probability
of 0.1). All non-final states are assigned the same initial value
which, after each move, is updated through TD(λ = 0.5), thus
charting a middle course between considering the influence of
the value most recently observed and the influence of a final

value [5]; credit assignment is thus practically restricted to the
last 6− 7 moves.

Going into some details in the neural network imple-
mentation, we note that we actually use two networks, one
responsible for each player’s behavior, because the value of
each state depends on which player has the move token. This
facilitates further experimentation, because we can try different
configurations for the two opponents.

Now, for each state s, where st is the state selected at time
t, we have calculated its eligibility trace as follows [18]:

et(s) =

{
γλet−1(s), s 6= st
1, s = st

We used γ = 0.95 and λ = 0.5. Additionally, we used
“vanilla” back-propagation for the neural networks. We up-
dated the network weights vector by ~θt+1 =

−→
θ t+αδt~et, where

δt is the TD error defined as δt = rt+1 + γVt(st+1)− Vt(st)
and ~et is a vector of eligibility traces, one for each com-
ponent of ~θt. The eligibility traces are updated according to
~et = γλ~et−1 +∇~θtVt(st), with ~e0 = ~0. Rewards are assigned
for loss/win of games and for loss/capturing of pawns.

On network representation issues, each of the n2 − 2α2

empty squares is assigned two input nodes, one for each player,
which describe whether there is a pawn on that square. Two
more nodes show if a pawn has captured the enemy base,
and eight more nodes serve to show the number of pawns
that still reside in the bases; we check if this number exceeds
β/4, β/2 or 3β/4 and “turn on” the appropriate input node(s).
Thus, we have a total of 2n2 − 4α2 + 10 input nodes. We
use h = n2 − 2α2 + 5 hidden nodes and apply the standard
logistic sigmoid function to all of them. We also apply the
same logistic sigmoid function to the output node. We can,
thus, view the output as the probability of winning the game
starting from a particular state.

B. Reviewing the effects of expert involvement

Earlier experimentation culminated in the design of a
metric to measure the relative effectiveness of two distinct
policies [19]. Assuming that one has available a player, X ,
with its associated white and black components, WX and BX
(the components being the neural networks), one can compare
it to Y by first pairing WX with BY for a CC1000 session
(CC1000 stands for 1000 computer-vs-computer games), then
pairing WY with BX for a further CC1000 session, and
subsequently calculating the number of games won and the
average number of moves per game won.

The above metric captures shades of playing quality: for
example, a (WX+BX ):(WY +BY ) result of 200 : 1800 demon-
strates a sizeable difference while a result of 900 : 1100 less
so. It has been also useful subsequently in testing a minimax
algorithm for the moves of the white player [17].

Since minimax can be used with a different look-ahead set-
up, initial experiments consisted of short sessions for various
look-ahead values (note that a look-ahead of 2n+ 1, denoted
by MC2n+1, indicates n + 1 moves for the white player
using minimax interleaved with n moves for the black player
not using minimax). Each look-ahead experiment consisted of



100 MCx games (totaling 500 games) and, since previous
experimental evidence [16] suggests that RLGame is fair,
we did not implement minimax for black for this type of
experiments.

One examines MCx experiments with the expectation that
the white player’s performance will be improved the longer
experimentation is allowed to carry on. There is a simple
reason for that: the white player is better situated to observe
winning states and then update its learning data structures
accordingly, also for those states that lead to a win but have
not been yet reached via minimax. This behavior was observed
for all initial experiments. Subsequently, a CC1000 session was
run on the output of each of the MC1, MC3, MC5, MC7

and MC9 sessions (totaling a further 5, 000 games) and this is
where the pendulum effect was observed for the first time;
namely, an abrupt reversal on performance, with the black
player dominating the white one.

Specifically, it was observed that the minimax tutor for the
white player was actually training the black one by forcing it
to lose; when the tutor was drawn out of the game, the black
player overwhelmed the white one, which then had to adapt
itself again due to black pressure as fast as possible [17].

III. DETECTING THE PENDULUM EFFECT

We now review the experiments that we designed and
carried out to investigate the “pendulum effect” hypothesis,
as the original experimental session was too short for any
conclusive claim despite being indicative.

For a fixed combination of board size (n), base size (α),
number of pawns (β) and exploitation-exploration trade-off (ε),
we ran a CC10000 session, to serve as the fundamental self-
playing benchmark. We also ran three MC100 sessions, each
one with a different look-ahead value (1, 3, 5). Subsequently,
we ran three further CC10000 sessions, basing each one of
them on one of the concluded MC100 sessions (so, every
MC100

x session was followed by a CC10000 session). Such
an arrangement eventually delivers seven logs in total.

Fig. 2. Number of games won by each player in each session

Fig. 2 shows an indicative cumulative wins graph. The
left part has a vertical axis spanning from −100 (all games
won by black) to 100 (all games won by white), since any

MCx session is at most 100 games long. The right part has a
vertical axis spanning from −10000 to 10000 to account for
the length of the CC sessions. However, both parts are aligned
with respect to their zero-value in their respective vertical axes.
Dashed lines of varying density differentiate between MCx
and MCx-CC variants; a solid line (only available in the right
part) serves as the CC benchmark.

A group of seven sessions such as the above totals 300
MCx games (3× 100) and 40, 000 CC games (4× 10, 000).
To substantiate the existence of the pendulum effect, we
experimented with a multitude of parameter combinations, as
detailed in Table I; additionally for each such valid configu-
ration we experimented with three values for the exploitation-
exploration trade-off, ε: 0.1, 0.3 and 0.5.

TABLE I. A DESCRIPTION OF GAME CONFIGURATIONS

Board size (n) 5, 6, 7, 8, 9, 10
Base size (α) 2, 3, 4
Number of pawns (β) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

We did not experiment with (n = 5, α = 2, β = 1) since
it contains a forced win for the first player in 4 moves (or 7
semi-moves); still the remaining 357 configurations (of seven
sessions each) correspond to over 105 MCx games and over
14 · 106 CC games.

The pendulum effect is a manifestation of a power shift;
whereas a player had a clear advantage over a series of games,
that advantage is at some point eliminated by its opponent,
which then scores successive wins, until the trend is reversed
again, maybe ad nauseam. Detecting the pendulum effect
implies that we also have a reference collection of results
that can be clearly shown to not be an instance of that
event; moreover, it also implies that we have access to enough
samples to strengthen our claim. The standalone CC session
in Fig. 2 (solid line) is a good example of a result that belongs
to that reference collection; it is a pattern that that has been
overwhelmingly observed across all standalone CC sessions
(referred to as tabula rasa elsewhere in this paper).

Fig. 3. Examples of the pendulum effect in tabula rasa experiments

While it may be straightforward to agree on what con-
stitutes a relatively straight line, describing what constitutes
instances of the pendulum effect at the standalone CC level
is subtler. In Fig. 3 we show the basic alternatives (we have



combined two experiments to save space); therein the left part
demonstrates how the pendulum effect brings about a balance
of power, whereas the right part demonstrates an example
where, for the length of the recorded session, one of the players
eventually gains a sustainable edge (observe the rightmost end
of the solid black lines with respect to the y-axis 0 value).

It was while inspecting cumulative performance graphs that
our attention was drawn to the abrupt changes in performance;
that triggered the investigation of the pendulum effect. This
section reviews the results of that visual inspection which
was fundamental to offering some high-level data to motivate
further analysis.

Table II reviews the results of the visual inspection. Note
that, while CC sessions are overwhelmingly likely to demon-
strate a smooth behavior, increased occurrences of the pendu-
lum effect are associated with larger exploitation (smaller ex-
ploration) values. This suggests that when the winner attempts
to exploit what has been learnt and, so, is more likely to follow
paths that will lead it to win again, the opponent is increasingly
likely to learn and rebound. This is hardly a surprise since,
when wandering, there are fewer things to exploit and fewer
opportunities to learn from a winner.

TABLE II. RELATIVE FREQUENCY OF THE PENDULUM EFFECT IN
(119× 3 = 357) tabula rasa CC SESSIONS AND MCx SESSIONS

ε = 0.1 ε = 0.3 ε = 0.5
Aggregate (CC) 11% 6% 4%
Aggregate (MC) 15% 9% 11%

The telling test for the pendulum effect is to investigate
what happens when a tutor is absent. Essentially, we are
interested in whether any MCx-CC session in some configu-
ration demonstrates more complex behavior (pendulum effect)
than the respective CC baseline, also taking into account
the MCx session that preceded it. With reference to Fig. 2,
it is obvious that the sequence of the MC5 and MC5-CC
sessions does not demonstrate a pendulum effect compared to
its CC reference; however, seeing MC1-CC and its respective
predecessor, MC1, it is obvious that they demonstrate a more
“unstable” behavior compared to the CC baseline (the group
of MC3 and MC3-CC demonstrates a similar behavior too).
However, in this context, exploitation does not drive learners as
strongly as the minimax tutor does, which actively maintains
a frontier of promising alternatives during game play.

Table III reviews these results; now, while all sessions are
quite likely to demonstrate the pendulum effect, a smaller
exploitation drive magnifies the importance of the minimax
tutor and makes the pendulum effect more pronounced. View-
ing these results vis-à-vis Table II makes it apparent that the
MC100 sessions are associated with the subsequent emergence
of the pendulum effect.

TABLE III. RELATIVE FREQUENCY OF THE PENDULUM EFFECT IN
(1071) COMBINED MCX -CC SESSIONS

ε = 0.1 ε = 0.3 ε = 0.5
MC1-CC 73% 90% 92%
MC3-CC 81% 88% 83%
MC5-CC 76% 85% 87%
Aggregate 76% 88% 87%

IV. ON THE VALIDITY AND THE IMPLICATION OF THE
RESULTS

Millions of individual games have been carried out, across
diverse game size configurations and exploitation-exploration
policies to demonstrate the pendulum effect. By the relative
inspection of CC and MCx-CC sessions, those that initially
look like an interesting minority in standalone CC sessions
eventually turn up as the overwhelming majority when there
is a previous tutoring (MC) stage.

It is justifiable to expect that the pendulum effect should
arise. When two players interact in a vacuum devoid of other
interactions (against other players), none of them has a clue
as to whether the other player is inherently good or bad, apart
from somehow measuring wins vs. losses. This is elementary
opponent modeling. It is also the basis of co-evolutionary
learning, since both players respond to the opponent’s move
while also trying to learn how to best respond. If both players
are honest and none of them attempts to trick the opponent
by not playing what it thinks it is best for itself, then each
player gets an as accurate as possible picture of what its
opponent thinks about the state of the game (exploitation is
synonymous to honesty; exploration is subtler though). As
a result, the weaker player is guided through value function
updates which will decrease its performance gap compared
to the stronger player. The pendulum effect arises when one
of the players has access to a winning policy, since this
creates a strong drive away from the stability point; that drive
is subsequently compensated by a comparably strong drive
towards the stability point again. And, obviously, a tutor (like
minimax, for example) does tend to create a winning policy.

An alternative way of viewing the pendulum effect is to
consider learning and un-learning (or, forgetting). Learning
and forgetting do co-exist in a reinforcement learning context;
good paths need occasional reinforcement so that learned
(useful) value functions do not degrade in approximation qual-
ity when alternative paths are explored. Again, however, this
seems to be linked to the relative density of high value advice
(for example, expert playing), which underlines the conceptual
proximity of reinforcement learning to the scaffolding concept
in the situated learning approach [20]. A similar problem
exists when a tutor unavoidably displays a behavior that is
prone to deviations, maybe due to physical peculiarities (for
example, when piloting a helicopter, a “best” trajectory from a
departure point to a destination can be realized as a selection
of partially similar, real trajectories as followed by a human
pilot). In such a context, the learning mechanism has to be
designed with a view to subsequently factor out the deviations
[21]. This can be quite expensive, since the existence of many
similar experiences may decrease the amount of “new” space
we can afford to explore and thus result in significantly slower
performance improvement.

Detecting the occurrence of the pendulum effect right now
does not offer insight into how the pendulum effect may be
associated to the relative sparseness or density of alternatives.
Specifically, matches of one-pawn-per-player are rather simple
and their resilience to game tree pathology is inferior to
variants utilizing many pawns. Additionally, such resilience
is further compromised by small boards where shorter paths
to game conclusion amplify the relative importance of errors
in the minimax estimates [22].



V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented carefully designed experiments, at a
large scale, to support the claim that expert tutoring, which
improves the performance of computer players in a board
game, is mostly evident when the tutor resigns and the impact
of its absence is examined.

We assigned such a tutor role to minimax and we elabo-
rated on our experimental setup using a key statistic: number
of games won by each player throughout the tutoring session
and throughout a subsequent non-tutoring session. Calculating
this statistic is trivial but associating it with the depth of the
tutoring expertise to measure learning effectiveness is not ob-
vious. This is mostly because both competing players attempt
to fine tune their performance vis-à-vis their opponent, so
differences sometimes smooth out. Our experimental evidence
and intuition both suggest that the larger the difference, the
stronger the smoothing trend. This is the pendulum effect,
robustly demonstrated in our experiments.

The importance of the pendulum effect will be strengthened
if it can be demonstrated across similar zero-sum two-player
games, possibly by employing more sophisticated and faster
playing and by investigating more complex tutors. Another
significant contribution would be to improve the automatic
classification of pendulum effect cases. Besides devising more
accurate formulae, one might also employ a machine learning
approach, using data series and expert judgment as input.
Currently, we are investigating both options and progress on
that direction would likely facilitate subsequent analysis on the
effectiveness of learning systems at large.

The pendulum effect promotes interactive evolutionary
learning. Therein, one would ideally switch from focused tutor-
based training (expert-play) to autonomous crawling (self-
play); we first generate an initial advantage for one of the
players and then explore the state space aiming to catch
up on behalf of the other. However, as we have discovered
during this work, the interactivity requirements of this iterative
process also demand a suitable environment to supports this
development. To put the tutor in the loop we are currently
working to integrate our development with scientific workflow
systems over grids [23] [24] [25].

The pendulum effect raises a fundamental question: when
do we stop learning according to a policy and try something
else? If the pendulum effect can be computationally traced,
then we can detect performance plateaus where players learn
little and should divert to explore new learning opportunities.
In artificial agent societies, where the concepts of competition,
co-evolution and co-learning are inherent, a central theme is
to select a good partner with which to co-learn for some time,
before switching partners. Viewing an opponent as a partner
is key in co-evolutionary learning and being able to estimate
whether such a partnership is profitable will be invaluable.
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[9] D. Osman, J. Mańdziuk (2005). “TD-GAC: Machine Learning Experi-
ment with Give-Away Checkers”, Issues in Intelligent Systems. Models
and Techniques, M. Dramiski et al. (eds.), pp. 131-145.
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