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Abstract

We study the load balancing problem in the context of a set of clients each wishing
to run a job on a server selected among a subset of permissible servers for the particular
client. We consider two different scenarios. In selfish load balancing, each client is selfish
in the sense that it chooses, among its permissible servers, to run its job on the server
having the smallest latency given the assignments of the jobs of other clients to servers. In
online load balancing, clients appear online and, when a client appears, it has to make an
irrevocable decision and assign its job to one of its permissible servers. Here, we assume
that the clients aim to optimize some global criterion but in an online fashion. A natural
local optimization criterion that can be used by each client when making its decision is to
assign its job to that server that gives the minimum increase of the global objective. This
gives rise to greedy online solutions. The aim of this paper is to determine how much the
quality of load balancing is affected by selfishness and greediness.

We characterize almost completely the impact of selfishness and greediness in load
balancing by presenting new and improved, tight or almost tight bounds on the price of
anarchy of selfish load balancing as well as on the competitiveness of the greedy algorithm
for online load balancing when the objective is to minimize the total latency of all clients
on servers with linear latency functions. In addition, we prove a tight upper bound on
the price of stability of linear congestion games.
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1 Introduction

We study the load balancing problem in the context of a set of clients each wishing to run a
job on a server selected among a subset of permissible servers for the particular client. We
consider two different scenarios. In the first, called selfish load balancing (or load balancing
games), each client is selfish in the sense that it chooses, among its permissible servers, to run
its job on the server having the smallest latency given the assignments of the jobs of other
clients to servers. In the second scenario, called online load balancing, clients appear online
and, when a client appears, it has to make an irrevocable decision and assign its job to one of
its permissible servers. Here, we assume that the clients are not selfish and aim to optimize
some global objective but in an online fashion (i.e., without any knowledge of clients that may
arrive in the future). A natural local optimization criterion that can be used by each client
when making its decision is to assign its job to the server that gives the minimum increase of
the global objective. This gives rise to greedy online solutions. The aim of this paper is to
answer the question of how much the quality of load balancing is affected by selfishness and
greediness.

Load balancing games. Load balancing games are special cases of the well-known con-
gestion games introduced by Rosenthal [29] and studied in a sequence of papers [6, 10, 11, 14,
16, 18, 26, 30, 31]. In congestion games there is a set E of resources, each resource e having a
non-negative and non-decreasing latency function fe defined over non-negative numbers, and
a set of n players. Each player i has a set of strategies Si ⊆ 2E (each strategy of player i is
a set of resources). An assignment A = (A1, ..., An) is a vector of strategies, one strategy for
each player. The cost of a player for an assignment A is defined as cost(i) =

∑
e∈Ai

fe(ne(A)),
where ne(A) is the number of players using resource e in A, while the social cost of an assign-
ment is the total cost of all players. An assignment is a pure Nash equilibrium if no player has
any incentive to unilaterally deviate to another strategy, i.e., costi(A) ≤ costi(A−i, s) for any
player i and for any s ∈ Si, where (A−i, s) is the assignment produced if just player i deviates
from Ai to s. This inequality is also known as the Nash condition. In weighted congestion
games, each player has a weight wi and the latency of a resource e depends on the total weight
of the players that use e. For this case, a natural social cost function is the weighted sum of
the costs of all players (or the weighted average of their costs). In linear congestion games,
the latency function of resource e is of the form fe(x) = αex+βe with non-negative constants
αe and βe. Load balancing games are congestion games where the strategies of players are
singleton sets. In load balancing terminology, we use the terms server and client instead of
the terms resource and player. The set of strategies of a client contains the servers that are
permissible for the client. A load balancing game is called symmetric when all servers are
permissible for any client.

We evaluate the quality of solutions of a load balancing game by comparing the social
cost of Nash equilibria to the cost of the optimal assignment (i.e., the minimum cost). We use
the notions of price of anarchy introduced in a seminal work of Koutsoupias and Papadim-
itriou [23] (see also [27]) and price of stability [3] (or optimistic price of anarchy) defined
as follows. The price of anarchy/stability of a load balancing game is defined as the ratio
of the maximum/minimum social cost over all Nash equilibria over the optimal cost. The
price of anarchy/stability for a class of load balancing games is simply the highest price of
anarchy/stability among all games belonging to that class.

The papers [15, 17, 18, 19, 22, 25] study various games which can be thought of as
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special cases of congestion games with respect to the complexity of computing equilibria of
best/worst social cost and the price of anarchy when the social cost is defined as the maximum
latency experienced by any player. The social cost of the total latency has been studied in
[6, 10, 24, 33]. The authors in [24] study symmetric load balancing games with linear latency
functions and show tight bounds on the price of anarchy of 4/3 for different servers and 9/8
for identical servers with weighted clients. The price of anarchy of symmetric load balancing
games with polynomial or convex latency functions is studied in [20, 21]. In two papers,
Awerbuch et al. [6] and Christodoulou and Koutsoupias [10] prove tight bounds on the price
of anarchy of congestion games with linear latency functions. Among other results, they show
that the price of anarchy of pure Nash equilibria is 5/2 while for mixed Nash equilibria or

pure Nash equilibria of weighted clients it is 3+
√
5

2 ≈ 2.618. Tight bounds on the price of
anarchy of congestion games with polynomial latency functions are presented in [1]; these
improve previous results in [6, 10].

Does the fact that load balancing games are significantly simpler than congestion games
in general have any implications for their price of anarchy? We give a negative answer to this
question for linear latency functions by showing that the 5/2 upper bound (as well as the
3+

√
5

2 upper bound for weighted clients) is tight. This is interesting since the upper bounds
for congestion games (as well as an earlier upper bound of 5/2 proved specifically for load
balancing [33]) are obtained using only the Nash inequality (i.e., the inequality obtained by
summing up the Nash condition inequalities over all players’ strategies) and the definition
of the social cost. So, it is somewhat surprising that load balancing games are as general as
congestion games in terms of their price of anarchy and that the Nash inequality provides
sufficient information to characterize their price of anarchy.

An important special case of load balancing is when servers have identical linear latency
functions. Here, better upper bounds on the price of anarchy can be obtained. Note that this
is not the case for congestion games since, as it was observed in [10], any congestion game
can be transformed to a congestion game on identical resources (and, hence, the lower bounds
of [6, 10] hold for congestion games with identical resources as well). Suri et al. [33] prove
that the price of anarchy of selfish load balancing on identical servers is between 2.012067
and 1 + 2/

√
3 ≈ 2.1547. Again, the upper bound is obtained by using the Nash inequality

and the definition of the social cost. We improve this result by showing that the lower bound
is essentially tight. Besides the Nash inequality, our proof also exploits structural properties
of games with high price of anarchy. We argue that such games can be represented as a
directed graph (called the game graph) and, then, structural properties of such a game follow
as structural properties of this graph. Furthermore, for weighted clients and identical servers,
we prove that the price of anarchy is at least 5/2.

Tight bounds on the price of stability of load balancing games have been proved in [3].
The price of stability of linear congestion games has been studied in [11] where it was shown
that it lies between 1+1/

√
3 ≈ 1.577 and 1.6. The technique used to obtain the upper bound

is to consider pure Nash equilibria with potential not larger than the potential of the optimal
assignment and bound their social cost in terms of the optimal cost using the Nash inequality.
Using the same technique but with a more refined analysis, we show that the lower bound is
tight.

Greedy load balancing. From the algorithmic point of view, load balancing has been
studied extensively, including papers studying online versions of the problem (e.g., [2, 4, 5,
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7, 9, 13, 28, 32, 33]). In online load balancing, clients appear in online fashion; when a client
appears, it has to make an irrevocable decision and assign its job to a server. In our model,
servers have linear latency functions and the objective is to minimize the total latency, i.e.,
the sum of the latencies experienced by all clients. Clients may also own jobs with non-
negative weights; in this case, the objective is to minimize the weighted sum of the latencies
experienced by all clients. A natural greedy algorithm proposed in [5] for this problem is to
assign each client to the server that yields the minimum increase to the total latency (ties
are broken arbitrarily). This results to greedy assignments. Given an instance of online load
balancing, an assignment of clients to servers is called a greedy assignment if the assignment
of a client to a server minimizes the increase in the cost of the instance revealed up to the
time of its appearance. Following the standard performance measure in competitive analysis,
we evaluate the performance of this algorithm in terms of its competitiveness (or competitive
ratio). The competitiveness of the greedy algorithm on an instance is the maximum ratio of
the cost of any greedy assignment over the optimal cost and its competitiveness on a class
of load balancing instances is simply the maximum competitiveness over all instances in the
particular class.

The performance of greedy load balancing with respect to the total latency has been
studied in [5, 33]. Awerbuch et al. [5] consider a more general model where each client owns
a job with a load vector denoting the impact of the job to each server (i.e., how much the
assignment of the job to a server will increase its load) and the objective is to minimize the Lp
norm of the load of the servers. In the context similar to the one studied in the current paper,
their results imply a 3 + 2

√
2 ≈ 5.8284 upper bound. This result applies also in the case of

weighted clients where the objective is to minimize the weighted average latency. Suri et al.
[33] consider the same model as ours and show upper bounds of 17/3 and 2 +

√
5 ≈ 4.2361

for different servers and identical servers, respectively. In a way similar to the study of the
price of anarchy of congestion games, [33] develops a greedy inequality which is used to obtain
the upper bounds on competitiveness. They also present a lower bound of 3.0833 for the
competitiveness of greedy assignments in the case of identical servers. Christodoulou et al.
[12] have analyzed a different than greedy online algorithm for load balancing and proved
that it has competitiveness at most 2 +

√
5 ≈ 4.2361.

The main question left open by the work of [33] is whether the existence of different
servers does hurt the competitiveness of greedy load balancing. We give a positive answer
to this question as well. By a rather counterintuitive construction, we show that the 17/3
upper bound of [33] is tight. This is interesting since it indicates that the greedy inequality
is powerful enough to characterize the competitiveness of greedy load balancing. We also
consider the case of identical servers where we almost close the gap between the upper and
lower bounds of [33] by showing that the competitiveness of greedy load balancing is between
4 and 2

3

√
21+1 ≈ 4.05505. In the proof of the upper bound, we use the greedy inequality but,

more importantly, we also use arguments for the structure of greedy and optimal assignments
of instances that yield a high competitiveness. In a similar way to the case of selfish load
balancing, we argue that such instances can be represented as directed graphs (called greedy
graphs) that enjoy particular structural properties. In the case of weighted clients, we present
a tight lower bound of 3 + 2

√
2 on identical servers matching the upper bound of [5]. The

results presented in this paper are summarized in Table 1.
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Problem Measure Result Comments

unweighted price of stability, 1 + 1/
√
3 Section 2, Theorem 3.

congestion game upper bound Matches a lower bound from [11]

unweighted price of anarchy, 2.5 Section 3.1, Theorem 4.
load balancing lower bound Matches an upper bound from [6, 10]

for unweighted congestion games

unweighted price of anarchy, ≈ 2.012 Section 3.3.
load balancing, upper bound Matches a lower bound from [33]
identical servers

unweighted competitiveness 17/3 Section 4.1, Theorem 10.
load balancing of greedy, Matches an upper bound from [33]

lower bound

unweighted competitiveness ≈ 4.055 Section 4.2, Theorem 13.
load balancing, of greedy, Improves an upper bound from [33]
identical servers upper bound

unweighted competitiveness 4 Section 4.2, Theorem 14.
load balancing, of greedy, Improves a lower bound from [33]
identical servers lower bound

weighted price of anarchy, 3+
√
5

2 Section 5, Theorem 15.
load balancing lower bound Matches an upper bound from [6]

for congestion games

weighted price of anarchy, 2.5 Section 5, Theorem 16
load balancing, lower bound
identical servers

weighted competitiveness 3 + 2
√
2 Section 5, Theorem 17.

load balancing, of greedy, Matches an upper bound from [5]
identical servers lower bound for unrelated servers

Table 1: Summary of our results.

Roadmap. The rest of the paper is structured as follows. We present the bounds on the
price of stability of linear congestion games in Section 2. The bounds on the price of anarchy
of selfish load balancing are presented in Section 3, while the bounds on the competitiveness
of greedy load balancing are presented in Section 4. In Section 5 we present extensions of
the results to selfish and greedy load balancing when clients are weighted and conclude with
open problems in Section 6.

2 The price of stability of linear congestion games

We present a tight upper bound on the price of stability of linear congestion games. Our proof
uses the main idea in the proof of [11] and bounds the social cost of any Nash equilibrium
having a potential smaller than the potential of the optimal assignment. In the proof we also
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make use of the Nash inequality which together with the inequality on the potentials yields
the upper bound. However, the two inequalities may not be equally important in order to
achieve the best possible bound and this is taken into account in our analysis. We now state
the Nash inequality (see for example [10, 11, 33]) as applied to our setting. It follows by
summing the Nash condition inequalities of all clients.

Lemma 1 (Nash inequality) For any congestion game, where each resource e has latency
function fe(x) = αex + βe, with a pure Nash equilibrium and an optimal assignment of ne
and oe players at each resource e, respectively, it holds that∑

e

(
αen

2
e + βene

)
≤
∑
e

oe(αene + αe + βe).

We use Rosenthal’s potential function [29]. We remind that, assuming a strategy profile
A for a congestion game with linear latency function fj(x) = αjx+βj , we define the potential

of the strategy to be Pot(A) =
∑m

j=1

∑nj(A)
i=1 fj(i), where m is the number of resources, and

nj(A) denotes the number of clients using resource j in A. By its definition, the potential
function has the property that for any two assignments differing only in the strategy of a
single client, the difference of the potentials and the difference of the cost experienced by that
client in the two assignments have the same sign. Furthermore, the potential function has
local minima at pure Nash equilibria and, in order to establish an upper bound on the price
of stability, it suffices to bound the social cost of pure Nash equilibria whose potential is less
than or equal to the potential of the optimal assignment.

In our proof, we will need the following technical lemma.

Lemma 2 For any non-negative integers x, y and γ = 2
√
3− 3, it holds that

(1− γ)xy + y − γx+ γy2 ≤
(
1− γ

2

)2

x2 + (1 + γ)y2.

Proof: Define the function g(x, y) as the subtraction of the left part from the right part in
the above inequality. Substituting γ we have

g(x, y) =
(
7− 4

√
3
)
x2 + y2 −

(
4− 2

√
3
)
xy − y +

(
2
√
3− 3

)
x

=

((
2−

√
3
)
x− y +

√
3

2

)2

+
(√

3− 1
)
y − 3

4
.

In order to prove the lemma, it suffices to show that g(x, y) ≥ 0 for any non-negative in-
teger values of x and y. First, we observe that if y ≥ 2 it is

(√
3− 1

)
y − 3

4 ≥ 0. Hence,

g(x, y) ≥ 0 for any integer y ≥ 2. Also, g(x, 0) =
((

2−
√
3
)
x+

√
3
2

)2
− 3

4 ≥ 0 for any

integer x ≥ 0. For y = 1, by trivial calculations we obtain that the parabolic function

g(x, 1) =
((

2−
√
3
)
x− 1 +

√
3
2

)2
+

√
3 − 7

4 is equal to zero for x = 0 and x = 1. So, it is

non-negative for any non-negative integer value of x.

We are now ready to prove the following result. A matching lower bound is presented
in [11].
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Theorem 3 The price of stability of congestion games with linear latency functions is at
most 1 + 1/

√
3.

Proof: Consider a linear congestion game, an optimal assignment and a pure Nash equilib-
rium of not larger potential. We will show that the social cost of this Nash equilibrium (and,
as a consequence, the social cost of the best Nash equilibrium) is no more than 1 + 1√

3
times

the cost of the optimal assignment.
Denote by nj and oj the number of clients using resource j in the Nash and optimal

assignment, respectively. By the inequality of the potentials, we obtain that

m∑
j=1

nj∑
i=1

fj(i) ≤
m∑
j=1

oj∑
i=1

fj(i) ⇒

m∑
j=1

(αj (nj + 1)nj + 2βjnj) ≤
m∑
j=1

(αj (oj + 1) oj + 2βjoj) ⇒

m∑
j=1

(
αjn

2
j + βjnj

)
≤

m∑
j=1

αj
(
o2j + oj − nj

)
+

m∑
j=1

βj (2oj − nj) (1)

By the Nash inequality, we obtain that

m∑
j=1

(
αjn

2
j + βjnj

)
≤

m∑
j=1

(αj (nj + 1) oj + βjoj) (2)

Let γ = 2
√
3 − 3. By multiplying (1) by γ and (2) by 1 − γ and adding them and using

Lemma 2, we obtain that

m∑
j=1

(
αjn

2
j + βjnj

)
≤

m∑
j=1

αj
(
(1− γ)njoj + oj − γnj + γo2j

)
+

m∑
j=1

βj ((1 + γ) oj − γnj)

≤
m∑
j=1

αj

((
1− γ

2

)2

n2j + (1 + γ) o2j

)

+

m∑
j=1

βj

((
1− γ

2

)2

nj + (1 + γ) oj

)

=

(
1− γ

2

)2 m∑
j=1

(
αjn

2
j + βjnj

)
+ (1 + γ)

m∑
j=1

(
αjo

2
j + βjoj

)
.

Therefore, the price of stability is at most∑m
j=1

(
αjn

2
j + βjnj

)
∑m

j=1

(
αjo2j + βjoj

) ≤ 1 + γ

1−
(
1−γ
2

)2 = 1 +
1√
3
.
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3 Bounds on the price of anarchy

In this section, we present tight bounds on the price of anarchy. We first show that the known
upper bound of Suri et al. [33] on the price of anarchy of load balancing games on different
servers with linear latency functions is tight (Section 3.1). Then, we present better upper
bounds in the case of identical servers starting from simple bounds that already improve
the previous results from [33] (Section 3.2) and concluding with a computer-assisted proof
(in Section 3.3) which essentially yields an upper bound matching the corresponding lower
bound of [33].

For the study of the price of anarchy of non-symmetric load balancing games, we can
consider games in which each client has at most two strategies. This is clearly sufficient
when proving lower bounds. In order to prove upper bounds, we observe that for any game,
there exists another game with at most two strategies per client which has the same price of
anarchy. Given any load balancing game, let O and N be the optimal assignment and the
Nash equilibrium that yields the worst social cost for this game, respectively. The game with
the same clients and servers in which each client has its strategies in O and N as strategies
also has the same optimal assignment and the same Nash equilibrium (and, consequently, the
same price of anarchy). We represent such games as directed graphs (called game graphs)
having a node for each server and a directed edge for each client; the direction of each edge is
from the strategy of the client in the optimal assignment to the strategy of the client in the
Nash equilibrium. A self-loop indicates that the client has the same strategy in the optimal
assignment and the Nash equilibrium.

3.1 Servers with different latency functions

The next theorem states that the upper bound of 5/2 presented in [33] (and also implied by
the results in [6, 10] for linear congestion games) is tight. This bound was known to be tight
for linear congestion games in general but the constructions in the lower bounds in [6, 10] are
not load balancing games.

Theorem 4 For any ϵ > 0, there is a load balancing game with linear latency functions
whose price of anarchy is at least 5/2− ϵ.

Proof: We construct a game graph G consisting of a complete binary tree with k+1 levels
and 2k+1 − 1 nodes with a line of k + 1 edges and k + 1 additional nodes hung at each leaf.
So, graph G has 2k+2 levels 0, ..., 2k+1, with 2i nodes at level i for i = 0, ..., k and 2k nodes
at levels k + 1, ..., 2k + 1. The servers corresponding to nodes of level i = 0, ..., k − 1 have
latency functions fi(x) = (2/3)i x, the servers corresponding to nodes of level i = k, ..., 2k
have latency functions fi(x) = (2/3)k−1 (1/2)i−k x, and the servers corresponding to nodes of
level 2k + 1 have latency functions f2k+1(x) = (2/3)k−1 (1/2)k x.

Consider the assignment where all clients select servers corresponding to the endpoint of
their corresponding edge which is closer to the root of the game graph. This assignment is
a Nash equilibrium, since servers corresponding to nodes of level i = 0, ..., k − 1 have two
clients and latency 2 (2/3)i, servers corresponding to nodes of level i = k, ..., 2k have one
client and latency (2/3)k−1 (1/2)i−k, and servers corresponding to nodes of level 2k + 1 have
no client. Therefore, due to the definition of the latency functions, a client assigned to a
server corresponding to a node of level i = 0, ..., 2k would experience exactly the same latency
if it changed its decision and chose the server corresponding to the node of level i+ 1.
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The cost of this assignment is

cost =

k−1∑
i=0

4 · 2i (2/3)i +
2k∑
i=k

2k (2/3)k−1 (1/2)i−k

= 15 (4/3)k − (2/3)k−1 − 12.

To compute an upper bound for the cost of the optimal assignment, it suffices to consider
the assignment where all clients select the servers corresponding to nodes which are further
from the root. We obtain that the cost opt of the optimal assignment is

opt ≤
k−1∑
i=1

2i (2/3)i +

2k∑
i=k

2k (2/3)k−1 (1/2)i−k + 2k (2/3)k−1 (1/2)k

= 6 (4/3)k − 4.

Hence, for any ϵ > 0 and for sufficiently large k, the price of anarchy of the game is larger
than 5/2− ϵ.

3.2 Identical servers

In the case of identical servers with linear latency functions we can show a tight bound on
the price of anarchy of approximately 2.012067; a matching lower bound has been presented
in [33]. First, we present the main idea in our analysis to obtain a slightly weaker result
which already improves the previously known upper bound of 1 + 2√

3
≈ 2.1547 [33]. Then,

we further improve our analysis.
We will upper-bound the ratio of the social cost of the worst Nash equilibrium to the

optimal social cost of games with at most two strategies per client which satisfy a particular
property. We say that server j is of type nj/oj meaning that it has nj clients in the Nash
equilibrium and oj clients in the optimal assignment (equivalently, server j has in-degree nj
and out-degree oj in the game graph). We first show that for any game we can construct
another game that has at least the same price of anarchy and, furthermore, satisfies the
following 2-neighborhood property : in the game graph, the incoming edge of any server of
type 1/1 originates from a server of type 0/1. Then, the idea behind the proof is to account
for the contribution of servers of type 1/1 and 0/1 in the social cost together.

In general, latency functions would be of the form f(x) = αx+ β where α > 0 and β ≥ 0.

Then, the price of anarchy is given by the ratio
∑

j (αn2
j+βnj)∑

j (αo2j+βoj)
which is at most

∑
j n

2
j∑

j o
2
j
. Hence,

without loss of generality, we may assume that the latency function is of the form f(x) = x.
In the proof of our weakest bound (Theorem 6), we make use of the following technical

lemma.

Lemma 5 Let ψ = 6+
√
21

6 , ξ = 7
√
21−12
30 and define the functions g(x, y) = xy+(1 + ξ) y−ξx

and h(x, y) = 1
4ψx

2+ψy2. For any non-negative integers x, y such that either x ̸= 1 or y ̸= 1,
it holds that g(x, y) ≤ h(x, y). Furthermore, g(0, 1) + g(1, 1) = h(0, 1) + h(1, 1).

Proof: We start by noting that g(0, 1) + g(1, 1) = ξ + 3 = 78+7
√
21

30 and h(0, 1) + h(1, 1) =

2ψ + 1
4ψ = 78+7

√
21

30 . Define the function

f(x, y) = h(x, y)− g(x, y) =

(
1

2
√
ψ
x−

√
ψy + ξ

√
ψ

)2

+ (2ξψ − ξ − 1) y − ξ2ψ.
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In order to prove the lemma, it suffices to show that f(x, y) ≥ 0 for any non-negative integer

values of x and y when either x ̸= 1 or y ̸= 1. First, observe that if y ≥ 2, then y ≥ ξ2ψ
2ξψ−ξ−1 =

125
√
21

336 − 9
16 ≈ 1.14, which implies that (2ξψ − ξ − 1) y − ξ2ψ ≥ 0. Hence, f(x, y) ≥ 0 for

any integer y ≥ 2. Also, f(x, 0) =
(

1
2
√
ψ
x+ ξ

√
ψ
)2

− ξ2ψ ≥ 0 for any integer x ≥ 0.

For y = 1, by straightforward calculations we obtain that the parabolic function f(x, 1) =(
1

2
√
ψ
x+ (ξ − 1)

√
ψ
)2

+2ψξ− ξ− ξ2ψ− 1 is positive for x = 0, negative for x = 1 and equal

to zero for x = 2. So, it is non-negative for any non-negative integer value of x besides 1.

Theorem 6 The price of anarchy of selfish load balancing on identical servers is at most
2
3

√
21− 1 ≈ 2.05505.

Proof: Consider a load balancing game on servers with latency function f(x) = x and
clients having at most two strategies. Without loss of generality, we may assume that the
game satisfies the 2-neighborhood property, i.e., the incoming edge of any server j of type
1/1 originates from a server of type 0/1 in the game graph. If this is not the case, we show
how to construct another game with not smaller price of anarchy. If a client c had server j
as its only strategy (this corresponds to a self-loop in the corresponding game graph), then
we may construct a new game by excluding server j and client c from the original one; the
new game has worse price of anarchy since both the social cost of the optimal assignment
and the social cost of the Nash equilibrium are decreased by 1. So, let j′ and j′′ be the
servers to which server j is connected corresponding to clients c1 and c2 selecting servers j′

and j in the optimal assignment and servers j and j′′ in the Nash assignment, respectively.
Clearly, nj′′ ≤ 2, since, otherwise, client c2 would have an incentive to use server j in the
Nash equilibrium. Assume that server j′ is of type nj′/oj′ for nj′ > 0 or oj′ > 1. If nj′ > 0,
we can construct a new game by excluding server j and substituting clients c1 and c2 by a
client selecting server j′ in the optimal assignment and server j′′ in the Nash assignment. The
new game has worse price of anarchy, since both the cost of the optimal assignment and the
cost of the Nash equilibrium are decreased by 1. If oj′ > 1, then we can add a new server j′1
and change the strategy of client c1 to {j′1, j}. The new game has worse price of anarchy since
the cost of the Nash equilibrium remains the same, while the cost of the optimal assignment
decreases.

Now, denote by F the set of servers of type 1/1 and by S the set of servers of type 0/1
which are connected through an edge to a server in F in the game graph. Also, for each server
j in F we denote by S(j) the server of S from which the client destined for j originates. By
the Nash inequality, we obtain that

∑
j n

2
j ≤

∑
j (ojnj + oj) and, since

∑
j nj =

∑
j oj , we
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have that ∑
j

n2j ≤
∑
j

(njoj + oj)

=
∑
j

(
njoj +

18 + 7
√
21

30
oj −

7
√
21− 12

30
nj

)
=

∑
j ̸∈F∪S

g(nj , oj) +
∑
j∈F

(
g(nS(j), oS(j)) + g(nj , oj)

)
≤

∑
j ̸∈F∪S

h(nj , oj) +
∑
j∈F

(
h(nS(j), oS(j)) + h(nj , oj)

)
=

6−
√
21

10

∑
j

n2j +
6 +

√
21

6

∑
j

o2j

where the first equality follows since
∑

j nj =
∑

j oj , the second equality follows by the
definition of function g, the second inequality follows by Lemma 5, and the last equality
follows by the definition of function h. We obtain that the price of anarchy is∑

j n
2
j∑

j o
2
j

≤ 2

3

√
21− 1.

3.3 Tightening the analysis

The main idea in order to improve the analysis in the proof of Theorem 6 is to strengthen
the properties of the games that have to be considered and account for the contributions of
servers of type 1/1 together with the servers in their neighborhood in the game graph (in a
way that is well defined below). By extending the neighborhood that we consider, we obtain
better and better upper bounds which converge to the lower bound of 2.012067 presented
in [33]. We present the formal proof for an upper bound of 2.029656 and a series of better
bounds obtained using more complicated computer-assisted proofs.

Consider the game graph of the game satisfying the 2-neighborhood property. We call a
4-path any directed path of at most four nodes in the game graph starting with a server of
type 0/1 and having a server of type 1/1 as its second node. Let p be such a path starting
with the server j0 and containing server j1 as its second node. Denote by j2 the third server
in the path p and assume that j2 is of type nj2/oj2 . The path may terminate at server j2 if
it has no outgoing edges in the game graph. Otherwise, path p has a fourth server j3 of type
nj3/oj3 . An example of a 4-path is presented in Figure 1. We say that a game satisfies the
4-neighborhood property if in any 4-path, the third server j2 has nj2 = 2 and the fourth server
j3, if it exists, has nj3 = 3 and neither of them has any self-loop.

We show that given any game that satisfies the 2-neighborhood property and has price of
anarchy at least 5/3, there exists a game satisfying the 4-neighborhood property which has at
least the same price of anarchy. Consider a 4-path consisting of servers j0, j1, j2 and possibly
j3.

Since j2 is connected to at least server j1, it has nj2 > 0. If nj2 ≥ 3, then client c2 between
j1 and j2 would have an incentive to use server j1 in the Nash equilibrium. If nj2 = 1, then we

11



jn  / o
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jn  / o
3

j
3

j2 j3j0 j1

0/1 1/1

... ...

Figure 1: An example of a 4-path.

can replace the clients c1 and c2 by a new client selecting server j0 in the optimal assignment
and server j2 in the Nash assignment and obtain a game with higher price of anarchy, since
both the cost of the optimal assignment and of the Nash equilibrium are decreased by 1.

If server j3 exists, then since j3 is connected to at least server j2, it has nj3 ≥ 1. If nj3 = 1,
then we can introduce a new server j∗ and change the strategy set of client c3 to {j∗, j3} to
obtain another game in which server j3 is connected to a server of type 0/1. The social cost
of the Nash assignment is the same while the optimal social cost does not increase. If nj3 = 2,
we distinguish between two cases for oj2 . If oj2 = 1, then we may remove servers j0, j1, and
j2 and clients c1, c2 and c3 and change the strategy of the client c4 which is the second client
connected to server j2 in the Nash equilibrium so that it connects to j3 instead of j2. In this
way, the social cost of the Nash assignment is decreased by 5 while the optimal social cost
is decreased by 3; overall the price of anarchy increases since the original game had price of
anarchy larger than 5/3. If oj2 > 1, we remove the client c3, change the strategy of client c4
so that it connects to server j3 in the Nash equilibrium and introduce two new servers j∗0 and
j∗ of types 0/1 and 1/1, respectively, and clients c5 and c6 connecting j∗0 to j∗ and j∗ to j2,
respectively. The social cost of the Nash assignment is increased by 1 while the optimal cost
decreases by at least 1. Overall, the price of anarchy increases. Clearly, if nj3 ≥ 4, then client
c3 would have an incentive to use server j2.

It remains to show that neither j2 nor j3 have self-loops. We will actually show that any
game whose game graph has self-loops at nodes of in-degree 2 or 3 can be converted to a
game without such self-loops with higher price of anarchy.

Lemma 7 For any game, there exists a game having at least the same price of anarchy and
whose game graph has no self-loops at nodes with in-degree 2 and 3.

Proof: Starting from a game whose game graph has self-loops at some nodes of in-degree 2
(respectively, 3), we will construct another game whose game graph has no self-loops at nodes
of in-degree 2 (resp., 3) and has higher price of anarchy.

Consider a game with game graph G that has t self-loops at nodes of in-degree 2 (resp.,
3). Construct the graph G′ by first putting twelve (resp., twenty) copies of G. Denote by L
the set of self-loops at nodes of G with in-degree 2 (resp., 3).

For each self-loop in L we apply the following procedure in order to augment G′. Let v be
the node of G with in-degree 2 (resp., 3) having the self-loop. Connect the outgoing edges of
twelve (resp., twenty) constructions like the one in Figure 2a (resp., Figure 2c) to the twelve
(resp., twenty) copies of node v, with one outgoing edge connected to each copy. Furthermore,
connect the twelve (resp., twenty) copies of v to the input edges of the construction of Figure
2b (resp., Figure 2d) and remove the twelve (resp., twenty) copies of the self-loop from G′.
An example is depicted in Figure 2e.

We first show that graph G′ is a game graph, i.e., the assignment where each client selects
the server to which the corresponding edge points to is a Nash equilibrium. Notice that each
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e)

a)

c)

d)

b)

Figure 2: a-d) Constructions used in the proof of Lemma 7. e) Connecting the copies of a
node with a self-loop and in-degree 2 in the original game graph with the constructions in a)
and b).

copy of a node of G has in- and out-degree in G′ equal to those of the corresponding node
in G. Hence, a client corresponding to any edge of G′ which is a copy of an edge in G has
no incentive to deviate (since the client corresponding to the edge in G had no incentive to
deviate either). Also, edges with at least one endpoint in the constructions of Figures 2a, 2b,
2c, and 2d point from a node of in-degree i to a node of in-degree i + 1 (for i = 0, 1, ..., 4).
Hence, the corresponding client would experience the same latency if it changed its strategy
and, hence, no such client has an incentive to deviate either.

We will now show that the new game has higher price of anarchy than the original one.
In order to show this, we will also use the fact that the price of anarchy of the original game
is at most 2

3

√
21− 1 which follows by Theorem 6.

Denote by cost the social cost of the Nash equilibrium of the original game (where each
client selects the server to which the corresponding edge points in the game graph G) and
by opt the cost of the assignment where each client selects the server from which the corre-
sponding edge originates in the game graph G. For the case of nodes of in-degree 2, the cost
of the Nash equilibrium for the new game is

12 · cost+ 12t · 12 + 4t · 32 + t · 42 = 12

(
cost+

16t

3

)
.

The first term comes from the contribution of the nodes in the twelve copies of G, the second
term comes from the contribution of the nodes in the constructions of Figure 2a, while the last
two terms come from the contribution of nodes in the construction of Figure 2b. Similarly,
the assignment where all clients select the server at the origin of the corresponding edge has
cost

12 · opt+ 24t · 12 + 4t · 12 = 12

(
opt+

7t

3

)
.

The first term comes from the contribution of the nodes in the twelve copies of G, the second
term comes from the contribution of nodes in the constructions of Figure 2a, while the last
term comes from the contribution of nodes in the constructions of Figure 2b.
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So, the price of anarchy of the new game is at least

cost+ 16t/3

opt+ 7t/3
>
cost

opt
,

since, by Theorem 6, it is cost/opt ≤ 2
3

√
21− 1 < 16/7.

Respectively, for the case of nodes with in-degree 3, the cost of the Nash equilibrium of
the new game is

20 · cost+ 40t · 12 + 20t · 22 + 5t · 42 + t · 52 = 20

(
cost+

45t

4

)
while the assignment where all clients select the server at the origin of the corresponding edge
has cost

20 · opt+ 100t · 12 + 5t · 12 = 20

(
opt+

21t

4

)
.

So, the price of anarchy of the new game is at least

cost+ 45t/4

opt+ 21t/4
>
cost

opt
,

since, by Theorem 6, it is cost/opt ≤ 2
3

√
21− 1 < 45/21.

Given a server j in a 4-path p of a game satisfying the 4-neighborhood property, we define
part(j, p) as follows. For servers j0, j1, j2 and j3 (if it exists), it is

part(j0, p) = part(j1, p) =

{
1, if oj2 = 0
1
oj2
, if oj2 > 0

part(j2, p) =

{
1
2 , if oj2 = 0
1

2oj2
, if oj2 > 0

part(j3, p) =
1

6
.

Denote by P4 the set of all 4-paths in the game graph. The above definition satisfies that∑
p∈P4

part(j, p) ≤ 1, for each server j and, in particular,
∑

p∈P4
part(j, p) = 1, for each server

of type 1/1. Intuitively, we amortize the contribution of a server to the social cost over the
4-paths containing that server, and part(j, p) is the fraction of the contribution of j that we
assign to path p.

In our proof of the stronger upper bound, we use the following two technical lemmas. Let

ψ = 34+
√
629

34 and ξ = 37
√
629−204
1054 . We define the functions g(x, y) = xy + (1 + ξ)y − ξx and

h(x, y) = 1
4ψx

2 + ψy2.

Lemma 8 For any non-negative integers x, y such that either x ̸= 1 or y ̸= 1, it holds that
g(x, y) ≤ h(x, y).

Proof: Define the function

f(x, y) = h(x, y)− g(x, y) =

(
1

2
√
ψ
x−

√
ψy + ξ

√
ψ

)2

+ (2ξψ − ξ − 1) y − ξ2ψ.
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In order to prove the lemma, it suffices to show that f(x, y) ≥ 0 for any non-negative integer
values of x and y when either x ̸= 1 or y ̸= 1. First, observe that if y ≥ 2, then y ≥

ξ2ψ
2ξψ−ξ−1 ≈ 1.17, which implies that (2ξψ − ξ − 1) y − ξ2ψ ≥ 0. Hence, f(x, y) ≥ 0 for

any integer y ≥ 2. Also, f(x, 0) =
(

1
2
√
ψ
x+ ξ

√
ψ
)2

− ξ2ψ ≥ 0 for any integer x ≥ 0.

For y = 1, by straightforward calculations we obtain that the parabolic function f(x, 1) =(
1

2
√
ψ
x+ (ξ − 1)

√
ψ
)2

+2ψξ− ξ− ξ2ψ− 1 is positive for x = 0, negative for x = 1 and equal

to zero for x = 2. So, it is non-negative for any non-negative integer value of x besides 1.

Lemma 9 For any 4-path p, it holds that∑
j∈p

part(j, p)g(nj , oj) ≤
∑
j∈p

part(j, p)h(nj , oj).

Proof: We consider a 4-path p with servers j0, j1, j2 of type 0/1, 1/1, 2/oj2 and a fourth
server j3 of type 3/oj3 if oj2 > 0. We distinguish between the cases oj2 = 0 and oj2 > 0.

In the first case, by simple calculations, we show that g(0, 1)+g(1, 1)+ 1
2g(2, 0) ≤ h(0, 1)+

h(1, 1) + 1
2h(2, 0).

In the second case, we have to show that g(0, 1) + g(1, 1) + 1
2g(2, oj2) +

oj2
6 g(3, oj3) ≤

h(0, 1) + h(1, 1) + 1
2h(2, oj2) +

oj2
6 h(3, oj3). By straightforward calculations, we obtain that

g(2, oj2) − h(2, oj2) ≤ g(2, 1) − h(2, 1) = 0 for any oj2 ≥ 1, and that g(3, oj3) − h(3, oj3) ≤
g(3, 1) − h(3, 1) for any oj3 ≥ 0. So, the proof completes by showing that g(0, 1) + g(1, 1) +
1
6g(3, 1) ≤ h(0, 1) + h(1, 1) + 1

6h(3, 1).

By using the fact that
∑

j nj =
∑

j oj , the definition of functions g and h, and Lemmas 8
and 9, we obtain that∑

j

n2j ≤
∑
j

(njoj + oj) =
∑
j

(njoj + (1 + ξ)oj − ξnj) =
∑
j

g(nj , oj)

=
∑
p∈P4

∑
j∈p

g(nj , oj)part(j, p) +
∑
j

1−
∑
p∈P4

part(j, p)

 g(nj , oj)

≤
∑
p∈P4

∑
j∈p

h(nj , oj)part(j, p) +
∑
j

1−
∑
p∈P4

part(j, p)

h(nj , oj)

=
∑
j

h(nj , oj) =
1

4ψ

∑
j

n2j + ψ
∑
j

o2j

which yields that the price of anarchy is∑
j n

2
j∑

j o
2
j

≤ 4ψ2

4ψ − 1
=

323− 6
√
629

85
≈ 2.029656.

The analysis can be extended by considering games satisfying the κ-neighborhood property
for κ > 4. We call a κ-path any directed path of at most κ nodes in the game graph starting
with a server of type 0/1 and having a server of type 1/1 as its second node. A game satisfies
the κ-neighborhood property if it satisfies the (κ− 1)-neighborhood property and for any
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κ-path in the game graph, the κ-th node, if it exists, has in-degree κ − 1 and no self-loops.
Again, it can be shown that for any game there exists a game satisfying the κ-neighborhood
property having at least the same price of anarchy. In order to upper-bound the price of
anarchy, we define part(j, p) which denotes how much server j participates in the κ-path p
and the functions gκ(x, y) = xy + (1 + ξκ)y − ξκx and hκ(x, y) =

1
4ψκ

x2 + ψκy
2. We seek for

values of ψκ and ξκ so that the functions gκ and hκ satisfy lemmas similar to Lemmas 8 and

9 that minimize 4ψ2
κ

4ψκ−1 . Then, the analysis continues in the same way as in the proof above.
We have implemented the proof in a C program for values κ = 5, ..., 15. The bounds obtained
are depicted in Figure 3.

κ Upper Bound Lower Bound

4 2.029656065 1.8
5 2.019343848 1.9375
6 2.015325799 1.970588235
7 2.013332672 1.994252874
8 2.012388288 2.005703422
9 2.012186496 2.0100271
10 2.012110246 2.011232914
11 2.012080068 2.011769481
12 2.012071449 2.011970945
13 2.012068514 2.01202926
14 2.012067464 2.012053615
15 2.012067113 2.012062622

Figure 3: Upper bounds obtained for κ = 4, ..., 15. The third column has the lower bounds
obtained by the constructions of [33] with κ+ 1 levels.

For κ = 4, ..., 15, by appropriately defining part(j, p), the κ-paths that make the inequality
of Lemma 9 tight consist of the first κ servers with types in the following sequence 0/1, 1/1,
2/1, 3/1, 4/2, 5/2, 6/2, 7/2, 8/3, 9/3, 10/3, 11/4, 12/4, 13/4, 14/5. These are essentially the
lower bound constructions of [33]. For κ ≥ 4, such a construction with κ + 1 levels has the
servers in the first κ levels to be of type in the above sequence while servers of the last level
κ are of type κ/0.

4 Greedy load balancing

In this section we study greedy load balancing by focusing on servers with linear latency
functions. Similarly to the case of selfish load balancing, in the study of the competitiveness
of greedy load balancing we consider load balancing instances in which each client has at
most two strategies. This is clearly sufficient when proving lower bounds. In order to prove
upper bounds, we observe that for any instance, there exists another instance with at most
two strategies per client for which greedy has the same competitiveness. Given any load
balancing instance, let O and N be the optimal assignment and the greedy assignment of the
highest cost for this instance, respectively. The instance with the same clients and servers
in which each client has its strategies in O and N as strategies also has the same optimal
assignment and the same greedy assignment (and, consequently the same competitiveness).
We represent such instances as directed graphs (called greedy graphs) having a node for each
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server and a directed edge with timing information for each client; the direction of each edge
is from the strategy of the client in the optimal assignment to the strategy of the client in
the greedy assignment and the timing information denotes the time the client appears.

The cost of an assignment is again the total latency. When each server j has been assigned
nj clients and its latency function is fj(x) = αjx + βj , then the total cost of the greedy

assignment equals
∑

j

(
αjn

2
j + βjnj

)
. As discussed in [33], the greedy algorithm does not

necessarily lead to equilibrium assignments. In the greedy algorithm, each client is essentially
choosing the best possible server at the time it makes its decision. When all servers have the
same latency function f(x) = αx + β, each client c is simply choosing the server with the
minimum number of clients.

4.1 Different servers

First, we show that the upper bound of [33] for different servers is tight.

Theorem 10 For any ϵ > 0, greedy load balancing has competitiveness at least 17/3− ϵ.

Proof: We first present an instance that yields a lower bound arbitrarily close to 5. We
construct an instance Ik(α, t) represented by a greedy graph which is a complete binary
tree with k levels 0, 1, ..., k − 1 and with its edges directed towards the root. Denote by Si
the set of servers at level i. The root R has latency function fR(x) = αRx = αx and the
latency functions fs(x) = αsx for the other nodes are defined as follows: For i = 0, ..., k − 2,
given a server s at level i, its left child ℓ(s) has αℓ(s) = αs/5 and the right child r(s) has
αr(s) = 3αs/5. Given a server s at level k − 2, its left child ℓ(s) has αℓ(s) = αs and its right
child r(s) has αr(s) = 3αs. These definitions yield

∑
s∈Si

αs = α(4/5)i for i = 0, ..., k− 2, and∑
s∈Sk−1

αs = 4α(4/5)k−2. Given any non-leaf server s, the client connecting s with its left
child appears prior to the client connecting s with its right child and, if s is not the root, the
client connecting s to its parent appears after the clients connecting s with its children. The
client connecting the root with its right child has timing t and is the client that arrives last.

Consider the assignment where each client selects the server corresponding to the node
closer to the root. We will show that this is a greedy assignment. Indeed, consider the two
clients c1 and c2 connecting a server s to ℓ(s) and r(s), respectively, and recall that c1 appears
before c2 and, furthermore, the client connecting s to its parent (if s ̸= R) appears after c2.
We first consider the case when ℓ(s) and r(s) are leaves. When c1 appears, both ℓ(s) and s
have zero clients and the same latency functions, and, therefore, we can assign c1 to s, since
the increase of the cost is αs for both choices. Moreover, when c2 appears, we can also assign
it to s since r(s) has zero clients and latency function fr(s)(x) = 3αsx and s has one client
and latency function fs(x) = αsx. Thus, the increase in the cost is 3αs for both choices.
Now, assume that ℓ(s) and r(s) are not leaves. When c1 appears, server ℓ(s) has already
two clients and latency function fℓ(s)(x) = αsx/5, while server s has zero clients and latency
function fs(x) = αsx. Therefore, we can assign c1 to s, since the increase in the cost is αs for
both choices. Moreover, when c2 appears, we can also assign it to s since r(s) has two clients
and latency function fr(s)(x) = 3αsx/5, while server s has one client and latency function
fs(x) = αsx. Thus, the increase in the cost is 3αs for both choices.

In order to bound the optimal cost it suffices to consider the assignment of each client
to the server which is closer to the leaves. Denote by opt(Ik(α, t)) and gr(Ik(α, t)) the op-
timal cost and the cost of the greedy assignment of an instance Ik(α, t), respectively. We have
opt(Ik(α, t)) ≤

∑k−1
i=1

∑
s∈Si

αs = 4α and gr(Ik(α, t)) = 4
∑k−2

i=0

∑
s∈Si

αs = 20α
(
1− (4/5)k−1

)
.
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We will now use the instance described above to obtain the 17/3 lower bound. We con-
struct a greedy graph consisting of a complete binary tree with k levels and with its edges
directed towards the root. Denote by S′

i the set of servers of level i. The root R has latency
function fR(x) = x. The latency functions for the other servers are defined as follows. For
i = 0, ..., k−2, given a server s at level i, its left child ℓ(s) has αℓ(s) = 3αs/7 and the right child
r(s) has αr(s) = 5αs/7. Given a server s at level k−2, its left child ℓ(s) has αℓ(s) = 3αs/5 and
its right child r(s) has αr(s) = αs. These definitions yield

∑
s∈S′

i
αs = (8/7)i for i = 0, ..., k−2,

and
∑

s∈S′
k−1

αs = 8
5(8/7)

k−2. Given any server s which is not a leaf, the client connecting

s to its left child ℓ(s) has timing tℓ(s) and the client connecting s to its right child r(s) has
timing tr(s) with tℓ(s) < tr(s). If s is not the root, the client connecting s to its parent appears
after the clients connecting s to its children.

We augment the instance as follows: For each leaf s of the binary tree connected with its
parent node through an edge of timing t, we include a copy Is,1k of instance Ik(αs/5, t − 3)

and a copy Is,2k of instance Ik(3αs/5, t− 3) whose roots Rs,1 and Rs,2 are connected through
edges of timing t − 2 and t − 1 with s. For each non-leaf node s, we include a copy Isk of
instance Ik(αs/5, tℓ(s)−2) whose root Rs is connected through an edge of timing tℓ(s)−1 with
s, where tℓ(s) is the timing of the edge connecting s with its left child in the binary tree. The
construction is depicted in Figure 4.
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Figure 4: The construction in the proof of Theorem 10. The instance I(α, t) is depicted at
the left and is used as a triangle in the construction at the right part.

Consider the assignment where each client selects the server corresponding to the node
closer to the root. We will show that this is a greedy assignment by arguing about the choices
of all different sets of clients. We begin by considering clients corresponding to edges inside
the copies (of Isk when s in not a leaf and Is,1k and Is,2k when s is a leaf). Clearly, since those
edges arrive prior to the edges connecting the copies to the binary tree and by the discussion
above, the assignment of those edges to the nodes closer to the root is a valid outcome of
the greedy algorithm. We now examine clients corresponding to edges outside the copies.
Consider client c1 corresponding to an edge e = (Rs,1, s) connecting the root Rs,1 of copy
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Is,1k to a leaf s of the binary tree. Rs,1 has latency function fRs,1(x) = αsx/5 and already
two clients, while s has latency function fs(x) = αsx and no clients. So, the increase in
the total cost will be equal to αs for both choices of client c1. Similary, consider client c2
corresponding to an edge e = (Rs,2, s) connecting the root Rs,2 of copy Is,2k to a leaf s of the
binary tree. Rs,2 has latency function fRs,2(x) = 3αsx/5 and already two clients, while s has
latency function fs(x) = αsx and one client. So, the increase in the total cost will be equal to
3αs for both choices of client c2. Now, consider client c3 corresponding to an edge e = (Rs, s)
connecting the root Rs of copy I

s
k to a non-leaf s of the binary tree. Rs has latency function

fRs(x) = αsx/5 and already two clients, while s has latency function fs(x) = αsx and no
clients. So, the increase in the total cost will be equal to αs for both choices of client c3.
Until now, we have argued about clients connecting copies of instance Ik(α, t) to the binary
tree. We proceed to handle the clients connecting nodes of the binary tree to their parents.
Consider client c4 corresponding to an edge e = (ℓ(s), s) connecting the left child ℓ(s) to
its parent s, for the case where ℓ(s) is a leaf of the binary tree. ℓ(s) has latency function
fℓ(s)(x) = 3αsx/5 and already two clients, while s has latency function fs(x) = αsx and one
client. So, the increase in the total cost will be equal to 3αs for both choices of client c4.
Similarly, consider client c5 corresponding to an edge e = (r(s), s) connecting the right child
r(s) to its parent s, for the case where r(s) is a leaf of the binary tree. Both r(s) and s have
already two clients and the same latency functions. Therefore, the increase in the total cost
will be equal to 5αs for both choices of client c5. Moreover, consider client c6 corresponding
to an edge e = (ℓ(s), s) connecting the left child ℓ(s) to its parent s, for the case where ℓ(s)
is not a leaf of the binary tree. ℓ(s) has latency function fℓ(s)(x) = 3αsx/7 and already three
clients, while s has latency function fs(x) = αsx and one client. So, the increase in the total
cost will be equal to 3αs for both choices of client c6. Finally, consider client c7 corresponding
to an edge e = (r(s), s) connecting the right child r(s) to its parent s, for the case where
r(s) is not a leaf of the binary tree. r(s) has latency function fr(s)(x) = 5αs/7 and already
three clients, while s has latency function fs(x) = αsx and already two clients. Therefore,
the increase in the total cost will be equal to 5αs for both choices of client c7.

In order to bound the optimal cost it suffices to consider the assignment of each client to
the server which is closer to the leaves. In this assignment, each non-root server is assigned
one client. Therefore, the cost of the servers that form IRk is 1/5 + opt(IRk ), the cost of each
non-root node s is αs, the cost of the servers that form Isk is αs/5+opt(I

s
k), while the cost of the

servers that form Is,1k and Is,2k is αs/5 + opt(Is,1k ) and 3αs/5 + opt(Is,2k ), respectively. Denote
by opt and gr the optimal cost and the cost of the greedy assignment of the construction. We
have that

opt ≤ 1

5
+ opt(IRk ) +

k−2∑
i=1

∑
s∈S′

i

(
6αs
5

+ opt(Isk)

)
+

∑
s∈S′

k−1

(
9αs
5

+ opt(Is,1k ) + opt(Is,2k )

)

≤ 1

5
+

4

5
+

k−2∑
i=1

∑
s∈S′

i

(
6αs
5

+
4αs
5

)
+

∑
s∈S′

k−1

(
9αs
5

+
4αs
5

+
12αs
5

)

= 1 + 2

k−2∑
i=1

∑
s∈S′

i

αs + 5
∑

s∈S′
k−1

αs

= 21(8/7)k−1 − 15,

19



and

gr =

k−2∑
i=0

∑
s∈S′

i

(9αs + gr(Isk)) +
∑

s∈S′
k−1

(
4αs + gr(Is,1k ) + gr(Is,2k )

)

=

k−2∑
i=0

∑
s∈S′

i

(
9αs + 4αs

(
1− (4/5)k−1

))
+

∑
s∈S′

k−1

(
4αs + 16αs

(
1− (4/5)k−1

))

=
(
13− 4(4/5)k−1

) k−2∑
i=0

∑
s∈S′

i

αs +
(
20− 16(4/5)k−1

) ∑
s∈S′

k−1

αs

= 119(8/7)k−1 − 91 + 28(4/5)k−1 − 252

5
(32/35)k−1.

We conclude that for any ϵ > 0 and for sufficiently large k, the competitiveness of the greedy
assignment is at least 17/3− ϵ.

4.2 Identical servers

We also study the case of identical servers with latency function f(x) = x. By reasoning
about the structure of load balancing instances of particular properties, we prove an upper
bound of 2

3

√
21 + 1 ≈ 4.05505 (Theorem 13) on the competitiveness of the greedy algorithm,

improving the previous bound of 2 +
√
5 ≈ 4.2361 from [33].

In our proof, we use the greedy inequality developed in [33] as well as a technical lemma
(Lemma 12).

Lemma 11 (Greedy inequality, Suri et al. [33]) For any load balancing instance on servers
with latency functions fj(x) = αjx+ βj, with a greedy and an optimal assignment of nj and

oj clients at each server j, respectively,
∑

j

(
αjn

2
j + βjnj

)
≤
∑

j oj(2αjnj + αj + βj).

Lemma 12 Let ψ = 9+
√
21

6 and ξ = 7
√
21−3
30 and define the functions g(x, y) = 2xy +

(1 + ξ) y − ξx and h(x, y) = 1
ψx

2 + ψy2. For any non-negative integers x, y such that either
x ̸= 1 or y ̸= 1, it holds that g(x, y) ≤ h(x, y). Furthermore, g(0, 1)+g(1, 1) = h(0, 1)+h(1, 1).

Proof: We start by noting that g(0, 1) + g(1, 1) = ξ + 4 = 117+7
√
21

30 and h(0, 1) + h(1, 1) =

2ψ + 1
ψ = 117+7

√
21

30 . Define the function

f(x, y) = h(x, y)− g(x, y) =

(
1√
ψ
x−

√
ψy +

ξ
√
ψ

2

)2

+ (ξψ − ξ − 1) y − ξ2ψ

4
.

In order to prove the lemma, it suffices to show that f(x, y) ≥ 0 for any non-negative integer
values of x and y when either x ̸= 1 or y ̸= 1. First, observe that if y ≥ 3, then y ≥

ξ2ψ
4(ξψ−ξ−1) = 1+ 25

√
21

84 ≈ 2.36, which implies that (ξψ − ξ − 1) y− ξ2ψ
4 ≥ 0. Hence, f(x, y) ≥ 0

for any integer y ≥ 3. Also, f(x, 0) =
(

1√
ψ
x+ ξ

√
ψ

2

)2
− ξ2ψ

4 ≥ 0 for any integer x ≥ 0.

For y = 1, by straightforward calculations we obtain that the parabolic function f(x, 1) =(
1√
ψ
x−

√
ψ + ξ

√
ψ

2

)2
+ ξψ − ξ − 1 − ξ2ψ

4 is positive for x = 0, negative for x = 1 and
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equal to zero for x = 2. So, it is non-negative for any non-negative integer value of x
besides 1. For y = 2, by straightforward calculations we obtain that the parabolic function

f(x, 2) =
(

1√
ψ
x− 2

√
ψ + ξ

√
ψ

2

)2
+2 (ξψ − ξ − 1)− ξ2ψ

4 is equal to zero for x = 3 and positive

for x = 2 and x = 4. So, it is non-negative for any non-negative integer value of x.

Theorem 13 Greedy load balancing on identical servers has competitiveness at most 2
3

√
21+

1 ≈ 4.05505.

Proof: Consider a load balancing instance on servers with latency function f(x) = x and
clients having at most two strategies. We will upper-bound the ratio of the cost of the greedy
assignment to the optimal cost of instances with at most two strategies per client which satisfy
a particular property. We say that server j is of type nj/oj meaning that it has nj clients
in the greedy assignment and oj clients in the optimal assignment (equivalently, server j has
in-degree nj and out-degree oj in the greedy graph). We first show that for any instance we
can construct another instance that has at least the same competitiveness and, furthermore,
satisfies the following 2-neighborhood property : the incoming edge of any server of type 1/1
originates from a server of type 0/1. Then, the idea behind the proof is to account for the
contribution of servers of type 1/1 and 0/1 in the cost of the greedy assignment together.

Consider a server j of type 1/1. If a client c had server j as its only permissible server (this
would correspond to a self-loop in the corresponding greedy graph), then we could construct
a new instance by excluding server j and client c from the original one. In this way, we would
obtain a new instance where both the optimal cost and the cost of the greedy assignment are
decreased by 1 (and, hence, the competitiveness of the greedy assignment increases). So, let
j′ and j′′ be the servers to which server j is connected in the greedy graph through edges
corresponding to clients c1 and c2 that select servers j′ and j in the optimal assignment and
servers j and j′′ in the greedy assignment, respectively. We can assume that for each server
of type 1/1, its input client appears prior to its output client. Indeed, if c2 appears prior to
c1, we can introduce a new server j∗ and make client c2 originate from j∗ without changing
its timing. In this way the server of type 1/1 is replaced by two servers of types 1/0 and 0/1,
respectively, without changing the cost of the greedy and the optimal assignment.

Assume that server j′ is of type nj′/oj′ with nj′ > 0 and, furthermore, that at least one
of its input clients appears prior to c1. Then, we could remove server j and replace clients c1
and c2 by a new client c′ from server j′ to server j′′ having the same timing with c2 to obtain
another greedy graph in which both the optimal cost and the cost of the greedy assignment
are decreased by 1. So, no input client of j′ appears prior to c1. Then, we can introduce a
new server j∗ and make client c1 originate from j∗ instead of j′ (without changing its timing)
to obtain a new greedy graph. If oj′ > 1 in the original instance, then the optimal cost of
the new instance would decrease by at least 3 while the cost of the greedy assignment would
remain the same. If oj′ = 1, we obtain a new instance in which the greedy assignment has the
same competitiveness with the original instance and in which the input client of j originates
from a server of type 0/1.

Now, denote by F the set of servers of type 1/1 and by S the set of servers of type 0/1
which are connected through an edge to a server in F in the greedy graph. Also, for each
server j in F we denote by S(j) the server of S from which the client destined for j originates.
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By the greedy inequality,
∑

j n
2
j ≤

∑
j oj(2nj + 1), and since

∑
j nj =

∑
j oj , we have that

∑
j

n2j ≤
∑
j

(2njoj + oj) =
∑
j

(
2njoj +

27 + 7
√
21

30
oj −

7
√
21− 3

30
nj

)
=

∑
j ̸∈S∪F

g(nj , oj) +
∑
j∈F

(
g(nS(j), oS(j)) + g(nj , oj)

)
≤

∑
j ̸∈S∪F

h(nj , oj) +
∑
j∈F

(
h(nS(j), oS(j)) + h(nj , oj)

)
=

9−
√
21

10

∑
j

n2j +
9 +

√
21

6

∑
j

o2j

where the first equality follows since
∑

j nj =
∑

j oj , the second equality follows by the
definition of function g, the second inequality follows by Lemma 12, and the last equality
follows by the definition of function h. Hence, we obtain that the competitiveness is∑

j n
2
j∑

j o
2
j

≤ 2

3

√
21 + 1 ≈ 4.05505.

We also present an almost matching lower bound.

Theorem 14 For any ϵ > 0, greedy load balancing on identical servers has competitiveness
at least 4− ϵ.

Proof: We assume that there are m servers s1, s2, ..., sm, and k groups of clients g1, ..., gk,
where group gj has m/j

2 clients cji , 1 ≤ i ≤ m/j2. We assume that m is such that all groups

have integer size. Each client cji has s1, s2, ..., si as permissible servers. The clients appear
in non-increasing order according to index i (ties are broken arbitrarily), i.e., c1m, c

1
m−1, ...,

c1m/4+1, c
2
m/4, c

1
m/4, c

2
m/4−1, c

1
m/4−1, ..., c

2
m/9+1, c

1
m/9+1, c

3
m/9, c

2
m/9, c

1
m/9, ..., etc.

To upper bound the optimal cost opt, it suffices to consider the assignment where each
client cji chooses server si. We obtain that

opt ≤
k−1∑
i=1

i2(|gi| − |gi+1|) + k2|gk| = m+m

k−1∑
i=1

i2
(
1

i2
− 1

(i+ 1)2

)

= m

(
1 + 2

k−1∑
i=1

1/ (i+ 1)−
k−1∑
i=1

1/ (i+ 1)2
)

≤ m(2Hk + ζ1)

for some positive constant ζ1, where Hk is the k-th Harmonic number.
A greedy assignment is obtained by making each client select the server with the smallest

index among its permissible servers having the minimum number of clients. In the analysis
we make use of sets of clients called rows. A client belongs to row rowi if, when it selects
its server, it is the i-th client selecting that server. For example, clients c1m, c

1
m−1, ...c

1
m/2+1

select servers s1, ..., sm/2, respectively; each of them is the first client in its server, so they
belong to row1. Then, c1m/2, ..., c

1
m/4+1 select servers s1, ..., sm/4; they belong to row2. We
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can verify that the set of servers selected by clients in rowi+1 is subset of the set of servers
selected by clients in rowi for i = 1, ..., 2k− 3, that rows row2i−1 and row2i contain clients of
groups g1, ..., gi, and that |row2i| = m

(i+1)2
and |row2i−1| = m

i(i+1) for any i = 1, ..., k − 1. So,

for i = 1, ..., 2k− 3, the number of servers receiving exactly i clients in the greedy assignment
is |rowi| − |rowi+1|. We compute a lower bound on the cost gr of the greedy assignment by
considering only the servers with at most 2k − 4 clients. We have that

gr ≥
k−2∑
i=1

(
(2i− 1)2(|row2i−1| − |row2i|) + (2i)2(|row2i| − |row2i+1|)

)
= m

k−2∑
i=1

(
(2i− 1)2

(
1

i(i+ 1)
− 1

(i+ 1)2

)
+ (2i)2

(
1

(i+ 1)2
− 1

(i+ 1)(i+ 2)

))

≥ m

k−2∑
i=1

(
8

i+ 1
− 20

(i+ 1)2

)
≥ m(8Hk − ζ2)

for some positive constant ζ2. We conclude that for any ϵ > 0 and sufficiently large k and m,
the competitiveness of the greedy assignment is at least 4− ϵ.

An example of the construction used in the proof of Theorem 14 is presented in Figure 5.
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Figure 5: An example with 36 servers and 3 groups of clients of size 36, 9 and 4 respectively.
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1 and c11. A valid assignment of cost 83 and the greedy

assignment of cost 250 are presented at the top and bottom of the figure, respectively.
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5 Weighted clients

In this section, we consider selfish and greedy load balancing with weighted clients and servers

with linear latency functions. First, we show that the upper bound of 3+
√
5

2 ≈ 2.618 on the
price of anarchy of weighted congestion games [6, 10] is tight even for load balancing games.

Theorem 15 For any ϵ > 0, there exists a load balancing game with linear latency functions

and with weighted clients whose price of anarchy is at least 3+
√
5

2 − ϵ.

Proof: Denote by ϕ = 1+
√
5

2 the golden ratio. We construct a game with k + 1 servers so
that server j has latency function fj(x) =

1
ϕ2j
x for j = 0, ..., k − 1, and fk(x) =

1
ϕ2(k−1)x. For

j = 0, ..., k − 1 there is a client of weight ϕj having servers j and j + 1 as its strategies.
Consider the assignment where client j selects server j (j = 0, ..., k − 1). Since servers

k − 1 and k have the same latency functions, and server k is not used by any client, client
k − 1 has no incentive to deviate from server k − 1 to server k. Now, consider client j with
0 ≤ j ≤ k − 2. By the definition of the latency functions fj(x) and the weight of client j, we
have that client j experiences latency ϕ−j at server j. If client j deviates to server j+1, then
the load at server j + 1 would be ϕj+1 + ϕj = ϕj+2 and the latency experienced by client j
would be fj+1(ϕ

j+2) = ϕ−j again. So, for j = 0, . . . , k−2, client j has no incentive to deviate
either. We conclude that the assignment is a Nash equilibrium. Clearly, its social cost is k.

In order to upper bound the optimal cost, it suffices to consider the assignment where
client j selects server j+1 for j = 0, ..., k−1. Its cost is

∑k−1
j=0 ϕ

jfj+1(ϕ
j) =

∑k−2
j=0 ϕ

jfj+1(ϕ
j)+

ϕk−1fk(ϕ
k−1) = (k−1)/ϕ2+1. So, for any ϵ > 0 and sufficiently large k, the price of anarchy

is larger than ϕ2 − ϵ = 3+
√
5

2 − ϵ.

The proof of the above theorem makes use of different servers. In the case of identical
servers, we have a slightly weaker lower bound.

Theorem 16 For any ϵ > 0, there exists a load balancing game with weighted clients and
identical servers whose price of anarchy is at least 5/2− ϵ.

Proof: We construct a game graph G consisting of a complete ternary tree with k+1 levels
with a binary tree of k+1 levels hung at each leaf so that the root of the binary tree coincides
with the leaf of the ternary tree and an additional node hung at each leaf of the binary trees.
So, graph G has 2k+2 levels 0, ..., 2k+1, with 3i nodes at level i for i = 0, ..., k, 3k2i−k nodes
at levels k + 1, ..., 2k and 6k nodes at level 2k + 1. The servers corresponding to the nodes
have the same latency function f(x) = x and the clients corresponding to edges connecting
nodes of levels i and i+ 1 have weight wi = (2/3)i for i = 0, ..., k − 1, wi = (2/3)k−1(1/2)i−k

for i = k, ..., 2k − 1 and w2k = (1/3)k−1. The construction is depicted in Figure 6.
Consider the assignment where all clients select servers corresponding to the endpoint of

their corresponding edge which is closer to the root of the game graph. We will show that
this assignment is a Nash equilibrium. We have to consider five sets of clients corresponding
to: edges connecting nodes of levels i and i + 1 for i = 0, . . . , k − 2, edges connecting nodes
of levels k − 1 and k, edges connecting nodes of levels i and i+ 1 for i = k, . . . , 2k − 2, edges
connecting nodes of levels 2k− 1 and 2k and edges connecting nodes of levels 2k and 2k+ 1.
Consider a client ci corresponding to an edge connecting nodes vi and vi+1 of levels i and i+1
with 0 ≤ i ≤ k − 2. The server corresponding to node vi is used by three clients of weight
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Figure 6: The construction in the proof of Theorem 16.

(2/3)i each. Hence, the latency experienced by client ci is 3(2/3)
i. The server corresponding

to node vi+1 is used by three clients of weight (2/3)i+1 each. If client ci deviated to this server,
its latency would be (2/3)i + 3(2/3)i+1 = 3(2/3)i again. Hence, client ci has no incentive to
deviate. Now, consider a client ck−1 corresponding to an edge connecting nodes vk−1 and
vk of levels k − 1 and k. The server corresponding to node vk−1 is used by three clients
of weight (2/3)k−1 each. Hence, the latency experienced by client ck−1 is 3(2/3)k−1. The
server corresponding to node vk is used by two clients of weight (2/3)k−1 each. If client ck−1

deviated to this server, its latency would be 3(2/3)k−1 again. So, client ck−1 has no incentive
to deviate. Furthermore, consider a client ci corresponding to an edge connecting nodes vi
and vi+1 of levels i and i + 1 with k ≤ i ≤ 2k − 2. The server corresponding to node vi is
used by two clients of weight (2/3)k−1(1/2)i−k each. Hence, the latency experienced by client
ci is (2/3)k−1(1/2)i−k−1. The server corresponding to node vi+1 is used by two clients of
weight (2/3)k−1(1/2)i+1−k each. If client ci deviated to this server, its latency would also be
(2/3)k−1(1/2)i−k + (2/3)k−1(1/2)i−k = (2/3)k−1(1/2)i−k−1. Again, client ci has no incentive
to deviate. We continue by considering a client c2k−1 corresponding to an edge connecting
nodes v2k−1 and v2k of levels 2k − 1 and 2k. The server corresponding to node v2k−1 is used
by two clients of weight (1/3)k−1 each. Hence, the latency experienced by client c2k−1 is
2(1/3)k−1. The server corresponding to node v2k is used by one client of weight (1/3)k−1. If
client c2k−1 deviated to this server, its latency would be 2(1/3)k−1 again. We conclude that
client c2k−1 has no incentive to deviate. Finally, consider a client c2k corresponding to an edge
connecting nodes v2k and v2k+1 of levels 2k and 2k + 1. The server corresponding to node
v2k is used only by c2k and the latency is (1/3)k−1, while the server corresponding to node
v2k+1 is not used by any client. If client c2k deviated to this server, its latency would also be
(1/3)k−1. Again, client c2k has no incentive to deviate. We conclude that the assignment is
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a Nash equilibrium. Its cost is

cost =

k−1∑
i=0

(
(3wi)

23i
)
+

2k−1∑
i=k

(
(2wi)

23k2i−k
)
+ 6kw2

2k

= 9

k−1∑
i=0

(4/3)i + 12 (4/3)k−1
2k−1∑
i=k

(1/2)i−k + 6k (1/9)k−1

= 45(4/3)k − 9 (2/3)k − 27.

To compute an upper bound for the cost of the optimal assignment, it suffices to consider
the assignment where all clients select the servers corresponding to nodes which are further
from the root. We obtain that the cost opt of the optimal assignment is

opt ≤
k−1∑
i=0

(
w2
i 3
i+1
)
+

2k−1∑
i=k

(
w2
i 3
k2i+1−k

)
+ 6kw2

2k

= 3

k−1∑
i=0

(4/3)i + 6 (4/3)k−1
2k−1∑
i=k

(1/2)i−k + 6k (1/9)k−1

= 18 (4/3)k − 9.

Hence, for any ϵ > 0 and for sufficiently large k, the ratio of the social cost of the Nash
equilibrium to the social cost of the optimal assignment is larger than 5/2− ϵ.

For greedy load balancing, the next lower bound states that the upper bound of [5] for
a more general version of the problem (namely, online scheduling on unrelated machines) is
already tight for greedy load balancing of weighted clients on identical servers.

Theorem 17 For any ϵ > 0, there exists a load balancing instance with weighted clients and
identical servers for which greedy has competitiveness at least 3 + 2

√
2− ϵ.

Proof: We describe the recursive procedure LB which, on input a non-negative integer k,
computes a greedy graph Gk as follows: If k = 0, Gk consists of two servers connected through
a directed edge of weight 1 and timing information 1. Otherwise it executes LB on input
k − 1 twice to obtain two identical greedy graphs G1

k−1 and G2
k−1 and introduces a directed

edge of weight 2k/2 and timing information k+1 connecting the server of maximum in-degree
in G1

k−1 to the server of maximum in-degree in G2
k−1. Finally, the procedure LB outputs as

Gk the union of G1
k−1 and G2

k−1 together with the new edge (see Figure 7).

1 1 11

2
1/2

2

2
1/2

k−1
1G k−1

2G2
k/2

k edgesk edges
a) b)

1

c)

Figure 7: Constructions used in the proof of Theorem 17. a) Graph G0. b) The graph Gk
that is obtained using G1

k−1 and G2
k−1. c) An example (graph G2).
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Gk is a greedy graph, since at each time step the client that appears may choose between
two servers having the same load and the edge corresponding to the client has a timing
information that is greater than the timing information of all edges appearing in the two copies
G1
k−1 and G2

k−1. In the greedy assignment, each client is assigned to the server corresponding
to the node that is the head of the directed edge, while in order to bound the optimal cost it
suffices to consider the assignment where each client selects the server corresponding to the
tail of the directed edge.

Denote by gr(i) the cost of greedy assignment and by opt(i) the cost of the assignment
that upperbounds the optimal assignment in Gi. Clearly, opt(0) = gr(0) = 1. We obtain the
following two recursive relations:

opt (i) = 2 opt (i− 1) + 2i

gr (i) = 2 gr (i− 1) + 2i + 21+i/2
i−1∑
j=0

2j/2.

The first term in both relations follows since graph Gi is obtained by two copies G1
i−1 and

G2
i−1 of Gi−1. The second term of the first relation follows by observing that the servers

having the maximum in-degree in G1
i−1 and G2

i−1 have out-degree 0. So, the total weight
of the outgoing edges from the server of maximum in-degree in G1

i−1 is increased from 0 to

2i/2. The last two terms in the second relation follow by observing that the maximum in-
degree in the two copies of Gi−1 is i and the edges incident to the two nodes of maximum

in-degree have weights 1,
√
2, 2, ..., 2

i−1
2 . So, when we add the new edge to obtain Gi, the total

weight of the incoming edges into the server of maximum in-degree in G2
i−1 is increased from∑i−1

j=0 2
j/2 to

∑i
j=0 2

j/2 and the last two terms in the second relation represent the increase
in the (weighted) total latency.

Using these relations, we can inductively show that opt(k) = 2k (k + 1) and gr(k) =
2k
((
3 + 2

√
2
)
k − 5− 4

√
2
)
+ 21+k/2

(
3 + 2

√
2
)
. Hence, for any ϵ > 0 and for sufficiently

large k, the ratio of the cost of the greedy assignment to the optimal cost of Gk is at least
3 + 2

√
2− ϵ.

6 Open problems

Although most of our results are tight, there are still several interesting questions about load
balancing, especially when the latency functions are linear. An intriguing open problem is
to compute tight bounds for the price of stability of weighted load balancing games. It is
also interesting to close the gap between the lower bound of 5/2 on the price of anarchy for
selfish load balancing games of weighted clients on identical servers and the upper bound of
3+

√
5

2 which has been proved for congestion games [6]. We believe that our lower bound is
tight. We have considered pure Nash equilibria of load balancing games. Some of our results
hold or can be extended to hold for mixed and correlated equilibria [11] as well. There is
also a small gap between 4 and 4.05505 for the competitiveness of greedy load balancing on
identical servers. We believe that it can be further narrowed by extending our upper bound
technique. Finally, we remark that by slightly modifying the arguments in the proofs of
Theorems 14 and 17, it follows that the lower bounds hold for any deterministic online load
balancing algorithm; hence, the greedy algorithm is (almost) optimal in these particular cases.
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Investigating whether the use of randomization can lead to better competitiveness deserves
further attention. Recent results in this direction are presented in [8].
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