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Abstract. We study congestion games where players aim to access a
set of resources. Each player has a set of possible strategies and each
resource has a function associating the latency it incurs to the players
using it. Players are non–cooperative and each wishes to follow strategies
that minimize her own latency with no regard to the global optimum.
Previous work has studied the impact of this selfish behavior to system
performance. In this paper, we study the question of how much the per-
formance can be improved if players are forced to pay taxes for using
resources. Our objective is to extend the original game so that selfish be-
havior does not deteriorate performance. We consider atomic congestion
games with linear latency functions and present both negative and posi-
tive results. Our negative results show that optimal system performance
cannot be achieved even in very simple games. On the positive side, we
show that there are ways to assign taxes that can improve the perfor-
mance of linear congestion games by forcing players to follow strategies
where the total latency suffered is within a factor of 2 of the minimum
possible; this result is shown to be tight. Furthermore, even in cases
where in the absence of taxes the system behavior may be very poor,
we show that the total disutility of players (latency plus taxes) is not
much larger than the optimal total latency. Besides existential results,
we show how to compute taxes in time polynomial in the size of the game
by solving convex quadratic programs. Similar questions have been ex-
tensively studied in the model of non-atomic congestion games. To the
best of our knowledge, this is the first study of the efficiency of taxes in
atomic congestion games.

1 Introduction

We study the well-known congestion games introduced by Rosenthal [22]. In
a congestion game Π there is a set E of resources and a set N of n players.
Each player i has a positive unsplittable demand (or weight) wi and a set of
actions Pi ⊆ 2E (each action of player i is a set of resources). Each resource
e has a non-negative and non-decreasing latency function fe defined over non-
negative numbers. A resource e used by players with total demand w causes a
latency of fe(w) to each of them. Players are non–cooperative and each wishes
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to minimize her own cost (the cumulative latency experienced at the resource
used) with no regard to the global optimum. Network congestion games can be
used to model non-cooperative users in a communication network, where each
user i aims to communicate an amount of traffic wi through a least congested
single path connecting two particular nodes si and ti. In this setting, resources
correspond to network links and the actions of user i are all the paths connecting
node si to ti.

In general, players follow mixed strategies, i.e., player i selects a probabil-
ity distribution yi = {yip|p ∈ Pi} over her actions. Mixed strategies where
yip ∈ {0, 1} are called pure strategies. Each player is aware of the strategies
selected by all other players. We denote by yie the probability that player i
uses resource e. Clearly, yie =

∑
p∈Pi:e∈p yip. We use the term assignment to

refer to the vector of players’ strategies. In a pure assignment, all players follow
pure strategies. Given an assignment y, we denote by Lip(y;Π) the expected
latency of player i when selecting action p. Then the expected latency of player
i is Li(y;Π) =

∑
p∈Pi

yipLip(y;Π). An assignment y is a (mixed or pure) Nash
equilibrium if no player has an incentive to unilaterally change her strategy, i.e.,
Li(y;Π) ≤ Li(y−i, xi;Π) for any player i and for any probability distribution
xi over the actions in Pi, where y−i, xi denotes the assignment obtained by
y when player i deviates from yi to xi. The weighted total latency defined as
W (y;Π) =

∑
i wiLi(y;Π) has been used as a measure of performance of as-

signment y in game Π. Another natural measure of performance is the total
latency defined as T (y;Π) =

∑
i Li(y;Π). The price of anarchy [17, 21] (with

respect to the weighted total latency) of a game Π is the maximum of the ratio
of W (y;Π)/W (x;Π) where y is a Nash equilibrium and x is any assignment
for Π. Similarly, we may define the price of anarchy with respect to the total
latency. We use the terms unweighted and weighted for congestion games in or-
der to denote whether players have equal weights or not. Clearly, in unweighted
congestion games, the weighted total latency equals the total latency.

[9, 11–13, 16, 17, 19] study various games which can be thought of as special
cases of congestion games with respect to the complexity of computing equilibria
of best/worst social cost and the price of anarchy when the social cost is defined
as the maximum latency experienced by any player. These include linear con-
gestion games, i.e., games with latency functions of the form fe(w) = αew + be

with non-negative constants αe and be, and load balancing games, i.e., linear con-
gestion games where the actions of players are singleton sets. In load balancing
terminology, we refer to the resources of a load balancing game as machines. The
performance measure of the weighted total latency has been studied in [1, 5, 6,
18, 24]. Awerbuch et al. [1] and, independently, Christodoulou and Koutsoupias
[6] prove tight bounds on the price of anarchy of congestion games. Among other
results concerning polynomial latency functions, they show that the price of an-
archy of pure Nash equilibria in unweighted linear congestion games is 5/2 while
for mixed Nash equilibria or pure Nash equilibria of weighted players it is 2.618.
Bounds on the price of anarchy of pure Nash equilibria were recently proved to
be tight even for load balancing games [5] while better bounds exist only for



load balancing games on machines with identical latency functions [5, 24]. The
authors of [18] study symmetric load balancing games where all machines are
actions for all players.

In order to mitigate the impact of selfish behavior on system performance, we
introduce taxes to the resources. We use a tax function δ : E×Q+ → Q+ that as-
signs a tax δe(w) to each player of weight w that wishes to use e. Assuming selfish
behavior of the players, we obtain a new extended game (Π, δ) where each player
now aims to minimize the expected latency she suffers plus the taxes she pays.
The tax paid by player i when selecting action p is ∆ip(Π, δ) =

∑
e∈p δe(wi).

Given an assignment y, the expected tax paid by player i is ∆i(y;Π, δ) =∑
p∈Pi

yip∆ip(Π, δ). Again, y is a Nash equilibrium for the extended game if
no player has an incentive to unilaterally change her strategy, i.e., Li(y;Π) +
∆i(y;Π, δ) ≤ Li(y−i, xi;Π) + ∆i(y−i, xi;Π, δ). We use two measures of per-
formance in the extended game (Π, δ) extending the measures of total latency
and weighted total latency in congestion games without taxes. The total cost of
an assignment y is T (y;Π, δ) =

∑
i (Li(y;Π) + ∆i(y;Π, δ)), while the weighted

total cost of an assignment y is W (y;Π, δ) =
∑

i wi (Li(y;Π) + ∆i(y;Π, δ)).
Motivated by [8], we distinguish between refundable and non-refundable

taxes. In the former case, we assume that the collected taxes can be feasibly
returned (directly or indirectly) to the players (e.g., as a “lump-sum refund”)
and therefore do not contribute to the overall system disutility. However, refund-
ing the collected taxes could be logistically or economically infeasible; the latter
case models this scenario.

Definition 1. A function δ : E × Q+ → Q+ is a ρ-mixed-efficient refundable
tax for the congestion game Π with respect to the total latency (resp. weighted
total latency) if T (y;Π, 0) ≤ ρ ·T (x;Π, 0) (resp. W (y;Π, 0) ≤ ρ ·W (x;Π, 0)) for
any mixed Nash equilibrium y in the extended game (Π, δ) and any assignment
x. A function δ : E × Q+ → Q+ is a ρ-mixed-efficient non-refundable tax for
the congestion game Π with respect to the total cost (resp. weighted total cost)
if T (y;Π, δ) ≤ ρ · T (x;Π, 0) (resp. W (y;Π, δ) ≤ ρ · W (x;Π, 0)) for any mixed
Nash equilibrium y in the extended game (Π, δ) and any assignment x.

Similarly, we define ρ-pure-efficient refundable and non-refundable taxes by
constraining y to be a pure Nash equilibrium. We use the terms pure-optimal
and mixed-optimal to refer to 1-pure-efficient and 1-mixed-efficient taxes, re-
spectively.

The bounds on the price of anarchy of congestion games with respect to the
weighted total latency can be also expressed using the above definition. Any
tight bound of ρ on the price of anarchy over mixed (resp. pure) Nash equilibria
implies that the trivial tax function that assigns no tax to the resources is ρ-
mixed-efficient (resp. ρ-pure-efficient) and no better in general. Another issue
which is related to our study is that of network design for selfish players (or
resource removal). In this setting, the question is whether the performance of
the game can be improved by removing some of the resources; this is equivalent
to a tax function which assigns to each resource a tax of either 0 or ∞ for all
players. [3] proves that deciding whether resource removal for a weighted linear



congestion game Π can yield price of anarchy better than 2.618 is NP-complete.
Furthermore, there are games where this is not feasible at all, implying that
taxes of this type are not better than 2.618-pure-efficient.

The problem of computing optimal taxes has been extensively considered in
the model of non-atomic congestion games [23]. The main difference of these
games from the atomic ones we study in this paper is that each player controls
an infinitesimally small demand related to the total demand on the system, thus,
the actions of a single player have negligible effect on the system performance.
This difference is substantial enough so that the related results (see [8, 10, 15]
and the references therein) do not carry over to our model. In fact, even nearly-
optimal taxes do not always exist in our model.

In this paper we show the following results. We first study symmetric load
balancing games, where we show how to compute pure-optimal taxes for un-
weighted players. We present lower bounds stating that optimal taxes may not be
feasible even in very simple games. In particular, there are unweighted load bal-
ancing games on identical machines that do not admit (11/10− ε)-pure-efficient
taxes, weighted load balancing games on identical machines that do not admit
(9/8 − ε)-pure-efficient taxes (note that this bound matches the upper bound
on the price of anarchy for these games [18]), and unweighted load balancing
games on identical machines that do not admit (2 − ε)-mixed-efficient taxes.
Even simple non-load-balancing congestion games with unweighted players may
not admit (6/5−ε)-pure-efficient taxes either. For unweighted congestion games,
we present a universal tax function by showing that, for a particular value of
the parameter τ which is shown to be best possible, the function δe = αeτ is
(1 + 2/

√
3)-pure-efficient, thus beating the lower bound of 5/2 on the price of

anarchy of pure Nash equilibria. This is an interesting result since the tax func-
tion does not depend at all on the game played on the resources; it depends
only on the resources themselves. Next we exploit solutions of convex quadratic
programs to compute 2-mixed-efficient taxes for congestion games with respect
to both the weighted total latency and the total latency. Note that the first re-
sult beats the lower bound of 2.618 on the price of anarchy while when the total
latency is of concern, the price of anarchy is unbounded. Both bounds are tight.

We also consider the case of non-refundable taxes. When considering the
weighted total cost, it seems that there is not much room for beating the lower
bounds on the price of anarchy. However, we show that weighted load balanc-
ing games on identical machines admit (1 +

√
2)-mixed-efficient non-refundable

taxes. This is an existential result since the tax defined uses an optimal assign-
ment (i.e., the pure assignment minimizing the weighted total latency). It can
be made algorithmic and yield a marginally worse 1 +

√
2 + ε bound when the

number of machines is constant exploiting a PTAS from [4] for approximating
the optimal assignment. This result should be compared to the lower bound of
5/2 on the price of anarchy over pure Nash equilibria proved recently in [5].
Recall that the price of anarchy of weighted congestion games is unbounded
when the total latency is of concern. Somehow surprisingly, we show that any
congestion game admits 4-mixed-efficient non-refundable taxes with respect to



the total latency. Furthermore, 6-mixed-efficient non-refundable taxes for these
games can be computed in polynomial time. Here, we exploit semi-pure assign-
ments with particular properties which are obtained by rounding the fractional
solutions of a convex quadratic program to half-integral ones. The use of convex
quadratic programming is motivated by [2] where integral solutions of such pro-
grams have been used to approximate scheduling on unrelated machines. How-
ever, we rarely need integrality; even fractional or half-integral solutions suffice
in order to compute taxes. For the analysis of the upper bounds we develop and
use two inequalities that characterize Nash equilibria of congestion games with
taxes.

Some details related to the extended game as well as convex quadratic pro-
grams are presented in Section 2. The results on refundable and non-refundable
taxes are presented in Sections 3 and 4, respectively. We conclude with open
problems in Section 5. Due to lack of space, many proofs have been omitted
from this extended abstract.

2 Preliminaries

Properties of the extended game. For a weighted congestion game Π and a
tax function δ, the extended game (Π, δ) can be seen as a congestion game
with player-specific latency functions [14, 20]. Although this is not always true
for such games, we can show that the extended game always has a pure Nash
equilibrium and hence pure-efficient taxes are well defined. In order to prove this
fact, we define a potential function over pure assignments of the extended game
by slightly modifying the potential function of weighted linear congestion games
in [12].

In our proofs, we use the equivalent expressions of the (weighted) total cost
of assignments in the extended game given in the next lemma. The proof easily
follows by the definitions.

Lemma 1. For each assignment y in a weighted congestion game Π with linear
latency functions of the form fe(w) = αe(w) + be and a tax function δ, the
following equations hold

W (y;Π, δ) =
∑

e

αe

(∑
i

yiewi

)2

+
∑

i

yie (1− yie) w2
i


+be

∑
i

yiewi +
∑

i

yiewiδe(wi)

)

T (y;Π, δ) =
∑

e

(
αe

((∑
i

yie

)(∑
i

yiewi

)
+
∑

i

yie (1− yie) wi

)

+be

∑
i

yie +
∑

i

yieδe(wi)

)
where wi denotes the weight of player i.



In our analysis, we use the two inequalities stated in the following, which
characterize Nash equilibria of the extended game. Although complicated at first
glance, when examined carefully (and together with the expressions in Lemma
1), these inequalities provide insight about what efficient taxes should look like.

Lemma 2. Given a weighted congestion game Π and a tax function δ, consider
a mixed Nash equilibrium y and any assignment x of (Π, δ). Then

W (y;Π, δ) ≤
∑

e

(
αe

((∑
i

xiewi

)(∑
i

yiewi

)
+
∑

i

xie (1− yie) w2
i

)

+be

∑
i

xiewi +
∑

i

xiewiδe(wi)

)
(1)

T (y;Π, δ) ≤
∑

e

(
αe

((∑
i

xie

)(∑
i

yiewi

)
+
∑

i

xie (1− yie)wi

)

+be

∑
i

xie +
∑

i

xieδe(wi)

)
(2)

Computation of taxes. In most cases, in order to compute taxes, we wish to
compute assignments that satisfy some property; these correspond to solutions
of programs of the form:

(QP1) minimize g(x)

subject to xie ≥
∑

p∈Pi:e∈p

xip, i ∈ N, e ∈ E

∑
p∈Pi

xip ≥ 1, i ∈ N

xie, xip ≥ 0, i ∈ N, e ∈ E, p ∈ Pi

where g(x) is a convex quadratic function. Convex quadratic programs can be
solved within any additive error ε in time polynomial in the size of the program
and 1/ε. So, programs like (QP1) are solvable in polynomial time when the total
number of actions is polynomial. In many interesting cases like in network con-
gestion games, actions may be exponentially many. However, we can overcome
this difficulty for these games and efficiently solve (QP1) in time polynomial in
the number of resources and the number of players by considering it as a flow
problem. Details will appear in the final version of the paper.

One would hope to solve (QP1) with the objective functions W (x;Π, 0) or
T (x;Π, 0) and obtain optimal assignments, i.e., mixed assignments of minimum
(weighted) total latency. Unfortunately, these functions are non-convex and, fur-
thermore, they are always optimized at pure assignments. This is not difficult to
see since the (weighted) total latency of a mixed assignment can be seen as the
expectation of the (weighted) total latency of the pure assignments implied by
the corresponding probability distributions. Hence, optimizing these functions
would also contradict hardness results in [4].



3 Refundable taxes

We start with an encouraging result concerning pure-optimal refundable taxes.

Theorem 1. Pure-optimal refundable taxes in unweighted symmetric load bal-
ancing games always exist and are computable in polynomial time.

Proof. (Sketch) Consider an unweighted symmetric load balancing game Π with
latency functions fe(w) = αew + be. Let e′ be the machine with the smallest
ae among all machines e with non-zero αe. Let ε = αe′/2. Also, let oe be the
number of players that select machine e in an optimal assignment. Let e∗ be the
machine with maximum αeoe + be among all machines. For each machine e with
αe > 0, we define δe = αe∗oe∗ + be∗ − αeoe − be. Let e0 be the machine with
minimum be among all machines e with αe = 0. We define δe0 = αe∗oe∗ + be∗ + ε
and δe = ∞ for all other machines e with αe = 0. We can show that the function
δ is a pure-optimal refundable tax for game Π.

Polynomial time computability follows since optimal assignments are easy to
compute through a reduction to a minimum cost flow problem. We construct
a network F as follows. For each resource e of the game, F has two nodes ue

and ve connected through n parallel directed edges gi
e of unit capacity and cost

αe (2i− 1) + be, for i = {1, · · · , n}. s is connected through directed edges to
nodes ue and all nodes ve are connected through directed edges to t. All edges
adjacent to either s or t have zero cost and capacity n. Then, it easily follows
that an optimal assignment for the original game can be obtained by computing
a minimum cost flow of size n from s to t. ut

Unfortunately, the next theorem rules out the possibility of obtaining optimal
taxes even in simple congestion games.

Theorem 2.
a) There exists a weighted symmetric load balancing game on identical machines
that does not admit ρ–pure–efficient refundable taxes with respect to the weighted
total latency for any ρ < 9/8.
b) For any ε > 0, there exists an unweighted symmetric load balancing game on
identical machines that does not admit (2− ε)–mixed–efficient refundable taxes.
c) There exists an unweighted load balancing game on identical machines that
does not admit ρ–pure–efficient refundable taxes for any ρ < 11/10.
d) There exists an unweighted congestion game that does not admit ρ–pure–
efficient refundable taxes for any ρ < 6/5.

Next, we present a universal tax function for unweighted congestion games
in the sense that it does not depend at all on the congestion game; it depends
only on the resources themselves.

Theorem 3. Let τ = 3
2

√
3 − 2. For any unweighted congestion game Π with

linear latency functions fe(w) = αew+be, the function δe = αeτ is a
(
1 + 2√

3

)
–

pure–efficient refundable tax for Π.



Our next result indicates that the selection of parameter τ in Theorem 3 is
the best possible.

Theorem 4. For any τ ≥ 0 and ε > 0, there exists an unweighted load balanc-
ing game for which the function δe = αeτ is not

(
1 + 2√

3
− ε
)
–pure–efficient

refundable tax.

In the rest of this section we construct 2-mixed-efficient refundable taxes.
Given a congestion game, we use a particular assignment in order to compute
the tax function. In the case of the weighted total latency, we use the solution
of the quadratic program (QP1) with the convex quadratic objective function

g1(x) =
∑

e

αe

(∑
i

xiewi

)2

+
∑

i

xiw
2
i

+ be

∑
i

xiewi


Lemma 3. Consider a weighted congestion game Π and let x be an assignment
which is the optimal solution of (QP1) with the objective function g1. Then, the
function δe(w) = αe

∑
i xiewi is a 2–mixed–efficient refundable tax for Π with

respect to the weighted total latency.

Proof. We will apply inequality (1) for a mixed Nash equilibrium y of the ex-
tended game (Π, δ) and assignment x. The last term in the sum at the definition
of W (y;Π, δ) in Lemma 1 becomes αe (

∑
i xiewi) (

∑
i yiewi) and cancels with

the first term in the sum of the right part of (1), while the last term in the sum
at the right part of (1) becomes αe (

∑
i xiewi)

2. So, (1) yields

W (y;Π, 0) ≤
∑

e

αe

∑
i

xie (1− yie) w2
i +

∑
e

αe

(∑
i

xiewi

)2

+
∑

e

be

∑
i

xiewi

≤
∑

e

αe

∑
i

xiew
2
i +

∑
e

αe

(∑
i

xiewi

)2

+
∑

e

be

∑
i

xiewi

≤
∑

e

αe

∑
i

x∗iew
2
i +

∑
e

αe

(∑
i

x∗iewi

)2

+
∑

e

be

∑
i

x∗iewi

≤ 2

∑
e

αe

(∑
i

x∗iewi

)2

+
∑

e

be

∑
i

x∗iewi


= 2 ·W (x∗;Π, 0)

where x∗ denotes the pure assignment minimizing the weighted total latency.
The last inequality follows due to integrality of x∗. ut

In the case of total latency, we use the solution of the quadratic program
(QP1) with the convex quadratic objective function

g2(x) =
∑

e

(
αe

((∑
i

xie

)(∑
i

xiewi

)
+
∑

i

xiwi

)
+ be

∑
i

xie

)



We can show the following result; the proof is similar to the proof of Lemma 3.

Lemma 4. Consider a weighted congestion game Π and let x be an assignment
which is the optimal solution of (QP1) with the objective function g2. Then, the
function δe(w) = αjw

∑
i xie is a 2–mixed–efficient refundable tax for Π with

respect to the total latency.

In order to make the above two results constructive, there is a subtle point
concerning the validity of the third inequality in the proofs of Lemmas 3 and 4,
since, in practice, the solution of the quadratic program has not perfect accuracy.
As in [2], we can guarantee the validity of this inequality by making the accuracy
parameter sufficiently small. As a corollary we obtain the following statement.

Theorem 5. There exist polynomial time algorithms for computing 2-mixed-
efficient refundable taxes with respect to the total latency and the weighted total
latency in weighted congestion games.

4 Non-refundable taxes

In this section, we consider non-refundable taxes; we first focus on efficient non–
refundable taxes with respect to the weighted total cost. A recent lower bound
of 5/2 on the price of anarchy of weighted load balancing games on identical
machines [5] implies that the trivial tax function is not (5/2− ε)-pure-efficient
for any ε > 0. This lower bound can be modified so that resource removal
cannot improve the price of anarchy either. We show that better non-refundable
taxes do exist. Here, the corresponding tax function uses an optimal assignment.
Unfortunately, even computing an approximate such assignment is hard [4]. We
can use a PTAS from [4] to show a slightly worse constructive result when the
number of machines is constant. We note that the lower bound in [5] uses a
constant number of machines.

Theorem 6. Any weighted load balancing game on identical machines admits(
1 +

√
2
)
–mixed–efficient non–refundable taxes with respect to the weighted total

cost.

The proof of Theorem 6 uses the tax function

δe(w) =
{∑

i xiewi − w, if
∑

i xiewi ≥ w;
0, otherwise

for a load balancing game Π with latency function of the form f(w) = x + b,
where x denotes a pure assignment for Π that minimizes the weighted total
latency.

In order to compute efficient non-refundable taxes with respect to the total
cost, we use solutions to the quadratic program (QP1) with the objective function

g3(x) =
∑

e

(
αe

(∑
i

xie

)(∑
i

xiewi

)
+ be

∑
i

xie

)



Ideally, we would like to use optimal pure assignments, i.e., an optimal integral
solution x∗ of (QP1) with the objective function g3. However, even approximate
semi-pure assignments can be used to obtain efficient non-refundable taxes.

Lemma 5. Consider a weighted congestion game Π and let x be a semi–pure
assignment with g3(x) ≤ ρ · g3(x∗). Then, the function

δe(w) =
{

αe (2
∑

i xie − 1) w, if 2
∑

i xie ≥ 1
0, otherwise

is a 4ρ–mixed–efficient non–refundable tax for Π with respect to the total cost.

Hence, by applying Lemma 5 for ρ = 1 we obtain the following existential
result.

Corollary 1. Any weighted congestion game admits 4–mixed–efficient non–refundable
taxes with respect to the total cost.

Next, we show how to compute efficient semi–pure assignments to obtain a
slightly worse constructive result. We first solve the quadratic program (QP1)
with the convex quadratic objective function

g4(x) =
∑

e

(
αe

(
1
2

+
∑

i

xie

)(∑
i

xiewi

)
+ be

∑
i

xie

)

Then, we obtain a half–integral solution x̂ by applying randomized rounding to
the solution x as follows. For each i, we use a die with one face for each p ∈ Pi

such that xip > 0 and a probability of xip associated with the face corresponding
to p. We cast the die twice and let p1 and p2 be the actions corresponding to the
outcomes. If p1 = p2, we set x̂ip1 = 1, while if p1 6= p2, we set x̂ip1 = x̂ip2 = 1

2 ;
we also set x̂ip = 0 for each p ∈ Pi \ {p1, p2}. We also set x̂ie =

∑
p∈Pi

x̂ip.

Lemma 6. E [g3(x̂)] ≤ 3
2g3(x∗)

By using standard probabilistic arguments, we can guarantee that g3(x̂) ≤(
3
2 + ε

)
g3(x∗) for any ε > 0 by executing the randomized rounding procedure

polynomially many times. Hence, Lemma 5 yields the following.

Theorem 7. There exists a polynomial time algorithm for computing (6 + ε)-
mixed-efficient non-refundable taxes with respect to the total cost in weighted
congestion games.

5 Open problems

Our work reveals several interesting open questions. Tightening the bounds for
pure-efficient refundable taxes is a challenging task. In particular, extending the
results of Theorem 1 and determining the subclass of unweighted congestion
games that admit pure-optimal taxes is one of them. The candidate class is



that of the unweighted symmetric congestion games which include network con-
gestion games with a single source and a single destination. The existence of
efficient non-trivial universal tax functions for weighted congestion games is also
open. We conjecture that such taxes do not exist. For non-refundable taxes, the
question whether efficient non-trivial taxes for congestion games with respect to
the weighted total cost exist is still open. Special cases as simple as unweighted
symmetric load balancing are interesting as well. Here, besides the trivial upper
bound, we have a preliminary statement that better than 27/23-pure-efficient
non-refundable taxes do not exist. We point out that symmetry has not helped
so far, since all our lower bounds are in a sense symmetric constructions. The
impact of symmetry of games to the existence of efficient taxes needs further
investigation. Complexity issues are also very interesting, i.e., given a conges-
tion game Π, how easy is to compute a ρ-mixed/pure-efficient (non)-refundable
tax for this particular game? Our results can be thought of as approximation
algorithms for this optimization problem. Although we have made no attempt
to formally prove this statement, we strongly believe that this problem is com-
putationally hard for some constant ρ > 1. Another open problem is to prove
bounds on the cost of taxes that force at least one nearly-optimal assignment
to become an equilibrium. This is related to the study of the price of stability
[5, 7]. Also, having players with different sensitivities to taxes as in the model
of [8, 10, 15] is another interesting extension of our model. Finally, it is worth
investigating taxes for congestion games with more general (e.g., polynomial)
latency functions.
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