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Abstract. We study the impact of fairness on the efficiency of allo-
cations. We consider three different notions of fairness, namely propor-
tionality, envy-freeness, and equitability for allocations of divisible and
indivisible goods and chores. We present a series of results on the price of
fairness under the three different notions that quantify the efficiency loss
in fair allocations compared to optimal ones. Most of our bounds are ei-
ther exact or tight within constant factors. Our study is of an optimistic
nature and aims to identify the potential of fairness in allocations.

1 Introduction

Fair division (or fair allocation) dates back to the ancient times and has found
applications such as border settlement in international disputes, greenhouse gas
emissions reduction, allocation of mineral riches in the ocean bed, inheritance,
divorces, etc. In the era of the Internet, it appears regularly in distributed re-
source allocation and cost sharing in communication networks.

We consider allocation problems in which a set of goods or chores has to
be allocated among several players. Fairness is an apparent desirable property
in these situations and means that each player gets a fair share. Depending on
what the term “fair share” means, different notions of fairness can be defined.
An orthogonal issue is efficiency that refers to the total happiness of the players.
An important notion that captures the minimum efficiency requirement from an
allocation is that of Pareto-efficiency; an allocation is Pareto-efficient if there is
no other allocation that is strictly better for at least one player and is at least
as good for all the others.
Model and problem statement. We consider two different allocation scenaria,
depending on whether the items to be allocated are goods or chores. In both
cases, we distinguish between divisible and indivisible items.

The problem of allocating divisible goods is better known as cake-cutting.
In instances of cake-cutting, the term cake is used as a synonym of the whole
set of goods to be allocated. Each player has a utility function on each piece
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of the cake corresponding to the happiness of the player if she is allocated the
particular piece; this function is non-negative and additive. We assume that the
utility of each player for the whole cake is 1. Divisibility means that the cake can
be cut in arbitrarily small pieces which can then be allocated to the players. In
instances with indivisible goods, the utility function of a player is defined over
sets of items; again, utilities are non-negative and additive and the utility of each
player for the whole set of items is 1. Each item cannot be cut in pieces and has
to be allocated as a whole to some player. Given an allocation, the utility of a
player is simply the sum of her utilities over the (pieces of) items she receives.
An allocation with n players is proportional if the utility of each player is at least
1/n. It is envy-free if the utility of a player is not smaller than the utility she
would have when exchanging the (pieces of) items she gets with the items of any
other player. It is equitable if the utilities of all players are equal. An allocation
is optimal if it maximizes the total utility of all players, i.e., each (piece of) item
is allocated to the player that values it the most (ties are broken arbitrarily).

In instances with divisible chores, each player has a disutility function for each
piece of the cake which denotes the regret of the player when she is allocated the
particular piece. Again, the disutility functions are non-negative and additive
and the disutility of a player for the whole cake is 1. The case of indivisible
chores is defined accordingly; indivisibility implies that an item cannot be cut
into pieces and has to be allocated as a whole to some player. Given an allocation,
the disutility of a player is simply the sum of her disutilities over the (pieces of)
items she receives. An allocation with n players is proportional if the disutility
of each player is at most 1/n. It is envy-free if the disutility of a player is not
larger than the disutility she would have when exchanging the (pieces of) items
she gets with the items of any other player. It is equitable if the disutilities of
all players are equal. An allocation is optimal if it minimizes the total disutility
of all players, i.e., each (piece of) item is allocated to the player that values it
the least (ties are broken arbitrarily).

Note that envy-freeness implies proportionality. Furthermore, instances with
divisible items always have proportional, envy-free, or equitable allocations. It
is not hard to see that this is not always the case for instances with indivisible
items. Furthermore, there are instances in which no optimal allocation is fair.

Models similar to ours have been considered in the literature; the focus
has been on the design of protocols for achieving proportionality [3, 4, 8], envy-
freeness [3, 6, 7], and equitability [3] or on the design of approximation algo-
rithms in settings where fulfilling the fairness objective exactly is impossible [2,
5]. However, the related literature seems to have neglected the issue of efficiency.
Although several attempts have been made to characterize fair division proto-
cols in terms of Pareto-efficiency [3], the corresponding results are almost always
negative. Most of the existing protocols do not even provide Pareto-efficient so-
lutions and this seems to be due to the limited amount of information they use
for the utility functions of the players. Recall that in the case of divisible goods
and chores, complete information about the utility or disutility functions of the



players may not be compactly representable. Furthermore, Pareto-efficiency is
rather unsatisfactory, since it may imply that an allocation is far from optimal.

Instead, in the current paper we are interested in quantifying the decrease of
efficiency due to fairness (price of fairness). Our study has an optimistic nature
and aims to identify the potential of fairness in allocations. We believe that such
a study is well-motivated since the knowledge of tight bounds on the price of
fairness may detect whether a fair allocation can be improved. In many settings,
complete information about the utility functions of the players is available (e.g.,
in a divorce) and computing an efficient and fair allocation may not be infeasible.
Fair allocations can be thought of as counterparts of equilibria in strategic games;
hence, our work is similar in spirit to the line of research that studies the price
of stability in games [1].

In order to capture the price of fairness, we define the price of proportion-
ality, envy-freeness, and equitability. Given an instance I for the allocation of
goods, its price of proportionality (resp., envy-freeness, resp., equitability) is de-
fined as the ratio of the total utility of the players in the optimal allocation for
I over the total utility of the players in the best proportional (resp., envy-free,
resp., equitable) allocation for I. Similarly, if I is an instance for the allocation
of chores, its price of proportionality (resp., envy-freeness, resp., equitability) is
defined as the ratio of the total disutility of the players in the best proportional
(resp., envy-free, resp., equitable) allocation for I over the total disutility of the
players in the optimal allocation for I. The price of proportionality (resp., envy-
freeness, resp., equitability) of a class I of instances is then the maximum price
of proportionality (resp., envy-freeness, resp., equitability) over all instances of
I. The classes of instances considered in this paper are defined by the number
of players, the type of items (goods or chores), and their divisibility property
(divisible or indivisible). We remark that, in order for the price of proportional-
ity, envy-freeness, and equitability to be well-defined, in the case of indivisible
items, we assume that the class of instances contains only those ones for which
proportional, envy-free, and equitable allocations, respectively, do exist.

Overview of results. In this paper we provide upper and lower bounds on the price
of proportionality, envy-freeness, and equitability in fair division with divisible
and indivisible goods and chores. Our work reveals an almost complete picture.
In all subcases except the price of envy-freeness with divisible goods and chores,
our bounds are either exact or tight within a small constant factor.

Table 1 summarizes our results. For divisible goods, the price of proportional-
ity is very close to 1 (i.e., 8−4

√
3 ≈ 1.072) for two players and Θ(

√
n) in general.

The price of equitability is slightly worse for two players (i.e., 9/8) and Θ(n) in
general. Our lower bound for the price of proportionality implies the same lower
bound for the price of envy-freeness; while a very simple upper bound of n−1/2
completes the picture for divisible goods. For indivisible goods, we present an
exact bound of n−1+1/n on the price of proportionality while we show that the
price of envy-freeness is Θ(n) in this case. Although our upper bounds follow by
very simple arguments, the lower bounds use quite involved constructions. The
price of equitability is proven to be finite only for the case of two players. These



results are presented in Section 2. For divisible chores, the price of proportion-
ality is 9/8 for two players and Θ(n) in general while the price of equitability is
exactly n. For indivisible chores, we present an exact bound of n on the price of
proportionality while both the price of envy-freeness and the price of equitability
are infinite. These last results imply that in the case of indivisible chores, envy-
freeness and equitability are usually incompatible with efficiency. These results
are presented in Section 3. Due to lack of space, many proofs have been omitted.

LB UB n = 2 LB UB n = 2

Price of Divisible goods Indivisible goods

Proportionality Ω(
√

n) O(
√

n) n− 1 + 1/n n− 1 + 1/n

Envy-freeness Ω(
√

n) n− 1/2
8− 4

√
3 3n+7

9
−O(1/n) n− 1/2

3/2

Equitability (n+1)2

4n
n 9/8 ∞ ∞ 2

Divisible chores Indivisible chores

Proportionality (n+1)2

4n
n n n

Envy-freeness (n+1)2

4n
∞ 9/8 ∞ ∞ 2

Equitability n n 2 ∞ ∞ ∞
Table 1. Summary of our results (lower and upper bounds).

2 Fair division with goods

In this section, we focus on fair division and goods. We begin by presenting our
results for the case of divisible goods.

Theorem 1. For n players and divisible goods, the price of proportionality is
Θ(
√

n).

Proof. Consider an instance with n players and let O denote the optimal alloca-
tion and OPT be the total utility of O. We partition the set of players into two
sets, namely L and S, so that if a player obtains utility at least 1/

√
n in O, then

she belongs to L, otherwise she belongs to S. Clearly, OPT < |L|+ |S|/√n. We
now describe how to obtain a proportional allocation A; we distinguish between
two cases depending on |L|.

We first consider the case |L| ≥ √
n; hence, |S| ≤ n − √

n. Then, for any
negligibly small item that is allocated to a player i ∈ L in O, we allocate to i a
fraction of

√
n/n of the item, while we allocate to each player i ∈ S a fraction

of n−√n
n|S| ≥ 1/n. Furthermore, for any negligibly small item that is allocated to

a player i ∈ S in O, we allocate to each player i ∈ S a fraction of 1/|S| > 1/n.
In this way, all players obtain a utility of at least 1/n, while all items are fully
allocated; hence, A is proportional. For every player i ∈ L, her utility in A is
exactly 1/

√
n times her utility in O, while every player i ∈ S obtained a utility



strictly less than 1/
√

n in O and obtains utility at least 1/n in A. So, we conclude
that the total utility in A is at least 1/

√
n times the optimal total utility.

Otherwise, let |L| < √
n. Since OPT < |L|+ |S|/√n, we obtain that OPT <

2
√

n−1, while the total utility of any proportional allocation is at least 1. Hence,
in both cases we obtain that the price of proportionality is O(

√
n). We continue

by presenting a lower bound of Ω(
√

n).
Consider the following instance with n players and m < n items. Player i,

for i = 1, ..., m, has utility 1 for item i and 0 for any other item, while player i,
for i = m+1, ..., n, has utility 1/m for any item. In the optimal allocation, item
i, for i = 1, ..., m, is allocated to player i, and the total utility is m. Consider
any proportional allocation and let x be the sum of the fractions of the items
that are allocated to the last n−m players. The total utility of these players is
x/m. Clearly, x ≥ m(n −m)/n, otherwise some of them would obtain a utility
less than 1/n and the allocation would not be proportional. The first m players
are allocated the remaining fraction of m− x of the items and their total utility
is at most m− x. The total utility of all players is m− x + x/m ≤ m2+n−m

n . We
conclude that the price of proportionality is at least mn

m2+n−m which becomes
more than

√
n/2 by setting n = m2. ut

For the price of equitability, we can show that when the number of players
is large, equitability may provably lead to less efficient allocations.

Theorem 2. For n players and divisible goods, the price of equitability is at
most n and at least (n+1)2

4n .

Since every envy-free allocation is also proportional, the lower bound on the
price of proportionality also holds for envy-freeness. Interestingly, in the case of
two players, there always exist almost optimal proportional or equitable alloca-
tions. Recall that in this case proportionality and envy-freeness are equivalent.

Theorem 3. For two players and divisible goods, the price of proportionality
(or envy-freeness) is 8− 4

√
3 ≈ 1.072, and the price of equitability is 9/8.

Proof. We only present the result for proportionality here. Consider an optimal
allocation O and a proportional allocation E that maximizes the total utility of
the players. We partition the cake into four parts A, B, C, and D: A is the part
of the cake which is allocated to player 1 in both O and E , B is the part which is
allocated to player 2 in both O and E , C is the part which is allocated to player
1 in O and to player 2 in E , and D is the part of the cake which is allocated to
player 1 in E and to player 2 in O. In the following, we use the notation ui(X)
to denote the utility of player i for part X of the cake.

Since O maximizes the total utility, we have u1(A) ≥ u2(A), u1(B) ≤ u2(B),
u1(C) ≥ u2(C), and u1(D) ≤ u2(D). First observe that if u1(C) = u2(C) and
u1(D) = u2(D), then E has the same total utility with O. So, in the following
we assume that this is not the case.

We consider the case u1(C) > u2(C); the other case is symmetric. In this
case, we also have that u1(D) = u2(D) = 0. Assume otherwise that u2(D) > 0.



Then, there must be a subpart X of C for which player 1 has utility x and player
2 has utility at most x·u2(C)/u1(C) and a subpart Y of D for which player 2 has
utility x and player 1 has utility at least x · u1(D)/u2(D). Then, the allocation
in which player 1 gets parts A, X, and D−Y and player 2 gets parts B, C−X,
and Y is proportional and has larger utility than E .

Now, we claim that u2(A) = 1/2. Clearly, since E is proportional, the utility
of player 2 in E is at least 1/2, i.e., u2(B) + u2(C) ≥ 1/2. Since the utilities of
player 2 sum up to 1 over the whole cake, we also have that u2(A) ≤ 1/2. If it were
u2(A) < 1/2, then we would have u2(B)+u2(C) > 1/2. Then, there would exist
a subpart X of C for which player 2 has utility x for some x ≤ 1/2− u2(A) and
player 1 has utility larger than x. By allocating X to player 1 instead of player
2, we would obtain another proportional allocation with larger total utility.

Also, it holds that u2(A)/u1(A) ≤ u2(C)/u1(C). Otherwise, there would exist
a subpart X of C for which player 1 has utility x and player 2 has utility u2(X)
at most x·u2(C)/u1(C) and a subpart Y of A for which player 1 has utility x and
player 2 has utility u2(Y ) at least x · u2(A)/u1(A) > x · u2(C)/u1(C) ≥ u2(X).
By allocating the subpart X to player 1 and subpart Y to player 2, we would
obtain another proportional allocation with larger total utility.

By the discussion above, we have u2(C) ≥ u1(C)
2u1(A) . We are now ready to bound

the ratio of the total utility of O over the total utility of E which will give us
the desired bound. We obtain that the price of proportionality is

u1(A) + u2(B) + u1(C)
u1(A) + u2(B) + u2(C)

=
u1(A) + 1/2− u2(C) + u1(C)

u1(A) + 1/2

≤
u1(A) + 1/2 + u1(C)

(
1− 1

2u1(A)

)

u1(A) + 1/2

≤
u1(A) + 1/2 + (1− u1(A))

(
1− 1

2u1(A)

)

u1(A) + 1/2

where the last inequality follows since u1(A) ≥ u2(A) = 1/2 and u1(C) ≤
1− u1(A). The last expression is maximized to 8− 4

√
3 for u1(A) = 1+

√
3

4 and
the upper bound follows.

In order to prove the lower bound, it suffices to consider a cake consisting of
two parts A and B. Player 1 has utility u1(A) = 1 and u1(B) = 0 and player 2
has utility u2(A) =

√
3− 1 and u2(B) = 2−√3. ut

Moreover, it is easy to show an upper bound of n − 1/2 for the price of
envy-freeness for both divisible and indivisible goods.

We next present our results that hold explicitly for indivisible goods; these
results are either exact or tight within a constant factor.

Theorem 4. For n players and indivisible goods, the price of proportionality is
n− 1 + 1/n.

Proof. We begin by proving the upper bound. Consider an instance and a cor-
responding optimal allocation. If this allocation is proportional, then the price



of proportionality is 1; assume otherwise. In any proportional allocation, each
player has utility at least 1/n on the pieces of the cake she receives and the total
utility is at least 1. Since the optimal allocation is not proportional, some player
has utility less than 1/n and the total utility in the optimal allocation is at most
n− 1 + 1/n.

We now present the lower bound. Consider the following instance with n
players and 2n−1 items. Let 0 < ε < 1/n. For i = 1, ..., n−1, player i has utility
ε for item i, utility 1−1/n for item i+1, utility 1/n− ε for item n+ i and utility
0 for all other items. The last player has utility 1/n− ε for items 1, 2, ..., n− 1,
utility 1/n + (n− 1)ε for item n, and utility 0 for all other items.

We argue that the only proportional allocation assigns items i and n + i to
player i for i = 1, ..., n− 1, and item n to player n. To see that, notice that each
player must be allocated at least one of the first n items, regardless of what other
items she obtains, in order to be proportional. Since there are n players, each of
them must be allocated exactly one of the first n items. Now, consider player n.
It is obvious that she must be allocated item n, since she has utility strictly less
than 1/n for any other item. The only available items (with positive utility) left
for player n−1 are items n−1 and 2n−1, and it is easy to see that both of them
must be allocated to her. Using the same reasoning for players n− 2, n− 3, ..., 1,
we conclude that the only proportional allocation is the aforementioned one,
which has total utility 1 + (n− 1)ε.

Now, the total utility of the optimal allocation is lower-bounded by the total
utility of the allocation where player i gets items i+1 and n+i, for i = 1, ..., n−1,
and player n gets the first item. The total utility obtained by this allocation is
(1− 1/n + 1/n− ε) (n− 1) + 1

n − ε = n − 1 + 1/n − nε. By selecting ε to be
arbitrarily small, the theorem follows. ut

The above lower bound construction uses instances with no envy-free allo-
cation and, hence, the lower bound on the price of proportionality does not
extend to envy-freeness. We have a slightly weaker lower bound on the price of
envy-freeness for indivisible goods which uses a more involved construction.

Theorem 5. For n players and indivisible goods, the price of envy-freeness is
at least 3n+7

9 −O(1/n).

Unfortunately, equitability may lead to arbitrarily inefficient allocations of
indivisible goods when the number of players is at least 3.

Theorem 6. For n players and indivisible goods, the price of equitability is 2
for n = 2 and infinite for n > 2.

3 Fair division with chores

Our next theorem considers divisible chores.

Theorem 7. For n players and divisible chores, the price of proportionality is
at most n and at least (n+1)2

4n , and the price of equitability is n.



Since every envy-free allocation is also proportional, the lower bound on the
price of proportionality also holds for envy-freeness. We also have a matching
upper bound of 9/8 for proportionality (or envy-freeness) in the case n = 2.

Finally, we consider the case of indivisible chores. Although the price of
proportionality is bounded, the price of envy-freeness and equitability is infinite.

Theorem 8. For n players and indivisible chores, the price of proportionality
is n, whereas the price of envy-freeness (for n ≥ 3) and equitability (for n ≥ 2)
is infinite.

Proof. Due to lack of space, we only present the case of envy-freeness. Consider
the following instance with n players and 2n items. Let ε < 1/ (2n). For i =
1, . . . , n − 2, player i has disutility 1/n for the first n items and disutility 0 for
every other item. Player n− 1 has disutility 0 for the first n− 1 items, disutility
ε for item n, disutility 1/n for items n + 1, . . . , 2n − 1 and disutility 1/n − ε
for item 2n. Finally, player n has disutility 0 for the first n− 1 items, disutility
1/(2n) for items n and 2n, and disutility 1/n for items n + 1, . . . , 2n− 1.

Clearly, the optimal allocation has total disutility ε and is obtained by allo-
cating items n + 1, . . . , 2n to players 1, . . . , n − 2, item n to player n − 1, and
items 1, . . . , n−1 either to player n−1, or to player n. In each case, player n−1
envies player n. Furthermore, the allocation in which player i, for i = 1, . . . , n is
allocated items i and i + n is envy-free. The remark that concludes this proof is
that there cannot exist an envy-free allocation having negligible disutility (i.e.,
less than 1/(2n)). ut
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