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Abstract. Motivated by the problem of supporting energy–efficient
broadcasting in ad hoc wireless networks, we study the Minimum Energy
Consumption Broadcast Subgraph (MECBS) problem. We present the
first logarithmic approximation algorithm for the problem which uses
an interesting reduction to Node–Weighted Connected Dominating Set.
We also show that an important special instance of the problem can be
solved in polynomial time, solving an open problem of Clementi et al.
[2].

1 Introduction

Wireless networks have received significant attention during the recent years.
Especially, ad hoc wireless networks emerged due to their potential applications
in battlefield, emergency disaster relief, etc. [8]. Unlike traditional wired networks
or cellular wireless networks, no wired backbone infrastructure is installed for
ad hoc wireless networks.

A node (or station) in these networks is equipped with an omnidirectional
antenna which is responsible for sending and receiving signals. Communication in
these networks is established by assigning to each station a transmitting power.
In the most common power attenuation model [8], the signal power falls as 1/rα,
where r is the distance from the transmitter and α is a constant which depends
on the wireless environment (typical values of α are between 1 and 6). So, a
transmitter can send a signal to a receiver if

Ps

d(s, t)α
≥ γ

where Ps is the power of the transmitting signal, d(s, t) is the Euclidean distance
between the transmitter and the receiver, and γ is the receiver’s power threshold
for signal detection which is usually normalized to 1.

So, communication from a node s to another node t may be established either
directly if the two nodes are close enough and s uses adequate transmitting
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power, or by using intermediate nodes. Observe that due to the nonlinear power
attenuation, relaying the signal between nodes may result in energy conservation.

A crucial issue in ad hoc wireless networks is to support communication pat-
terns that are typical in traditional networks. These include broadcasting, mul-
ticasting, and gossiping (all–to–all communication). The important engineering
question to be solved is to guarantee a desired communication pattern minimi-
zing the total energy consumption. In this work, motivated by the problem of
supporting energy–efficient broadcasting in ad hoc wireless networks, we study
the Minimum Energy Consumption Broadcast Subgraph (MECBS) problem.

Consider a complete directed graph G = (V,E) with a symmetric cost func-
tion c : E → R associated with its edges (c(u, v) = c(v, u)) and a special node
r ∈ V . Given a weight assignment w : V → R to the nodes of G, the transmission
graph Gw is the directed graph defined as follows. It has the same set of nodes
as G and a directed edge (u, v) belongs to Gw if the weight assigned to node u
is at least the cost of the edge (u, v), i.e., w(u) ≥ c(u, v). The Minimum Energy
Consumption Broadcast Subgraph (MECBS) problem is to assign weights to the
nodes of V so that for any node u ∈ V − {r}, the transmission graph Gw has a
directed path from r to u. The objective is to minimize the sum of weights.

Note that by changing the connectivity requirements for the transmission
graph, several interesting combinatorial problems arise. Problems of this kind
are examined in [1,4,6]. In these works, the objective is to establish a strongly
connected transmission graph (with or without restrictions to its diameter).

MECBS has been proved to be inapproximable within (1 − ε) lnn unless
NP ⊆ DTIME

(
nO(log log n)

)
(where n denotes the number of nodes in the

graph) using approximation preserving reductions to Set Cover [2] and Con-
nected Dominating Set [7]. However, to our knowledge, no logarithmic ap-
proximation algorithms for the problem were known prior to this work.

An important special case of MECBS (which reflects the properties of the
engineering problem in practice) is when the nodes of the graph are points in
the d–dimensional Euclidean space and the cost function is defined as a α-th
power of the distance function. Following the notation of [2], we denote this
special case of the problem with MECBS[Nα

d ]. Clementi et al. [2] have proved
that MECBS[Nα

d ] is NP–hard for d ≥ 2 and α > 1. Note that, for α ≤ 1 and
d ≥ 1, MECBS[Nα

d ] has a trivial optimal solution (the transmission graph is a
star rooted at r). The complexity of MECBS[Nα

1 ] for α > 1 was left open.
Wieselthier et al. [8] study the behaviour of several greedy algorithms for

MECBS[N22]. They present experimental results for three simple algorithms: MST
(Minimum Spanning Tree), BIP (Broadcast Incremental Power), and SPT (Shor-
test Path Tree). By exploring geometric properties of Euclidean spanning trees,
Clementi et al. [2] and Wan et al. [7] prove upper bounds on the approximation
ratio of algorithm MST on instances of MECBS[Nα

2 ] for α ≥ 2. In [2], an upper
bound of

(
2
√

10
)α

is proved, while an improved bound of 12 is proved in [7]. Wan
et al. [7] also prove lower bounds on the performance of algorithms MST, BIP,
SPT, and BAIP (Broadcast Average Incremental Power), a greedy algorithm
based on the well–known greedy algorithm for Set Cover. They show that
even when instances of MECBS[N22] are considered, SPT and BAIP have appro-
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ximation ratios Ω(n) and Ω(n/ log n), respectively. However, it is easy to verify
that all the algorithms studied in [2,7,8] have approximation ratios Ω(n) when
applied to general instances of MECBS. Furthermore, none of these algorithms
can guarantee optimal solutions to MECBS[Nα

1 ] for α > 1.
In this work, we present (in Section 2) the first logarithmic approximation

algorithm for the problem which uses an interesting reduction to the Node–
Weighted Connected Dominating Set (NWCDS) problem. The Node–Weighted
Connected Dominating Set problem is the following: Given a graph G = (V,E)
with weights on the nodes, find the smallest weighted subset S of nodes that
induce a connected subgraph and each node in V −S is adjacent to at least one
node in S. We also show (in Section 3) that MECBS[Nα

1 ] for α > 1 can be solved
in polynomial time, solving an open problem of Clementi et al. [2]. Very recently,
Andrea Clementi informed us that a similar result was obtained independently
in [3].

2 A Logarithmic Approximation Algorithm

In this section, we present a logarithmic approximation algorithm for MECBS.
The algorithm uses a new reduction of instances of MECBS to instances of
NWCDS.

First, we show how to transform any instance of MECBS to an instance of
NWCDS. Let IMECBS be an instance of MECBS which consists of a complete
directed graph G = (V,E) with |V | = n, a symmetric cost function c : E → R,
on the edges of G, and a special node r ∈ V . We will construct an instance
INWCDS of the NWCDS which consists of a node–weighted undirected graph H.

We construct the graphH as follows. For each node v of G, the graphH has a
set Zv of n nodes Zv,1, Zv,2, ..., Zv,n which we call a supernode. The supernodes
of H corresponding to different nodes of G are disjoint. Let cv,i be the i–th
largest cost among the costs of the edges directed out of v in G. The weight
associated with the node Zv,i, i = 1, ..., n− 1 of the supernode Zv is set to cv,i.
The node Zv,n of the supernode Zv has infinite weight.

The set of edges in H is defined as follows. Nodes Zv,1, ..., Zv,n−1 of the
supernode Zv form the complete graph Kn−1 while node Zv,n is isolated from
the other nodes of its supernode. Node Zv,i, for i = 1, ..., n − 1, is connected
to all the nodes of those supernodes Zu (v = u) corresponding to nodes u of G
which are connected to v by edges of cost no more than the weight of Zv,i (i.e.,
c(v, u) ≤ cv,i). The reduction is depicted in Figure 1.

Now, we will show that an approximate solution to NWCDS for instance
INWCDS can be used to obtain an approximate solution to the MECBS for in-
stance IMECBS with similar approximation guarantee. We first show that the cost
OPT (IMECBS) of an optimal solution of IMECBS is close to the cost OPT (INWCDS)
of the optimal solution of INWCDS.

Lemma 1. OPT (INWCDS) ≤ 2 ·OPT (IMECBS).

Proof. Consider a solution to MECBS for instance IMECBS of minimum cost. Let
w be the weight vector corresponding to this solution and Gw the transmission
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Fig. 1. The reduction to NWCDS. (a) The graph G of an instance of MECBS. (b)
The graph H of the corresponding instance of NWCDS. Each large cycle indicates a
supernode. Only the edges incident to the node of weight 2 of the upper left supernode
are shown. These edges are those which correspond to edges in (a) of cost at most 2,
directed out of the left upper node. (c) The graph H of the corresponding instance of
NWCDS. Thick edges from a node to a supernode represent edges connecting a node
to all the nodes of a supernode.

graph defined by w. Since the solution is optimal, the weight of each node v
equals the cost of some edge directed out of v.

We construct a connected dominating set S for instance INWCDS as follows.
For each node v of Gw which has at least one outgoing edge, we add to S
the node Zv,i(v) of the supernode Zv which has weight w(Zv,i(v)) = w(v) =
max(v,u)∈Gw

{c(v, u)}.
Consider the induced subgraph G′

w of Gw which contains the nodes of Gw

having at least one outgoing edge in Gw. By construction, each one of the nodes
in S belongs to a different supernode of H mapping to a node in G′

w. Also, a
directed edge between two nodes u and v in G′

w exists if and only if w(u) ≥
c(u, v). This means that the weight of the node Zu,i(u) is at least w(u), and,
thus, it is connected with node Zv,i(v) in H. This holds for any directed edge of
G′

w and implies that the subgraph of H induced by S is isomorphic to G′
w (if we

consider directed edges as undirected ones), and, thus, it is connected.
Also, S dominates all nodes of H except (possibly) for Zr,n. The existence

of a directed edge (u, v) in Gw implies that the node Zu,i(u) dominates all nodes
of Zv in H. Furthermore, all nodes in Zr but Zr,n are dominated by Zr,i(r).

If Zr,n is adjacent to a node in S, then S is clearly a connected dominating
set in H. The cost of S is

∑
Zv,i(v)∈S

w(Zv,i(v)) =
∑

v∈Gw

w(v) = OPT (IMECBS).
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Now, if Zr,n is not adjacent to any node of S, we consider a node u such that
the directed edge (r, u) exists in Gw. Let Zu,j be the node of Zu with weight
c(u, r). Note that Zu,j is adjacent to both Zu,i(u) and Zr,n. Thus, S ∪ {Zu,j}
is a connected dominating set in H. The cost of an optimal solution is at most
the cost of S ∪ {Zu,j} which is OPT (IMECBS) + w(Zu,j). Recall that w(Zu,j) =
c(u, r) = c(r, u) and that w(r) ≥ c(r, u) since the edge (r, u) belongs to the
transmission graph Gw. We obtain that

OPT (INWCDS) ≤ OPT (IMECBS) + w(Zu,j) = OPT (IMECBS) + c(u, r)
= OPT (IMECBS) + c(r, u) ≤ OPT (IMECBS) + w(r)
≤ 2 ·OPT (IMECBS) ��

We now show that a solution to NWCDS for instance INWCDS can give a
solution to MECBS for instance IMECBS of similar cost.

Lemma 2. Given a solution to NWCDS for instance INWCDS of cost COST
(INWCDS), we can construct in polynomial time a solution to MECBS for instance
IMECBS of cost COST (IMECBS), such that

COST (IMECBS) ≤ 2 · COST (INWCDS)

Proof. Consider a connected dominating set S of H. We may assume that S
contains at most one node from each supernode. If this is not the case and there
are two nodes Zu,i and Zu,j (i = j) in S with weights w(Zu,i) ≥ w(Zu,j), we
remove Zu,j from S. By repeatedly executing this procedure, we end up with a
connected dominating set having at most one node per supernode. Furthermore,
in any solution of finite cost, no node with infinite weight is contained in S.
For every supernode Zu which has a node Zu,i(u) contained in S, we associate a
weight w(Zu,i(u)) to node u of G. Nodes of G whose corresponding supernodes
of H have no node contained in S are assigned zero weight.

Now, consider the transmission graph Gw defined by w. We will first show
that the graph Gw is loosely connected, i.e., its undirected counterpart is connec-
ted. Consider an edge (Zu,i(u), Zv,i(v)) in H which connects two nodes of S. By
the construction of graph H from G and the definition of the transmission graph
Gw, we obtain that either (u, v) or (v, u) exists in Gw. This holds for any two
nodes of S which are connected with an edge in H and, since the nodes of S are
connected, this implies that the subgraph of Gw induced by the nodes correspon-
ding to supernodes of H having a node in S is loosely connected. Also, observe
that the nodes of any supernode Zv containing no node in S are dominated by
some node Zu,i(u) in S. By the construction of H from G and the definition
of the transmission graph Gw, we obtain that for any node v of Gw with zero
weight, there is a directed edge coming from a node with non–zero weight. We
conclude that Gw is loosely connected.

We execute a spanning tree algorithm on Gw to compute a loosely connected
spanning tree Tw of Gw. Next, we execute the following procedure that trans-
forms Tw to an arborescence T ′

w, i.e., a tree T ′
w having a directed path from r
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to any other node. Starting from r, we compute a Breadth-First-Search (BFS)
numbering of the nodes of Tw. We visit the nodes of Tw according to this BFS
numbering and, at the step associated with a node u, we transform ingoing edges
coming to u from nodes with numbers greater than u’s to outgoing ones.

Now, by assigning weights w′(u) = max(u,v)∈T ′
w
c(u, v) to the nodes of G, we

obtain a transmission graph which contains T ′
w as a subgraph and, thus, is a

feasible solution to MECBS.
Let lu be the node such that the edge (u, lu) belongs to T ′

w and has the
maximum cost among all edges (u, v) directed out of u in T ′

w. The transmission
graph Gw contains either (u, lu) or (lu, u). If it contains (u, lu), then w(u) ≥
c(u, lu), otherwise w(lu) ≥ c(lu, u) = c(u, lu). In any case,

w′(u) = max
(u,v)∈T ′

w

c(u, lu) ≤ max{w(u), w(lu)} ≤ w(u) + w(lu).

The cost of the solution w′ to MECBS is

COST (IMECBS) =
∑
u∈V

w′(u) ≤
∑
u∈V

(w(u) + w(lu)) =
∑
u∈V

w(u) +
∑
u∈V

w(lu)

≤ 2 ·
∑
u∈V

w(u) = 2 · COST (INWCDS) ��

Given an instance IMECBS of MECBS, we first transform it to the correspon-
ding instance INWCDS as described above. Then, we run an algorithm for the
Node–Weighted Connected Dominating Set problem and use the technique de-
scribed in the proof of Lemma 2 to construct a solution to the original problem.
Using Lemmas 1 and 2, we can show that, given a ρ–approximate solution to
NWCDS for instance INWCDS of cost COST (INWCDS), we can obtain a solution
to MECBS for instance IMECBS with cost COST (IMECBS) which is within 4ρ of
optimal. Indeed, by Lemma 1, we have OPT (IMECBS) ≥ OPT (INWCDS)/2, while
Lemma 2 yields COST (IMECBS) ≤ 2 ·COST (INWCDS) ≤ 2ρ ·OPT (INWCDS). Thus,
the approximation ratio we obtain is

COST (IMECBS)
OPT (IMECBS)

≤ 4ρ.

In [5], Guha and Khuller present a 1.35 lnn–approximation algorithm for the
Node–Weighted Connected Dominating Set problem, where n is the number of
nodes in the graph. Given an instance IMECBS of MECBS with n nodes, the
corresponding instance INWCDS has n2 nodes. Thus, the cost of the solution of
INWCDS is within 4 · 1.35 ln(n2) = 10.8 lnn of the optimal solution. The next
theorem summarizes the discussion of this section.

Theorem 1. There exists a 10.8 lnn–approximation algorithm for MECBS.

3 A Polynomial Time Algorithm for MECBS[Nα
1 ]

Assume that we have n points xu1 , ..., xr, ..., xun located on a line. An instance
I of MECBS[Nα

1 ], for some α > 1, consists of a complete directed graph G in
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which each node u corresponds to a point xu and the cost of an edge (u, v) in G
is defined as

c(u, v) = [d(xu, xv)]α,

where d(xu, xv) is the Euclidean distance of the points xu and xv.
We will show that we can compute an optimal solution for the instance I of

MECBS[Nα
1 ] in polynomial time. We start with a few definitions.

We partition the nodes of G into two sets:

– the left set L which contains those nodes of G corresponding to a point at
the left of node xr .

– the right set R which contains those nodes of G corresponding to a point at
the right of node xr.

If one of the sets L and R is empty (this means that all the nodes correspond
to points located at the right or the left of xr), then there is a trivial optimal
solution. For example, if r = u1 and R = {u2, ..., un}, it is easy to verify that
w(ui) = c(ui, ui+1), for i = 1, ..., n − 1, and w(un) = 0 is an optimal solution.
So, in the following we assume that both L and R are non–empty.

Consider an arborescence T of G rooted at r. A node u of T different than r
is called root–crossing if it belongs to L and has a child in R or if it belongs in R
and has a child belonging in L. The node r is called root–crossing if it contains
children in both L and R. Note that, if both L and R are non–empty, then any
arborescence of G rooted at r contains at least one root–crossing node.

A chain from u to v is a directed path from u to v containing only edges
between consecutive nodes v′ which correspond to point xv′ located between the
points xu and xv on the line. We also say that a node u is a trivial chain from
u to u.

An arborescence of G rooted at r is called single root–crossing if

– it has exactly one root–crossing node u,
– it contains a chain from r to u, a chain from the node uL, which is the

node among u and its children corresponding to the leftmost point, to u1,
and a chain from the node uR, which is the node among u and its children
corresponding to the rightmost point, to un, and

– u is the parent of all nodes corresponding to points between xuL
and xuR

except for nodes in the chain from r to u.

Examples of arborescences are shown in Figure 2.
Let T be an arborescence of G rooted at r. By setting w(u) = max(u,v)∈T

c(u, v), the transmission graph Gw contains T as a subgraph and, thus, it is
a feasible solution to the problem with cost

∑
u∈V w(u). We will show that

given an arborescence T which is not single root–crossing, there exists a feasible
solution w′ of cost

∑
u∈V w

′(u) ≤ ∑
u∈V w(u) such that the transmission graph

Gw′ contains a single root–crossing arborescence T ′′ as a subgraph. We prove it
by constructing from T , a single root–crossing arborescence T ′′ with

∑
u∈V

max
(u,v)∈T ′′

c(u, v) ≤
∑
u∈V

max
(u,v)∈T

c(u, v)
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Fig. 2. Points on the line and three arborescences rooted at the node represented by
the rectangle. The first arborescence is not single root–crossing because it has two
root–crossing nodes. The second and third arborescences have one root–crossing node
but, according to the definition, only the third one is single root–crossing.

and setting w′(u) = max(u,v)∈T ′′ c(u, v). This is proved in Lemmas 3 and 4. In
this way, we will obtain that there exists an optimal solution ŵ to instance I
which defines a transmission graph Gŵ containing a single root–crossing arbo-
rescence as a subgraph.

Lemma 3. Let T be an arborescence of G rooted at r containing k ≥ 2 root–
crossing nodes in T . There exists an arborescence T ′ of G rooted at r with k− 1
root–crossing nodes such that∑

u∈T ′
max

(u,v)∈T ′
c(u, v) ≤

∑
u∈T

max
(u,v)∈T

c(u, v).

Proof. Consider an arborescence T of G rooted at r with k ≥ 2 root–crossing
nodes. Let u1 and u2 be two root–crossing nodes such that u1 is at the same or
higher level than u2 in T . Again, we denote by xv the point on the line which
corresponds to the node v. We call left (resp. right) children of a node v the
children of v in T which belong to set L (resp. R). Also, we denote by vL and
vR the node between v and its children which correspond to the leftmost and
rightmost point on the line, respectively.

We distinguish between the following four cases

Case 1. If u1 = r, then assume without loss of generality that u2 ∈ R. We claim
that either all left children of u2 in T are within distance

[
max(u1,v)∈T c(u1, v)

]1/α

from u1 or all right children of u1 in T are within distance
[
max(u2,v)∈T c(u2, v)

]1/α

from u2. Assume otherwise, i.e., d(xu1 , xuR
1

) >
[
max(u2,v)∈T c(u2, v)

]1/α and

d(xu2 , xuL
2

) >
[
max(u1,v)∈T c(u1, v)

]1/α. Then,

d(xu1 , xuR
1

) >
[

max
(u2,v)∈T

c(u2, v)
]1/α

≥ d(xu2 , xuL
2

) >
[

max
(u1,v)∈T

c(u1, v)
]1/α

,

a contradiction since (u1, uR
1 ) ∈ T . So, we can construct an arborescence T ′

either by removing all edges (u2, v) from u2 to its left children (in this way, u2



340 I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos

is not root–crossing) and adding edges (u1, v) from u1 to the left children of u2
or by removing all edges (u1, v) from u1 to its right children (in this way, u1 is
not root–crossing) and adding edges (u2, v) from u2 to the right children of u1.
The arborescence T ′ has at most k − 1 root–crossing nodes and, clearly,

∑
u∈T ′

max
(u,v)∈T ′

c(u, v) ≤
∑
u∈T

max
(u,v)∈T

c(u, v).

Case 2. If u1 = r and u2 belongs to the same set with u1 (wlog, we assume
that u1, u2 ∈ L) then either all right children of u2 in T are within distance[
max(u1,v)∈T c(u1, v)

]1/α from u1 or all right children of u1 in T are within

distance
[
max(u2,v)∈T c(u2, v)

]1/α from u2. Assume otherwise, i.e., d(xu1 , xuR
1

) >[
max(u2,v)∈T c(u2, v)

]1/α and d(xu2 , xuR
2

) >
[
max(u1,v)∈T c(u1, v)

]1/α. Then,

d(xu1 , xuR
1

) >
[

max
(u2,v)∈T

c(u2, v)
]1/α

≥ d(xu2 , xuR
2

) >
[

max
(u1,v)∈T

c(u1, v)
]1/α

,

a contradiction since (u1, uR
1 ) ∈ T . So, we can construct an arborescence T ′ by

removing all edges (u1, v) from u1 to its right children (in this way, u1 is not
root–crossing) and adding edges (u2, v) from u2 to the right children of u1 or
by removing all edges (u2, v) from u2 to its right children (in this way, u2 is
not root–crossing) and adding edges (u1, v) from u1 to the right children of u2.
Again, the arborescence T ′ has at most k − 1 root–crossing nodes and, clearly,

∑
u∈T ′

max
(u,v)∈T ′

c(u, v) ≤
∑
u∈T

max
(u,v)∈T

c(u, v).

Case 3. If u1 = r, and u1, u2 belong to different sets and u2 is not a child of u1,
then assume without loss of generality that u1 ∈ L and u2 ∈ R. Again, using
the same argument with the previous two cases, we can show that either all
left children of u2 in T are within distance

[
max(u1,v)∈T c(u1, v)

]1/α from u1 or

all right children of u1 in T are within distance
[
max(u2,v)∈T c(u2, v)

]1/α from
u2. So, we can construct an arborescence T ′ either by removing all edges (u2, v)
from u2 to its left children (in this way, u2 is not root–crossing) and adding edges
(u1, v) from u1 to the left children of u2 or by removing all edges (u1, v) from
u1 to its right children (in this way, u1 is not root–crossing) and adding edges
(u2, v) from u2 to the right children of u1. Again, we obtain an arborescence T ′

with at most k − 1 root–crossing nodes, such that
∑
u∈T ′

max
(u,v)∈T ′

c(u, v) ≤
∑
u∈T

max
(u,v)∈T

c(u, v).

Case 4. Now, we consider the case where u1 = r, and u1, u2 belong to different
sets and u2 is a child of u1 in T . Without loss of generality, we assume that u1 ∈ L
and u2 ∈ R. If all left children of u2 are within distance

[
max(u1,v)∈T c(u1, v)

]1/α
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from u1, then we construct T ′ by removing the edges (u2, v) from u2 to every
left child v of u2 and adding edges from u1 to v. In T ′, u2 is not root–crossing
and we obtain an arborescence with k − 1 root–crossing nodes. Again, we have∑

u∈T ′
max

(u,v)∈T ′
c(u, v) ≤

∑
u∈T

max
(u,v)∈T

c(u, v).

Assume now that not all left children of u2 are within distance at most[
max(u1,v)∈T c(u1, v)

]1/α from u1, i.e., d(xu1 , xuL
2

) >
[
max(u1,v)∈T c(u1, v)

]1/α.
Then, uL

2 is at the left of u1 and
[

max
(u2,v)∈T

c(u2, v)
]1/α

≥ d(xu1 , xuL
2

) + d(xu1 , xu2) >
[

max
(u1,v)∈T

c(u1, v)
]1/α

.

Thus, since either uR
1 is at right of u2 or uR

1 = u2,

d(xu2 , xuR
1

) = d(xu1 , xuR
1

) − d(xu1 , xu2)

≤ max
(u1,v)∈T

c(u1, v)
1/α

< max
(u2,v)∈T

c(u2, v)
1/α
.

Now, we construct the arborescence T ′ as follows. First, we remove from T the
edge between the parent of u1 and u1 and all edges (u1, v) from u1 to its children
(in this way, u1 is not root–crossing). We add to T ′ an edge from u2 to u1 and
edges (u2, v) from u2 to the children of u1 in T .

If r has right children in T , then we complete the construction of T ′ by
adding edge (r, u2). Note that, in this way, we add a right child to r, so r is
root–crossing in T ′ only if it was root–crossing in T . We obtain an arborescence
T ′ with at most k − 1 root–crossing nodes such that∑

u∈T ′
max

(u,v)∈T ′
c(u, v) ≤ max

(r,v)∈T ′
c(r, v) + max

(u1,v)∈T ′
c(u1, v) + max

(u2,v)∈T ′
c(u2, v)

+
∑

u∈T ′−{r,u1,u2}
max

(u,v)∈T ′
c(u, v)

≤
(

max
(r,v)∈T

c(r, v) + d(xr, xu2)α

)
+ 0 + max

(u2,v)∈T
c(u2, v)

+
∑

u∈T−{r,u1,u2}
max

(u,v)∈T
c(u, v)

≤ max
(r,v)∈T

c(r, v) + d(xu1 , xu2)α + max
(u2,v)∈T

c(u2, v)

+
∑

u∈T−{r,u1,u2}
max

(u,v)∈T
c(u, v)

≤ max
(r,v)∈T

c(r, v) + max
(u1,v)∈T

c(u1, v) + max
(u2,v)∈T

c(u2, v)

+
∑

u∈T−{r,u1,u2}
max

(u,v)∈T
c(u, v)

=
∑
u∈T

max
(u,v)∈T

c(u, v)
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If r has only left children in T , then we first remove all edges from r to
its children. Then, we add edges (u2, v) to connect to u2 all children of r in T
that are within distance

[
max(u2,v)∈T c(u2, v)

]1/α from u2 while the rest of the
children of r in T (if any) are connected to uL

2 . We complete the construction
of T ′ by adding edge (r, u2) to connect u2 to r. Note that, now, r has only one
(right) child, and, thus, it is not root–crossing. Furthermore, node u1 has no
children in T ′ and, thus, it is not root–crossing, while node uL

2 is a root–crossing
node in T ′ only if it was a root–crossing node in T . We conclude that T ′ has
at most k − 1 root–crossing nodes. We denote by rl the child of r in T which
is not within distance

[
max(u2,v)∈T c(u2, v)

]1/α from u2 and corresponds to the
leftmost point. If no such point exists, then the terms in the following expression
refering to rl can be removed. We have that

∑
u∈T ′

max
(u,v)∈T ′

c(u, v) = max
(r,v)∈T ′

c(r, v) + max
(u1,v)∈T ′

c(u1, v) + max
(u2,v)∈T ′

c(u2, v)

+ max
(uL

2 ,v)∈T ′
c(uL

2 , v) +
∑

u∈T ′−{r,u1,u2,uL
2 }

max
(u,v)∈T ′

c(u, v)

≤ d(xr, xu2)α + 0 + max
(u2,v)∈T

c(u2, v) + d(xuL
2
, xrl

)α

+ max
(uL

2 ,v)∈T
c(uL

2 , v) +
∑

u∈T−{r,u1,u2,uL
2 }

max
(u,v)∈T

c(u, v)

≤ d(xu1 , xu2)α + max
(u2,v)∈T

c(u2, v) + d(xr, xrl
)α

+ max
(uL

2 ,v)∈T
c(uL

2 , v) +
∑

u∈T−{r,u1,u2,uL
2 }

max
(u,v)∈T

c(u, v)

≤ max
(u1,v)∈T

c(u1, v) + max
(u2,v)∈T

c(u2, v) + max
(r,v)∈T

c(r, v)

+ max
(uL

2 ,v)∈T
c(uL

2 , v) +
∑

u∈T−{r,u1,u2,uL
2 }

max
(u,v)∈T

c(u, v)

≤
∑
u∈T

max
(u,v)∈T

c(u, v)

This completes the proof of the lemma. ��
By repeatedly executing the procedure used in the proof of Lemma 3, we

obtain an arborescence T ′ with exactly one root–crossing node. We can also
prove the following.

Lemma 4. Let T ′ be an arborescence of G rooted at r containing exactly one
single root–crossing node. There exists a single root–crossing arborescence T ′′

such that ∑
u∈T ′′

max
(u,v)∈T ′′

c(u, v) ≤
∑
u∈T ′

max
(u,v)∈T ′

c(u, v).

Note that, for any node v, there are O(n2) single root–crossing arborescences
in which v is the root–crossing node. Thus, there are O(n3) single root–crossing
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arborescences of G rooted at r. For each possible single root–crossing arbore-
scence Ti, we set wi(u) = max(u,v)∈Ti

c(u, v). Clearly, wi is a feasible solution
for instance I since the transmission graph Gwi contains the arborescence Ti

as a subgraph. The cost of the solution wi is
∑

u∈Ti
wi(u). We select that solu-

tion wi which minimizes
∑

u∈Ti
wi(u). By the discussion in this section, this is

an optimal solution for I. Since every step in the procedure described above is
performed in polynomial time, we have obtained the following theorem.

Theorem 2. MECBS[Nα
1 ] can be solved in polynomial time.
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