
Dynamic Timetable Information in Smart Cities
Kalliopi Giannakopoulou1,2, Sotiris Nikoletseas1,2, Andreas Paraskevopoulos2 and Christos Zaroliagis1,2

1 Computer Technology Institute and Press “Diophantus”
2 Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece

{gianakok,nikole,paraskevop,zaro}@ceid.upatras.gr

Abstract—We provide a cloud-based journey planner for public
transport built upon an efficient core routing engine that updates
efficiently timetable information in case of delays. We describe
our mobile application along with a service that allows users
to assess the suggested journeys offered by the application,
built on top of an IoT/FIRE+ infrastructure. Our journey
planner contributes to the establishment of a live community of
travelers, equipped with an arsenal of inter-operable personalized
renewable mobility services, for modern mobility in smart cities.

I. INTRODUCTION

Mobile and web applications (aka journey planners) that
compute best journeys in public transportation systems are
abundant. Given as input a timetable associated with a public
transportation system, the journey planning problem asks for
efficiently answering queries of the form: “What is the best
journey from some station A to some other station B, provided
that I wish to depart at time t?”.

Depending on the considered metrics and modeling as-
sumptions, the journey planning problem can be specialized
into various optimization problems. In the earliest arrival-
time problem (EAP), we are interested in finding the best (or
optimal) journey that minimizes the traveling time required
to complete it. In the minimum number of transfers problem
(MNTP), we are interested in computing a best journey that
minimizes the number of times a passenger has to move from
one vehicle to another, during the journey. Sometimes, these
two optimization criteria are considered in combination. We
refer to the recent survey in [1] for a comprehensive overview
on journey planning. A typical approach to deal with the
various journey planning optimization problems is to create, in
a preprocessing phase, a structure that represents the timetable
information, which subsequently allows for fast answering of
queries. There is vast literature on this approach; see e.g., [1]
and the references therein.

The journey planning problem is quite challenging (despite
its simple formulation), much more than its route planning
counterpart in road networks. Schedule-based transportation
systems exhibit an inherent time-dependent component that
requires more complex modeling assumptions in order to
obtain meaningful results, especially when transfer times from
one vehicle to another has to be taken into account [8].

One additional challenge is to accommodate delays of
public transport vehicles that often occur. The key issue is
how to efficiently update the underlying timetable information

system so that best journey (typically earliest arrival) queries
are still answered fast and optimally with respect to the
updated timetable. Given the fact that a journey planner is
usually in heavy demand (e.g., the journey planner of the
German railways in peak hours receives more than 400 queries
per second), and that delays occur frequently, in order to
support such a computationally demanding service efficiently
one needs a systems architecture of sufficient computational
capacity. In this respect, the elasticity of a cloud architecture
allows for the adaptation of the reserved computing resources
to the actual demands for processing a vast number of queries
and for updating the timetable information.

A very recent effort [2] introduces the so-called dynamic
timetable model (DTM) that constitutes a (graph-based) space-
efficient model to represent timetable information. DTM also
possesses an efficient procedure for answering earlier arrival
queries as well as the currently fastest procedure for updating
the timetable information when delays occur. Preliminary ex-
perimentation [2] on real-world data sets exhibited an excellent
practical behaviour of DTM.

The aforementioned challenges for real-time response and
efficient digestion of delays in a timetable information system,
necessitate the adoption of more sophisticated architectures.
The heart of such a sophisticated journey planning service
would have to lie on a cloud architecture, which would be
able to guarantee data persistence, interoperability with other
sources (that report vehicle delays), real-time elasticity of
computing resources, and also transparent accessibility of the
journey planner by the travelers. In such an environment, the
queries are sent to a routing engine residing at the cloud
infrastructure, which in turn sends back the answers taking
into account the updated timetable information.

In this work, we describe a cloud-based journey planner
whose core routing engine is based on DTM. We provide
the algorithmic details of this efficient journey planner that
digests extremely fast timetable updates in order to respond
in real-time to arbitrary journey planning queries. We also
present our mobile client application along with a service that
allows users to assess the suggested journeys offered by the
application. The user assessment service has been built on
top of an IoT/FIRE+ infrastructure [7]. Our journey planner
contributes to the establishment of a live community of trav-
elers, equipped with an arsenal of inter-operable personalized
renewable mobility services, for modern mobility in smart
cities in the context of [6].

1

II. PRELIMINARIES

In this section, we provide the necessary definitions and
notation that will be used throughout the paper adopted from
[2]. A timetable T is defined by a triple T = (Z ,B,C),
where Z is a set of vehicles, B is a set of stations (or stops),
and C is a set of elementary connections whose elements
are 5-tuples of the form c = (Z,Sd ,Sa, td , ta). Such a tuple
is interpreted as vehicle Z ∈ Z leaves station Sd ∈ B at
time td , and the immediately next stop of vehicle Z is station
Sa ∈B at time ta. If x denotes a tuple’s field, then the notation
x(c) specifies the value of x in the elementary connection c
(e.g., td(c) denotes the departure time in c). The departure
and arrival times td(c) and ta(c) of an elementary connection
c within a day are integers in the interval {0,1, . . . ,1439}
representing time in minutes after midnight.

Given two time instances t1, t2 (t2 ≥ t1), let ∆(t1, t2) =
t2− t1(mod 1440). The length of an elementary connection c,
denoted by ∆(c), is the time that passes between the departure
and the arrival times of c assuming that c lasts for less than
24 hours, i.e., ∆(c) = ∆(td(c), ta(c)).

Given an elementary connection c1 arriving at station S
and an elementary connection c2 departing from the same
station S, if Z(c1) 6= Z(c2), it follows that it is possible
to transfer from Z(c1) to Z(c2) only if the time between
the arrival and the departure at station S is larger than
or equal to a given minimum transfer time, denoted by
transfer(S). We assume that transfer(S) is always smaller
than 1440, for each S ∈ B. An itinerary (a.k.a. a journey)
in a timetable T is a sequence of elementary connections
P=(c1,c2, . . . ,ck) such that, for each i= 2,3, . . . ,k, Sa(ci−1)=
Sd(ci), and either ∆(ta(ci−1), td(ci))≥ 0, if Z(ci−1) = Z(ci); or
∆(ta(ci−1), td(ci))≥ transfer(Sa(ci−1)), otherwise.

We say that the itinerary starts from station Sd(c1) at time
td(c1) and arrives at station Sa(ck) at time ta(ck). The length
∆(P) of an itinerary P is given by the sum of the lengths of
its elementary connections plus the associated transfer times,
i.e., ∆(P) = ∑

k
i=1 ∆(ci)+∆(ta(ci), td(ci +1)).

A timetable query is defined by a triple (S,T, tS) where S ∈
B is a departure station, T ∈B is an arrival station and tS
is a minimum departure time. There are two natural criteria
used to answer a query that lead to the following optimization
problems [8].
• The Earliest Arrival Problem (EAP) is the problem of

finding an itinerary from S to T which starts at a time
after tS and arrives at T as early as possible.

• The Minimum Number of Transfers Problem (MNTP) is
the problem of finding an itinerary from S to T which
starts at a time after tS and has as few transfers from a
vehicle to another one as possible.

Given a timetable T , a delay occurring on a connection
c is modelled as an increase of d minutes on the arrival
time, t ′a(c) = ta(c) + d(mod 1440). The timetable is then
updated according to some specific policy which depends on
the network infrastructure. The obtained timetable is called
disposition timetable T ′ and it differs from T for the arrival

and departure times of the vehicles that depend on Z(c) in
T . We assume that the policy adopted is that no vehicle
waits for a delayed one. Therefore, when a delay occurs on
a connection c, the only time references which are updated
are those regarding the departure times of Z(c). Moreover,
we assume that the policy does not take into account any
possible slack times and hence the time references are updated
by adding d(mod 1440).

III. THE ALGORITHMIC CORE ENGINE

In this section we present the algorithmic core engine of our
journey planner for solving EAP and MNTP, by following the
exposition in [2]. It is based on the dynamic timetable model
(DTM) and its query and update algorithms. We also provide
the engineering details that speed-up our algorithmic engine.

A. DTM along with its Query and Update Mechanisms

Given a timetable T = (Z ,B,C), we define a directed
graph G = (V,E) called dynamic timetable graph and an
associated weight function w : E→ N as follows:
• For each station S in B, a node sS, called switch node of

S, is added to V ;
• For each elementary connection c = (Z,Sd ,Sa, td , ta) ∈ C

a node dc, called departure node of c, is added to V and
an arc (dc,sSa), called connection arc of c, connecting dc
to the switch node sSa of Sa, is added to E;

• For each elementary connection c = (Z,Sd ,Sa, td , ta) ∈ C
an arc (sSd ,dc), called switch arc, connecting the switch
node sSd of the departure station Sd to the departure node
dc of c, is added to E;

• For each vehicle Z ∈ Z which travels through the
itinerary (c1,c2, . . . ,ck), an arc, called vehicle arc, con-
necting the departure node dci of ci with the departure
node dci+1 of ci+1 is added to E, for each i = 1,2, . . . ,k−
1;

• The weight of each connection arc (dc,sSa) is set to
w(dc,sSa) = ∆(ta(c), td(c));

• The weight of each vehicle arc (dci ,dci+1) is set to
w(dci ,dci+1) = ∆(td(ci), td(ci+1));

• The weight of each switch arc is initially set to ∞.
For each switch node sS, we store the station S it is

associated with while, for each departure node dc, we maintain
both the departure time reference td(c) and the vehicle Z(c)
of connection c which dc is associated with. Figure 1 shows
an example of a dynamic timetable graph.

1) The Query Algorithm: The query algorithm (DTM-Q) for
solving EAP works as follows (the algorithm can be easily
adapted to solve MNTP queries, as we explain later). Given
a dynamic timetable graph G, an EAP query (S,T, tS) can be
answered by executing a modified Dijkstra’s algorithm on G,
starting from the switch node sS of S. Before discussing the
details of the algorithm, we first describe the additional data
structures used by DTM-Q with respect to the classic Dijkstra’s
algorithm. In particular, for each switch node sA of a station
A, algorithm DTM-Q stores: (i) A vector of boolean flags DA,
whose size is given by the number of stations A′ such that

2

 S
B

10

15

25

26

50

40

∞ ∞ ∞

5

8

5

∞ ∞

∞

32

11

∞

45

∞

S
C

3

6

2

15

5

3

11

Station B Station C Station A

4

Fig. 1. An example of a dynamic timetable graph. Switch nodes are drawn
in blue while departure nodes, ordered by arrival time, are drawn in yellow.
Inside each departure node the departure time of the corresponding elementary
connection is reported. Connection arcs are drawn in blue, switch arcs are
drawn in black, while vehicle arcs are drawn in green.

there exists an elementary connection departing from A and
arriving at A′. We denote the element of DA associated to A′

as DA[A′]. Initially, all flags of DA are set to false. (ii) Along
with the distance from sS to sA in the priority queue (PQ)
used by Dijkstra’s algorithm, the associated connection c′ (is
stored) such that the arc (dc′ ,sA) is the one through which
the particular distance has been obtained during a relaxation
step. For non-switch nodes such an associated connection is
assumed to be equal to a default value NIL.

Given the EAP query (S,T, tS), the DTM-Q algorithm works
as follows. First, it starts by inserting the switch node sS of
the departure station S in PQ. The distance and connection as-
sociated with node sS in PQ are set to 0 and NIL, respectively.
Then, the visit proceeds by extracting nodes, one by one, from
PQ in a Dijkstra-like fashion, while PQ is not empty. When
a node is extracted, the behavior of the algorithm depends on
the type of the extracted node.

Departure nodes are processed like in the classic Dijkstra’s
algorithm: (i) outgoing arcs are scanned and relaxed in order
to discover shorter paths (if any); (ii) associated neighboring
(either departure or switch) nodes are, according to the weights
of the arcs, either inserted in PQ, if they were not present, or
their distance is decreased, if possible.

Switch nodes are processed as follows. Let us consider
the time when a switch node sA, associated with a station
A ∈B, is extracted from the priority queue. Let dist(sS,sA)
be the distance from sS to sA associated to sA in the queue
and let c′ be the associated elementary connection through
which dist(sS,sA) has been obtained. The value of dist(sS,sA)
essentially corresponds to the minimum time required to reach
station A from station S, departing at time tS. Hence, the
algorithm first computes the value x = td(c′)+w(dc′ ,sA)(mod
1440), which represents the arrival time of connection c′. If
c′ is equal to NIL, then the algorithm assigns x = tS. Then,
for each outgoing switch arc (sA,dc) such that Sd(c) = A and

td(c)≥ x, the algorithm performs a so-called enabling phase,
that is, it enables arc (sA,dc) if DS[Sa(c)] = false and
∆(x, td(c)) =

td(c)− x(mod 1440)≥
{

0, if Z(c) = Z(c′)
transfer(A), otherwise (1)

The enabling operation on arc (sA,dc) consists in: (i) setting
w(sA,dc) = ∆(x, td(c)); (ii) either inserting dc in PQ, if it was
not present, or in decreasing its distance, if possible.

This enabling phase clearly stops (and hence the Dijkstra’s
search is pruned) when the vector DA contains only true values,
which are set in the following case.

Let (sA,dc) be the switch arc with the smallest arrival time
that is enabled for some station S′= Sa(c). Then, the algorithm
sets DA[S′] to true when an arc (sA,dc′) such that Sa(c′) =
S′ and ∆(ta(c), ta(c′))(mod 1440) > transfer(S′) is scanned
(the time instances ta(c) and ta(c′) required to check such a
condition can be computed by using x, td(c), td(c′) and the
associated arc weights). Since departure nodes are ordered by
arrival time, this guarantees that the algorithm ignores any
connection (in the form of departure nodes) leaving A towards
S′ after this step, as it cannot lead to a better solution to the
considered EAP query.

In other words, if two switch arcs (sA,dc1) and (sA,dc2),
corresponding to two elementary connections c1 and c2, lead
to the same station B, fulfill Inequality (1), and have two
arrival times that differ by a value greater than transfer(B),
then only the one with smallest arrival time is considered
(i.e., enabled) while the other one is essentially discarded,
since it will not lead to a better solution to reach B. This
is obtained by suitably setting the weights and the values of
DA. In fact, if we assume that x ≤ min{td(c1), td(c2)} and
ta(c1)< ta(c2)+transfer(B)(mod 1440), i.e., that ta(c2) is the
smallest arrival time that fulfills the above condition, then the
value of DA[B] is set to true when arc (sA,dc2) is scanned, and
weights are set to w(sA,dc1) = td(c1)− x and w(sA,dc2) = ∞.
Hence, dc2 will never be part of a solution to the associated
EAP query. Note that ties can be broken arbitrarily. The overall
DTM-Q search is stopped as soon as the switch node sT ,
associated to the arrival station T , is extracted from the queue.
The arrival time tT , which is given by dist(sS,sT) + tS, is
accordingly returned.

Algorithm DTM-Q can be adapted to answer a MNTP query
(S,T, tS), by slightly modifying it as follows. First, vector D is
not needed. Second, when a switch node sA is extracted from
the priority queue with associated connection c′, then all the
switch arcs outgoing it that satisfy transfer time constraints
(Inequality (1)) are enabled, and the weight of each switch
arc (sA,dc) is set to 0, if Z(c) = Z(c′), and to 1 otherwise.

2) The Update Algorithm: We now turn to the update
algorithm (DTM-U) that handles delays. Let us assume that we
are given a timetable T , a delay ∆ occurring on a connection
c of T , and the corresponding disposition timetable T ′. If T
is represented as a dynamic timetable graph G, then the DTM
update algorithm computes the dynamic timetable graph G′

corresponding to T ′ as follows. For the sake of clarity and

3

 S
B

10

25

32

46

50

40

∞ ∞ ∞

8

5

5

∞

∞

35

11

∞

45

∞

S
C

3

6

2

15

5

23 ∞

Station B Station C Station A

31

4

Fig. 2. Handling delays in the DTM model. A delay of 20 minutes induces
two arc weight changes (red arcs) and the update of the time associated to
the corresponding departure nodes (red nodes).

in order to better illustrate how DTM-U works, we make use
of a running example based on the very same Station B of
Figures 1 (before a delay) and 2 (after a delay). We assume
that the vehicle’s delay is ∆ = 20 mins.

First, the weight of both the connection arc (dc,sS′) and that
of the vehicle arc (dc,dĉ) is updated by adding the amount
∆(mod 1440), where S′ = Sa(c) and dĉ is the departure node
of S′ such that Z(c) = Z(ĉ) (if any). An example of this
behavior is shown in Figure 2, where the weight of connection
arc connecting departure node 4 of Station A to switch node
sB of Station B, and the weight of the vehicle arc connecting
the same departure node to the departure node 15 of Station
B, are increased by ∆ = 20.

Second, for each connection c′ that is affected by the delay
occurring on c, i.e., such that the departure time in T differs
from that in T ′, the time reference of the departure node dc′ is
updated by adding ∆(mod 1440). An example of this behavior
is shown in Figure 2 where the departure nodes of Station
B and C, originally having departure times 15 and 26 (see
Figure 1), respectively, are updated to the delayed departure
nodes of Station B and C, having departure times 35 and 46,
respectively.

Note that the search for affected connections c′ can be
done by performing a graph visit of G, starting from the
departure node dc, and by selecting, during the visit, all
connections c′ such that Z(c′) = Z(c). Note also that, some
further computation is required in the case G is used to
answer EAP queries. In this case, the update of arc weights
and time reference might break the ordering within the array
representing the arcs. In order to restore this ordering, it is
enough to compare the new values of arrival times of the few
changed arcs and swap them, within the array, if needed. For
instance, departure node 15 of Station B in Figure 1 is moved
down by two positions in Figure 2 in order to restore the
proper ordering with respect to departure time, while departure
node 26 of Station C in Figure 1 keeps its position despite the
increase.

B. Engineering the Core Algorithmic Services

To further boost performance, we have further engineered
the DTM-Q algorithm along four axes, resulting in DTM-QH.

First, we apply to DTM-Q a modification of the general
node blocking technique [3]. The goal is to prune the search
by reducing the size of the Dijkstra’s PQ. In particular, if
nodes, belonging to a station that has already been reached
(i.e., its switch node has already been settled by the visit), are
touched (either visited for the first time or not), then they are
immediately discarded and not inserted in PQ, thus resulting
in reduced PQ overall size and number of PQ operations.

Second, we apply to DTM-Q a “runtime” modification of
the omitting nodes technique proposed for reducing the size
of time-expanded graph in [8]. In particular, we omit nodes
with out-degree equal to one at runtime as follows: when the
query routine touches a node x with out-degree equal to one,
the relaxation depth is extended to two, node x is not inserted
in PQ, and the target node of the single arc outgoing x is
evaluated, to check whether it provides an improvement w.r.t.
to the current shortest path search. This reduces the average
PQ size and the number of PQ operations.

Third, we apply to DTM-Q a slightly different topological
approach in order to reduce the unnecessary exploration and
labeling on nodes and arcs during the query phase. In this
variant, at each station, the switch arcs are grouped by adjacent
arrival station and then for each group its arcs are sorted by
arrival time. Therefore, when an adjacent arrival station S is
reached, the whole group of the switch arcs heading to S can
be skipped directly. Also in the procedure for handling delays
this reduces the swap arc operations which are now limited
only in the affected station’s grouped arcs.

Fourth, we enhance DTM-Q with ALT [4], a simple and
widely used goal-directed speed-up technique that pushes the
shortest-path search faster towards the target node/station, and
further boots query performance. The main idea of ALT is to
assign feasible potential to the priority of each node in the
queue. Given a subset of nodes L ⊆ V called landmarks, the
feasible potential of a node u ∈V towards a target t is defined
as πt(u) = max`∈L max{d(u, `)− d(t, `);d(`, t)− d(`,u)}. By
the triangle inequality, it follows that πt(u) is a lower bound
to d(u, t). It is easy to see that the tighter the lower bounds
are, the more narrowed the search space is, and hence the
faster the query algorithm performs. Choosing good landmarks
that provide tight lower bounds is a fundamental part of
the preprocessing phase of ALT. In our case, we select as
landmarks the switch nodes, each of which represents the
arrival node group of a station. Therefore the lower bound
distance, dist(sA,sB), between two switch nodes, sA and sB,
denotes the minimum travel time among connections traveling
from station A to station B. These lower bound distances can be
computed during the preprocessing phase by running single-
source queries from each switch node.

IV. THE JOURNEY PLANNER

The journey planner is a cloud-based application that has
a server-side residing in the cloud and a client side. The

4

Fig. 3. City selection.

server-side is listening to user journey planning requests
over TCP or HTTP/HTTPS communication modes. The input
journey planning requests contain the user’s selected origin
and destination geographical points, departure time from the
origin and transport modes. For each such request the service
computes the requested best journey for the corresponding
input query and sends it back to the client. The output of the
cloud service is a sequence of points, along with info about
the used transport modes and the departure/arrival times at
each point of the journey, in JSON format. The service for the
journey computation uses timetable data sets, in the General
Transit Feed Specification (GTFS) format [11], containing
stops, stations, various means of public transport (e.g., train,
bus) connecting stations/stops, and departure/arrival times of
the public transport means at each stations/stops. The timetable
data are represented as a DTM graph.

Our mobile client application was developed for an An-
droid environment. It implements the User Interface (UI) and
the cloud-client communications from and to other services,
including journey assessment.

The functionality of our mobile applications is shown in
Figures 3, 4, and 5. Figure 3 shows the step of selecting a
city in which a user may plan to travel. Figure 4 shows the
result of an EAP query. The users can perform an EAP query
by selecting an origin point, a destination point and a departure
time from the origin. The computed optimal journey, which is
sent by the cloud-service, is projected on the map. Figure 5
shows the transport mode selection option for the users on the
EAP query.

We also conducted various studies for assessing the practical
performance of our journey planner. First, it was used in
a pilot application (as part of the cloud platform developed
within [6]) in the city of Vitoria-Gasteiz (autumn 2016). The
public transportation system of Vitoria-Gasteiz consisted of
355 stations and 129,050 elementary connections, resulting
in a DTM graph of 113K nodes and 335K arcs. Our journey
planner achieved an average of 0.15ms for answering a query,

Fig. 4. Map and best journey query.

Fig. 5. Transport mode selection.

and of 1.2µs for updating the timetable after a delay.
Second, we conducted an extensive experimental study with

real-world timetables that were provided by [5], [9], [10].

5

Fig. 6. Organicity platform high level architecture.

These data sets contained (among others) the metropolitan
public transport networks of Athens, Berlin, London, and
Madrid. The biggest in size was that of London, consisted
of 20,843 stations and 14,064,967 connections, resulting in
a DTM graph of 14,085,810 nodes and 41,837,355 arcs.
In that instance, our journey planner achieved an average of
10.25ms for answering a query, and of 271.46µs for updating
the timetable after a delay. More details can be found in [2].

To help the users assess the quality of the journeys sug-
gested by our planner, we developed an additional journey
assessment service (JAS) that has been built upon the core
services offered by the Organicity IoT/FIRE+ platform [7]. In
particular, Organicity (OC) provides an Experimentation-as-a-
Service framework (EaaS API; cf. Figure 6) which supports,
among others, the building of services for experimentation.

JAS builds upon the OC EaaS framework. It receives the
journey assessments made by the mobile users. The commu-
nication is performed with HTTPS POST requests over three
steps: (1) the client sends its authorization credentials; (2)
the JAS sends an access token to the client to authorize him
sending an assessment; and (3) finally the client sends the
journey assessment. The journey assessment data is in JSON
format, consisting of the user rate and his/her review about the
returned journey. The option for enabling the journey’s assess-
ment (Figure 5, option “Evaluate”) enables the assessment of
the journey, shown in Figure 7, where the mobile users can
submit their rate and review.

V. CONCLUSION

We described a cloud-based mobile journey planner, enforc-
ing mobility in a public transport system, and which is able
to adapt timetable updates, caused by vehicle delays, in real-
time. Our next challenge is to extend the journey planner to
accommodate answering journey requests that involve more
than one criteria.

Fig. 7. Journey assessment.

ACKNOWLEDGMENT

We would like to thank D. Amaxilatis for assisting us
with the Organicity platform. This work has been partially
supported by the EU FP7/2007-2013 under grant agreements
no. 609026 (project MOVESMART), no. 621133 (project
HoPE), and by the DFG grant WA 654/23-1 within FOR 2083.

REFERENCES

[1] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. F. Werneck. Route planning in
transportation networks. In Algorithm Engineering - Selected Results
and Surveys, Lecture Notes in Computer Science Vol. 9220 (Springer
2016), pp. 19–80.

[2] A. Cionini, G. D’Angelo, M. D’Emidio, D. Frigioni,
K. Giannakopoulou, A. Paraskevopoulos, and C. D. Zaroliagis.
Engineering graph-based models for dynamic timetable information
systems. In Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems – ATMOS 2014, OASICS Vol. 42 (2014),
pp. 46–61.

[3] D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded
graphs for faster timetable information. In Robust and Online
Large-Scale Optimization, Lecture Notes in Computer Science
Vol. 5868 (Springer, 2009), pp. 182–206.

[4] A. Goldberg and C. Harrelson. Computing the shortest path: A*
search meets graph theory. In ACM-SIAM Symposium on Discrete
Algorithms (SODA 2005), (SIAM, 2005), pp. 156–165.

[5] HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.
[6] MOVESMART project. http://www.movesmartfp7.eu/.
[7] ORGANICITY project. http://organicity.eu/.
[8] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models

for timetable information in public transportation systems. ACM
Journal of Experimental Algorithmics, 12(2.4):1–39, 2008.

[9] Transit Feeds. https://transitfeeds.com.
[10] Transport for London. https://tfl.gov.uk.
[11] General Transit Feed Specification.

https://developers.google.com/transit/gtfs.

6

