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In the last years we have witnessed remarkable progress in providing efficient algorithmic 
solutions to the problem of computing best journeys (or routes) in schedule-based public 
transportation systems. We have now models to represent timetables that allow us to 
answer queries for optimal journeys in a few milliseconds, also at a very large scale. Such 
models can be classified into two types: those representing the timetable as an array, and 
those representing it as a graph. Array-based models have been shown to be very effective 
in terms of query time, while graph-based ones usually answer queries by computing 
shortest paths, and hence they are suitable to be combined with the speed-up techniques 
developed for road networks.
In this paper, we study the behavior of graph-based models in the prominent case of 
dynamic scenarios, i.e., when delays might occur to the original timetable. In particular, we 
make the following contributions. First, we consider the graph-based reduced time-expanded 
model and give a simplified and optimized routine for handling delays, and a re-engineered 
and fine-tuned query algorithm. Second, we propose a new graph-based model, namely the 
dynamic timetable model, natively tailored to efficiently incorporate dynamic updates, along 
with a query algorithm and a routine for handling delays. Third, we show how to adapt the 
ALT algorithm to such graph-based models. We have chosen this speed-up technique since 
it supports dynamic changes, and a careful implementation of it can significantly boost 
its performance. Finally, we provide an experimental study to assess the effectiveness of 
all proposed models and algorithms, and to compare them with the array-based state of 
the art solution for the dynamic case. We evaluate both new and existing approaches by 
implementing and testing them on real-world timetables subject to synthetic delays.
Our experimental results show that: (i) the dynamic timetable model is the best model 
for handling delays; (ii) graph-based models are competitive to array-based models with 
respect to query time in the dynamic case; (iii) the dynamic timetable model compares 
favorably with both the original and the reduced time-expanded model regarding space; 
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(iv) combining the graph-based models with speed-up techniques designed for road 
networks, such as ALT, is a very promising approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computing the best route in a schedule-based public transportation system (consisting, e.g., of trains, buses, trams, etc) is 
a problem that has been faced at least once by everybody who ever traveled. In particular, the so-called journey planning
problem is defined as follows: given an input timetable associated to the transportation system, one wants to answer queries 
like: “What is the best route from some station A to some other station B if I want to depart at time t?”.

Despite its simple formulation, the journey planning problem is much more challenging with respect, for instance, to 
the classic route planning problem in road networks. In fact, schedule-based transportation systems exhibit an inherent 
time-dependent component that requires more complex modeling assumptions in order to obtain meaningful results. For 
this reason, nowadays, public transportation companies have invested a lot of effort in developing on-line software, called 
journey planners, which are able to efficiently answer to such kind of queries and to provide best routes with respect to 
some desired metrics.

Depending on the considered metrics and modeling assumptions, the journey planning problem can be specialized into 
a plethora of optimization problems. A first set of problems can be defined by considering different objective functions. If, 
for instance, the best route (a.k.a. optimal) is the one that minimizes the traveling time required to complete the journey, 
then the problem is called the earliest arrival time problem. Another, yet simpler and less considered, variant of the problem 
is to find the best route that minimizes the number of times that a passenger has to move from one vehicle of the system 
to another, during the journey. This version of the problem is called the minimum number of transfers problem. Sometimes, 
these two optimization criteria might be considered in combination (bi-criteria problem), possibly alongside further criteria 
(like, e.g., monetary cost). In this case, the problem is generally referred as the multi-criteria problem.

Further specializations can be obtained according to the level of abstraction at which the problem has to be solved. If, for 
instance, one wants to model (and optimize) the time required by a passenger for moving from one vehicle to another one 
within a station (i.e., transfer time), then the problem is referred to as realistic [31] while, when such an issue is ignored, the 
problem is referred to as ideal or basic. In this paper, we focus only on the realistic journey planning problem. Furthermore, 
if the departure time is within a time interval rather than be a single value, then the problem is called profile or range
problem. We refer to the very recent survey of Bast et al. [3] for a comprehensive overview on journey planning.

1.1. Related work

The great variety of models proposed in the literature to solve the mentioned variants of the journey planning problem 
can be broadly classified into two categories: those representing the timetable as an array, and those representing it as a 
graph (see e.g., [3]).

Two of the most successful (and effective) examples of the array-based model are the Connection Scan Algorithm 
(CSA) [20] and the Round-bAsed Public Transit Optimized Router (RAPTOR) [17]. In CSA all the elementary connections of 
a timetable are stored in a single array which is scanned only once per query. The acyclic nature of some timetables is 
exploited to solve the earliest arrival problem. In RAPTOR the timetable is stored as a set of arrays of trips and routes which 
are used by a dynamic programming algorithm to solve the bi-criteria problem. Recently, some faster approaches in terms 
of query time with respect to the two aforementioned methods, have been proposed in [18] and in [37].

The graph-based models, instead, store the timetable as a suitable graph and execute known adaptations of Dijkstra’s 
shortest path algorithm to compute optimal routes. There exist two main approaches of this kind: the time-expanded and the 
time-dependent model [31]. The former model explicitly represents each time event (departure or arrival) in the timetable 
as a node. The arcs represent elementary connections between two events or waiting within stations, and their weights 
usually represent the time difference between the corresponding events. The latter model represents each station as a 
node and there is an arc between two nodes if there exists at least one elementary connection between the two stations 
represented by such nodes. The weight of an arc is time-dependent, i.e., it is a function that depends on the time at which a 
particular arc is scanned during the shortest path search. The time-expanded model produces a graph with a larger number 
of nodes and arcs with respect to the time-dependent model, and thus larger query times. A variant of the time-expanded 
model having a smaller number of nodes and arcs (the so called reduced time-expanded model) has been proposed in [31]. 
Graph-based models can in general be easily adapted to solve the multi-criteria problem as well as RAPTOR [3].

Experimental results have shown so far that the array-based approaches are faster in terms of query time than graph-
based ones [3,19,20], as they are able to better exploit data locality and do not rely on priority queues. On the other 
hand, array-based approaches have been tested on metropolitan-size instances that span a time period of one day, while 
graph-based approaches can be used in periodic timetables (i.e., that span more than one day), and therefore the latter 
are more suitable to handle queries in large-scale networks. Moreover, during the last years, a great research effort has 
been devoted to devise many so-called speed-up techniques, which heuristically speed up Dijkstra’s algorithm for shortest 
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paths (see, e.g., [3,4]). These techniques are mainly focused on finding optimal routes on road networks, where they exhibit 
a huge speed-up factor over the basic Dijkstra’s algorithm. Therefore, a promising approach could be that of adapting the 
speed-up techniques devised for road networks to timetable graphs (see, e.g., [5,16]). Following this direction, a modifica-
tion of the realistic time-expanded model has been proposed and shown to harmonize well with several known speed-up 
techniques [16].

Another limit of the graph-based models seems to be that they are not suitable to incorporate dynamic changes in 
the timetable. In fact, if the time duration of some connection changes (e.g., due to the delay of a train), the graph may 
not properly represent the modified timetable, and hence the computed route could be not optimal or even not feasible. 
As an example, a case study for the public transport system of Rome has shown that exploiting the published timetable 
does not lead to optimal or nearly-optimal routes [23]. Updating the graphs according to the modification in the timetable is 
time-consuming and in many cases it requires topological changes of the graph (i.e., arc or node additions and deletions) [15].

Moreover, although some speed-up techniques have been proposed for road networks which allow to handle dynamic 
updates [6,11–14,21,33,36], these techniques are in turn not able to handle possible changes in the timetable. This is due 
to the fact that most of them are based on the pre-computation of additional information that is later exploited to answer 
queries. When a timetable modification occurs, the preprocessed information is no longer reliable and must be re-computed 
from scratch, usually requiring a long computational time. Of particular impact are again the topological changes in the 
graph. The dynamic behavior of Transfer Patterns, a speed-up technique specifically developed for public transportation 
system [1], has been studied in [2]. It is shown that without performing the preprocessing from scratch that technique 
gives optimal results for the vast majority (but not for all) of the queries. An online problem where delays are continuously 
reported to the journey planner has been studied in [30].

Regarding array-based models, CSA and RAPTOR are suitable to handle dynamic changes of the timetable since they are 
not based on preprocessing, although there is no experimental evidence of this feature in the literature. Concerning the fast 
approaches in terms of query time given in [18] and in [37], the first is clearly not applicable to dynamic scenarios due 
to its huge preprocessing time, while the second looks more suitable, even though it needs around 6 minutes of (single 
threaded) preprocessing on a snapshot that models the public transportation system of London (with around 5 millions 
connections) in a fixed time interval.

1.2. Our contribution

This work aims at overcoming the limits of graph-based models by improving their performance, in order to be suitably 
used in realistic dynamic scenarios, while still offering competitive query times. More specifically, we make the following 
contributions.

• First, we focus on the realistic and reduced time-expanded models by providing a simplified and optimized version of 
the update routine in [15]. This new routine is used in combination with the dynamic packed-memory graph structure 
[29], which is able to efficiently handle topological changes to the graph. Furthermore, we heuristically improve the 
query algorithm for the time-expanded models, which results in significant improvements in query time.

• Second, we propose a new graph-based model for representing timetable information, called dynamic timetable model
(DTM in short), that reduces the number of changes needed in the graph as a consequence of a timetable modifica-
tion. Alongside we give both a query and an update algorithm for handling delays. The DTM model does not require 
any topological change to the graph and updates only few arc weights. At the same time, DTM is not based on time-
dependent arc-weights, thus allowing to easily incorporate realistic constraints. Moreover, DTM produces a graph having 
a smaller number of nodes and arcs than the reduced time-expanded graph [31], and therefore, occupies less memory 
space. Also, this new model is implemented in combination with the dynamic graph structure in [29].

• Third, since both the above models are based on graph representations, they are suitable for combination and adaptation 
with known speed-up techniques. To demonstrate this fact, we show how to adapt the unidirectional ALT algorithm [25]
to such models. We have chosen ALT since it supports dynamic changes [13], and since a careful implementation of it 
can significantly boost its performance [22].

• Fourth, we conducted a comparative experimental study of all these implementations on several local and long-distance 
European public transportation timetables, including the country-sized timetables of Sweden and Switzerland, and the 
metropolitan-sized timetables of Athens, Rome, Madrid, Berlin and London. Our study shows that: (i) Both the reduced 
time-expanded model and DTM require negligible update time (order of microseconds) after the occurrence of a delay. 
In particular, the time required by DTM is always the smallest one among all the tested models. (ii) The space required 
by DTM is smaller than that required by the time-expanded models. (iii) The new heuristic query algorithm for the 
reduced time-expanded model combined with ALT outperforms other existing methods and demonstrates query times 
similar to those of array-based methods. In particular, we compared the query time of our graph-based models against 
RAPTOR [17] on the largest metropolitan area instance at our disposal (London). Our experiments showed that graph-
based models are competitive to RAPTOR in terms of query time, and that the reduced time-expanded query algorithm, 
when equipped with ALT, is faster than RAPTOR.
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1.3. Overview of the paper

The paper is organized as follows. In Section 2 we give our notation and definitions for the considered problems. In 
Section 3 we describe the realistic time-expanded model, while in Section 4 we focus on its reduced version and provide 
an engineered query algorithm along with a simplified and optimized update routine. In Section 5 we introduce our new 
model along with its query and update algorithm and the corresponding proofs of correctness and complexity. In Section 6, 
we show how to adapt the unidirectional ALT algorithm to graph-based models. In Section 7 we present an experimental 
study to assess the performance of all presented approaches. Finally, in Section 8 we conclude the paper and suggest some 
future research directions.

2. Preliminaries

A timetable consists of data concerning: stations, vehicles (like, e.g. trains, bus or any other means of public transporta-
tion) connecting stations, and departure and arrival times of trains at stations. More formally, a timetable T is defined 
by a triple T = (Z, B, C), where Z is a set of vehicles, B is a set of stations (sometimes in the literature also referred as 
stops), and C is a set of elementary connections whose elements are 5-tuples of the form c = (Z , Sd, Sa, td, ta). Such a tuple 
is interpreted as vehicle Z ∈ Z leaves station Sd ∈ B at time td , and the immediately next stop of vehicle Z is station 
Sa ∈ B at time ta . If x denotes a tuple’s field, then the notation x(c) specifies the value of x in the elementary connection c
(e.g., td(c) denotes the departure time in c). The departure and arrival times td(c) and ta(c) of an elementary connection 
c within a day are integers in the interval {0, 1, . . . , 1439} representing time in minutes after midnight. We assume that 
|C| ≥ max{|B|, |Z|}, as we do not consider vehicles and stations that do not take part to any connection.

Given two time instants t1, t2, we denote by �(t1, t2) the time that passes between them, assuming that t2 occurs af-
ter t1, i.e. �(t1, t2) = t2 − t1( mod 1440). The length of an elementary connection c, denoted by �(c), is the time that passes 
between the departure and the arrival times of c assuming that c lasts for less than 24 hours, i.e. �(c) = �(td(c), ta(c)).

Given an elementary connection c1 arriving at station S and an elementary connection c2 departing from the same 
station S , if Z(c1) �= Z(c2), it follows that it is possible to transfer from Z(c1) to Z(c2) only if the time between the arrival 
and the departure at station S is larger than or equal to a given minimum transfer time, denoted by transfer(S). We assume 
that transfer(S) is always smaller than 1440, for each S ∈ B. An itinerary (a.k.a. a journey) in a timetable T is a sequence of 
elementary connections P = (c1, c2, . . . , ck) such that, for each i = 2, 3, . . . , k, Sa(ci−1) = Sd(ci) and

�(ta(ci−1), td(ci)) ≥
{

0 if Z(ci−1) = Z(ci)

transfer(Sa(ci−1)) otherwise.

We say that the itinerary starts from station Sd(c1) at time td(c1) and arrives at station Sa(ck) at time ta(ck). The length
�(P ) of an itinerary P is given by the sum of the lengths of its elementary connections plus the associated transfer times, 
i.e. �(P ) = ∑k

i=1 �(ci) + �(ta(ci), td(ci + 1)).
A timetable query is defined by a triple (S, T , tS) where S ∈ B is a departure station, T ∈ B is an arrival station and tS is 

a minimum departure time. There are two natural optimization criteria that are used to answer to a timetable query. They 
consist in finding an itinerary from S to T which starts at a time after tS with either the minimum arrival time or the 
minimum number of vehicle transfers. Such two criteria define the following optimization problems ([31]):

• The Earliest Arrival Problem (EAP) is the problem of finding an itinerary from S to T which starts at a time after tS and 
arrives at T as early as possible.

• The Minimum Number of Transfers Problem (MNTP) is the problem of finding an itinerary from S to T which starts at a 
time after tS and has as few transfers from a vehicle to another one as possible.

Given a timetable T , a delay occurring on a connection c is modeled as an increase of d minutes on the arrival time, 
t′
a(c) = ta(c) +d( mod 1440). The timetable is then updated according to some specific policy which depends on the network 

infrastructure. The obtained timetable is called disposition timetable T ′ and it differs from T for the arrival and departure 
times of the vehicles that depend on Z(c) in T (see e.g. [8,9,24,28,32] for examples of policies used to update a timetable).

We assume that the policy adopted is that no vehicle waits for a delayed one. Therefore, when a delay occurs on a 
connection c, the only time references which are updated are those regarding the departure times of Z(c). Moreover, we 
assume that the policy does not take into account any possible slack times and hence the time references are updated by 
adding d( mod 1440).

3. The realistic time-expanded model

In this section, we briefly summarize the characteristics of the realistic time-expanded model, along with its query and 
update algorithms.
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Fig. 1. A realistic time-expanded graph. Arrival, transfer, and departure nodes are drawn in blue, gray and yellow, respectively. Connection and arrival-
departure arcs are drawn in blue and green, respectively. Arcs with at least one transfer node as endpoint are drawn in black. The minimum transfer time 
is 5 mins. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

3.1. Model

In the realistic time-expanded model [31], a timetable is modeled as a directed graph, the realistic time-expanded graph, 
as follows: for each elementary connection one departure and one arrival node are created and a connection arc is inserted 
between them. For each departure event, one transfer node is created which connects to the respective departure node by 
a transfer-departure arc having weight 0. This is done to model transfers within stations. Given a node u, t(u) denotes the 
timestamp of u with respect to the original timetable. To ensure a minimum transfer time at a station S , an arrival-transfer
arc from each arrival node u is inserted to the smallest w.r.t. timestamp transfer node v such that �(t(u), t(v)) ≥ transfer(S).

To ensure the possibility to stay in the same vehicle when passing through a station, an additional arrival-departure arc 
is created which connects the arrival node with the appropriate departure node belonging to this same vehicle. Further, to 
allow transfers to an arbitrary vehicle, transfer nodes are ordered in a non-decreasing way with respect to the timestamps. 
Two adjacent nodes, with respect to the above ordering, are connected by a transfer-transfer arc from the smaller to the 
bigger, in terms of timestamp, node. To allow transfers over midnight, an overnight-arc from the node with the biggest 
timestamp to the one with the smallest timestamp is created. The weight of such arc is equal to the difference of the 
two timestamps modulo 1440. For each arc e = (u, v), in the realistic time-expanded graph, the weight w(e) is defined 
as the time difference �(t(u), t(v)). Hence, for each path from a node u to another node v in the graph, the sum of the 
arc weights along the path is equal to the time difference �(t(u), t(v)). Storing this graph requires O (|C|) space, as it has 
n = 3|C| nodes and 4|C| ≤ m ≤ 5|C| arcs. Fig. 1 shows a realistic time-expanded graph.

3.2. Query algorithm

In a realistic time-expanded graph G , given a timetable query (S, T , tS ), the earliest arrival problem can be solved by 
computing a shortest path from s to t in G , for instance by running Dijkstra’s algorithm [3] and quitting the algorithm 
as soon as t is settled. In particular, s is the transfer node with the smallest timestamp within station S such that the 
timestamp associated to s, namely t(s), is greater or equal than tS . If no such node exists, then s is selected as the node 
among the transfer nodes of S such that t(s) is minimum. Node t is an arrival node within station T with minimum distance 
to s, i.e., the first node of T that is extracted from Dijkstra’s priority queue.

Note that the realistic time-expanded graph can easily be used to solve also MNTP. In fact, it is enough to modify the 
weight function of the graph by setting a weight of 1 to any arc that models a transfer in a station and a weight of 0 to 
any other arc. In particular, the weights of all the incoming arcs of transfer nodes which come from an arrival node are set 
to 1. In both cases, the query algorithm requires O (|C| log |C|) time in the worst case. In the remaining of the paper, for the 
sake of simplicity, we denote the above query algorithm as TE-Q.

3.3. Update algorithm

We now show how the realistic time-expanded graph has to be updated in order to reflect possible delays occurring on 
the input timetable, i.e., when a vehicle is delayed, by presenting the approach in [15]. In the remainder of the paper, for 
the sake of simplicity, we denote such update algorithm as TE-U. In particular, when a vehicle is delayed, it is not sufficient 
to simply increase the travel time of the delayed vehicle in the time-expanded model, i.e., the weight of the connection arc. 
Instead, also arcs within stations, like e.g., arrival-transfer arcs, have to be updated; that is, we have to change their weight 
and/or rewire them. As a consequence the update routine consists of three steps as follows.
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Fig. 2. The reduced time-expanded graph corresponding to the realistic time-expanded graph of Fig. 1. Arrival nodes are drawn in blue while departure 
nodes, ordered by departure time, are drawn in yellow. Arrival nodes are now connected directly to departure nodes. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

Step 1 (Increase Connection Weight). We identify the delayed connection and increase the weight of the associated con-
nection arc only. Any other connection arc stays untouched.

Step 2 (Update Station Arcs). For all subsequent stations the delayed vehicle stops we have to update both transfer-
departure and arrival-transfer arcs. For the former, we simply increase its weight from 0 to the delay �, while for 
the latter we decrease the weight of each arrival-transfer arc by �.

Step 3 (Validate Station Arcs). The final step checks for every altered arrival-transfer arc, whether these arcs are still valid, 
i.e., the arc weight, after the increase of �, is still bigger than the transfer time of the associated arrival station. If 
the arc is still valid, we are done. Otherwise, the arc has to be rewired. That is, the target node has to be changed to 
the next “reachable” transfer node, namely the first node resulting in a valid arrival-transfer arc, i.e., the one with a 
timestamp greater than the updated arrival time of the vehicle.

Note that the first two steps require O (1) and O (|C|) time, respectively. The third step, instead, requires O (|C| log |C|)
because a binary search over the departure nodes is required in order to properly rewire each non-valid arc.

4. The reduced time-expanded model

In this section, we describe a variant of the realistic time-expanded model, originally introduced in [31], called reduced
(realistic) time-expanded model, which we adopted in order to decrease the size of the realistic time-expanded graph. 
For this model, we provide a re-engineered and fine-tuned query algorithm, as well as a simplified and optimized update 
routine for handling delays.

4.1. Model

The main difference between the reduced and the original time-expanded model is that, in the reduced version, both 
transfer nodes and transfer-departure arcs are removed from the graph, without any loss of information and abstraction. 
In particular, departure nodes are merged with their corresponding transfer nodes and arrival nodes are connected directly 
to departure nodes. Also, if there is an arrival-departure arc between two stations s1 and s2 in the original realistic time-
expanded graph, then such an arc is transformed to directly connect the corresponding arrival nodes of s1 and s2 in the 
reduced model.

This results in a reduction in the graph size by |C| nodes and |C| arcs, and therefore in a shorter traversal time of the 
graph. Fig. 2 shows the reduced time-expanded graph corresponding to the realistic time-expanded graph of Fig. 1.

4.2. Query algorithm

In what follows, we propose a variant of the Dijkstra’s algorithm used for the realistic time-expanded graph, named TE-
QH, which exploits the model structure and some restrictions, in order to improve the query time. Note that the asymptotic 
worst-case behavior is not affected, and that the query algorithm still requires O (|C| log |C|) time. However, in Section 7 we 
will show that our approach results in a much better query time in practice. More specifically, our approach is as follows.

First, in order to reduce the size of the priority queue of the Dijkstra’s algorithm, we insert in it only arrival nodes. 
This can be beneficial because the computation cost of the algorithm highly depends on the number of priority queue 
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Fig. 3. Handling delays in the reduced time-expanded model. Those arcs, as well as departure and arrival nodes of the delayed vehicle that need to be 
updated are drawn in red. The delay is 20 mins. Dotted arcs are those existed before the delay and which after the update procedure are removed. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

operations, whose computational cost depends, in turn, on the overall size of the queue. However, in order to preserve the 
correctness of the algorithm with respect to the original query algorithm, we extend the arc relaxation depth only for the 
case of departure nodes. That is, for each arc relaxation, when the head of an arc is a departure node and its distance label 
is updated, we also forward the arc relaxation to the outgoing arcs of that node. In that case, the arc relaxation depth is 
upper bounded by the number of departure nodes, exploiting a suitably defined acyclic component between the adjacent 
stations. This acyclic component, between two adjacent stations sA and sB , consists of all v1, v2, ..., vk−1, vk simple paths, 
where v1 is an arrival node of sA , v2, .., vk−1 departure nodes of sA , and vk is an arrival node of the neighbor station sB . 
For example, in Fig. 2, the acyclic subgraph, between stations B and C, is induced by arrival node 7 and departure nodes 
15, 25, 32 in station B and arrival nodes 20, 33, 37 in station C, and also via the corresponding 7–15–20, 7–15–25–33 and 
7–15–25–32–37 paths.

Second, in order to narrow the search space, we modify the node exploration criteria in order to be more selective. In 
particular, taking as a reference the source station sS , while executing Dijkstra’s algorithm, we keep trace of the earliest 
arrival time to stations that are currently reached by the algorithm. In general, between two adjacent connected stations, 
sA and sB there may be many multiple routes, at different departure times from sA . The goal is to exclude from the 
search those that are not part of an optimal path. To achieve this, we exploit the fact that departure nodes are sorted in 
non-decreasing order with respect to the associated timestamp. Therefore, at a certain step of the execution of the query 
algorithm, we can skip (i.e., exclude from the search) all those departure nodes whose departure time is higher than the 
current minimum arrival time to sB plus (as offset for the realistic model case) the transit time of sB . Obviously, the skipped 
departure nodes cannot provide a solution to the earliest arrival problem for the query. Note that the proposed heuristic 
can be clearly used in combination with other speed-up techniques (such as ALT). We will show in the experimental section 
that such combination provides a significant improvement in the performance of the query algorithm.

4.3. Update algorithm

In what follows, we describe how we have engineered, simplified, and optimized the update routine of Section 3.3, 
designed for realistic time-expanded graphs, in order to work also on reduced time-expanded graphs. Note that, the worst-
case asymptotic time is not affected, but the new update algorithm is significantly faster in practice. In the remaining of the 
paper, for the sake of simplicity, we denote the following update algorithm as TE-UH.

For a better illustration of TE-UH, we use throughout its description a running example based on Station B of Fig. 2
(before a delay) and Fig. 3 (after a delay). Let the vehicle’s delay be � = 20 mins. Firstly, we increase by � the weight of the 
incoming arcs of the arrival node in the station (B) which correspond to the delayed vehicle (the incoming arcs of arrival 
node 7 in Fig. 2, and the incoming arcs of delayed arrival node 27 in Fig. 3). Secondly, for each station that the delayed 
vehicle passes through, we update the affected arrival-departure and departure-departure arcs, by changing their weight 
and/or rewiring them. In each such station, a pair of a delayed arrival node x (the arrival node 7 in Fig. 2, and the delayed 
arrival node 27 in Fig. 3) and a delayed departure node y (the departure node 15 in Fig. 2, and the delayed departure node 
35 in Fig. 3) is introduced. Depending on the magnitude of the delay, there can be at least one arrival node that should be 
linked with a new earliest departure node. This requires a modification of the topology of the reduced time-expanded graph, 
in order to remain valid. The affected arcs are only within stations, and specifically those satisfying one of the following 
conditions:
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• Their tail endpoint is the delayed arrival node x (the arc from arrival node 7 to departure node 15 in Fig. 2, and the arc 
from arrival node 27 to departure node 32 in Fig. 3).

• Their head endpoint is the delayed departure node y, through which the vehicle continues its travel to another station 
(the arc from arrival node 10 to departure node 15 in Fig. 2, and the arc from arrival node 10 to departure node 25 in 
Fig. 3).

• Their head endpoint is the successor (in time) of departure node of y (the arc from arrival node 30 to departure node 
45 in Fig. 2, and the arc from arrival node 30 to departure node 35 in Fig. 3).

To maintain the invariant of keeping the departure nodes sorted according to their timestamp, we have to move the 
delayed departure node in its proper position. This is performed in a way similar to moving a node from one location to 
another in a linked list. Then, we only need to link the affected arrival nodes with the proper departure nodes so that 
transfer times constraints within the station are still satisfied. Alongside, we update the arcs with the new correct weights. 
The above operations require only changing the node pointers of the arcs and the weights, which minimizes the update 
cost, and, in contrast to the original approach it keeps the number of arcs constant. Fig. 3 shows the result of execution of 
the presented update algorithm on the reduced time-expanded graph of Fig. 2, in case of a 20 minutes delay.

The only disadvantage of this approach is that the departure nodes may now be not optimally sorted within the memory 
blocks and hence deteriorate the locality of references. In order to reduce the consequent impact on the performance of the 
query time, we initially group and pack together in memory all the departure nodes for each station.

Preliminary experiments that we conducted showed that the new (simplified and optimized) routine is at least 50% 
faster than the original one.

5. The dynamic timetable model

In this section, we introduce our new graph-based approach, called dynamic timetable model (DTM for short), along with 
a suitable query algorithm, to solve both EAP and MNTP, and an update algorithm for handling delays.

5.1. Model

Given a timetable T = (Z, B, C), we define a directed graph G = (V , E) called dynamic timetable graph and an associated 
weight function w : E →N as follows:

• For each station S in B, a node sS , called switch node of S , is added to V ;
• For each elementary connection c = (Z , Sd, Sa, td, ta) ∈ C a node dc , called departure node of c, is added to V and an arc 

(dc, sSa ), called connection arc of c, connecting dc to the switch node sSa of Sa , is added to E;
• For each elementary connection c = (Z , Sd, Sa, td, ta) ∈ C an arc (sSd , dc), called switch arc, connecting the switch node 

sSd of the departure station Sd to the departure node dc of c, is added to E;
• For each vehicle Z ∈ Z which travels through the itinerary (c1, c2, . . . , ck), an arc, called vehicle arc, connecting the 

departure node dci of ci with the departure node dci+1 of ci+1 is added to E , for each i = 1, 2, . . . , k − 1;
• The weight of each connection arc (dc, sSa ) is set to w(dc, sSa ) = �(ta(c), td(c));
• The weight of each vehicle arc (dci , dci+1 ) is set to w(dci , dci+1 ) = �(td(ci), td(ci+1));
• The weight of each switch arc is set to a default infinity value.

In each station, the departure nodes dc are ordered by their arrival time at the immediately next station Sa , i.e., by the 
value td(c) + w(dc, sSa ). Moreover, for each switch node sS , we store the station S it is associated with while, for each 
departure node dc , we maintain both the departure time reference td(c) and the vehicle Z(c) of connection c which dc is 
associated with. Fig. 4 shows the dynamic timetable graph corresponding to the realistic time-expanded graph of Fig. 1.

Theorem 1. Storing the dynamic timetable graph G associated to a timetable T = (Z, B, C) requires O (|C|) space.

Proof of Theorem 1. By the given construction, a dynamic timetable graph G has |B| + |C| nodes and a number of arcs 
which is smaller than or equal to 3|C|. The additional information requires O (|B|) space, for the station stored at each 
switch node, and O (|C|) space for the information stored at each departure node, respectively. The theorem now follows, 
since |C| ≥ max{|B|, |Z|}. �
5.2. Query algorithm

In what follows, we present the query algorithm, named DTM-Q, suitable for solving both EAP and MNTP on DTM 
graphs. We first describe the case of EAP queries and then show how to adapt the algorithm to answer MNTP queries. 
Given a dynamic timetable graph G , an EAP query (S, T , tS) can be answered by executing a modified Dijkstra’s algorithm 
on G , starting from the switch node sS of S , that will be described below.
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Fig. 4. The dynamic timetable graph corresponding to the realistic time-expanded graph of Figure 1. Switch nodes are drawn in blue while departure nodes, 
ordered by arrival time, are drawn in yellow. Inside each departure node the departure time of the corresponding elementary connection is reported. 
Connection arcs are drawn in blue, switch arcs are drawn in black, while vehicle arcs are drawn in green. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

Before discussing the details of the algorithm, we first describe the additional data structures used by DTM-Q with 
respect to the classic Dijkstra’s algorithm. In particular, for each switch node sA of a station A, algorithm DTM-Q stores:

• A vector of boolean flags D A , whose size is given by the number of stations A′ such that there exists an elementary 
connection departing from A and arriving at A′ . We denote the element of D A associated to A′ as D A[A′]. Initially, all 
flags of D A are set to false.

• Along with the distance from sS to sA in the priority queue used by Dijkstra’s algorithm, the associated connection c′
(is stored) such that the arc (dc′ , sA) is the one through which the particular distance has been obtained during a 
relaxation step. For non-switch nodes such an associated connection is assumed to be equal to a default value NIL.

Given the EAP query (S, T , tS), the DTM-Q algorithm works as follows. First, it starts by inserting the switch node sS of 
the departure station S in the priority queue. The distance and connection associated with node sS in the queue are set to 
0 and NIL, respectively. Then, the visit proceeds by extracting nodes, one by one, from the priority queue in a Dijkstra-like 
fashion, while the queue is not empty. When a node is extracted, the behavior of the algorithm depends on the type of the 
extracted node.

Departure nodes are processed like in the classic Dijkstra’s algorithm, i.e., (i) outgoing arcs are scanned and relaxed in 
order to discover shorter paths (if any); (ii) associated neighboring (either departure or switch) nodes are, according to the 
weights of the arcs, either inserted in the priority queue, if they were not present, or their distance is decreased, if possible, 
otherwise.

Switch nodes are processed as follows. Let us consider the time when a switch node sA , associated with a station A ∈ B, 
is extracted from the priority queue. Let dist(sS , sA) be the distance from sS to sA associated to sA in the queue and let c′
be the associated elementary connection through which dist(sS , sA) has been obtained. The value of dist(sS , sA) essentially 
corresponds to the minimum time required to reach station A from station S , departing at time tS . Hence, the algorithm 
first computes the value x = td(c′) + w(dc′ , sA)( mod 1440), which represents the arrival time of connection c′ . If c′ is equal 
to NIL, then the algorithm assigns x = tS . Then, for each outgoing switch arc (sA, dc) such that Sd(c) = A and td(c) ≥ x, the 
algorithm performs a so-called enabling phase, that is, it enables arc (sA, dc) if D S [Sa(c)] = false and

�(x, td(c)) = td(c) − x(mod 1440) ≥
{

0 if Z(c) = Z(c′)
transfer(A) otherwise.

(1)

The enabling operation on arc (sA, dc) consists in:

• setting the weight w(sA, dc) to �(x, td(c));
• either inserting dc in the priority queue, if it was not present, or in decreasing its distance, if possible, otherwise.

This enabling phase clearly stops (and hence the Dijkstra’s search is pruned) when the vector D A contains only true values, 
which are set in the following case.

Let (sA, dc) be the switch arc with the smallest arrival time that is enabled for some station S ′ = Sa(c). Then, the 
algorithm sets D A[S ′] to true when an arc (sA, dc′ ) such that Sa(c′) = S ′ and �(ta(c), ta(c′))( mod 1440) > transfer(S ′) is 
scanned (the time instances ta(c) and ta(c′) required to check such a condition can be computed by using x, td(c), td(c′)
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and the associated arc weights). Since departure nodes are ordered by arrival time, this guarantees that the algorithm 
ignores any connection (in the form of departure nodes) leaving A towards S ′ after this step, as it cannot lead to a better 
solution to the considered EAP query.

In other words, if two switch arcs (sA, dc1) and (sA, dc2 ), corresponding to two elementary connections c1 and c2, lead 
to the same station B , fulfill Inequality (1), and have two arrival times that differ by a value greater than transfer(B), then 
only the one with smallest arrival time is considered (i.e., enabled) while the other one is essentially discarded, since it will 
not lead to a better solution to reach B . This is obtained by suitably setting the weights and the values of D A . In fact, if we 
assume that x ≤ min{td(c1), td(c2)} and ta(c1) < ta(c2) + transfer(B)( mod 1440), i.e., that ta(c2) is the smallest arrival time 
that fulfills the above condition, then the value of D A [B] is set to true when arc (sA, dc2) is scanned, and weights are set 
to w(sA, dc1 ) = td(c1) − x and w(sA, dc2) = ∞. Hence, dc2 will never be part of a solution to the associated EAP query. Note 
that ties can be broken arbitrarily.

The overall DTM-Q search is stopped as soon as the switch node sT , associated to the arrival station T , is extracted from 
the queue. The arrival time tT , which is given by dist(sS , sT ) + tS , is accordingly returned.

In order to clarify the behavior of DTM-Q, we show an example of its execution on the graph of Fig. 4 with EAP query 
(S, T , tS) = (B, C, 13). We assume transfer(A) = transfer(B) = transfer(C) = 5 mins. The algorithm starts by enqueueing sB
with distance equal to 0 and default associated connection. Moreover, transfer(B) is set to 0. Then, while the queue is not 
empty, it proceeds by extracting nodes one by one. When sB is extracted with distance d = 0, its outgoing arcs are scanned, 
starting from the one leading to a departure node di whose departure time tdi is larger than or equal to x = tS = 13. In our 
example, the first node of this kind is the one labeled with 15 in Fig. 4. Let us denote this node by b1, with tb1 = 15, and 
let us assume that associated connection is c1 (arc (15, sC )). At this point, the enabling phase starts. In particular, we first 
enable the switch arc leading to b1 by setting its weight to �(x, tb1) = 15 −13 = 2 ≥ transfer(B) and by inserting b1 into the 
queue, with distance 2. Then, we scan the next arc, the one leading to the node labeled with 25 in Fig. 4. Let us denote this 
node by b2, with tb2 = 25, and let us assume that its associated connection is c2 (arc (25, sC )). Note that this connection 
is linking a departure node of station B again with the switch node of station C . The switch arc (sB , b2) has weight 
�(x, tb2) = 25 − 13 = 12 ≥ transfer(B). Hence, we check whether we are meeting an arc (sB , b2) such that Sa(c2) = C and 
�(ta(c1), ta(c2))( mod 1440) > transfer(C), where ta(c1) = tb1 + w(c1) = 15 +5 = 20 while ta(c2) = tb2 + w(c2) = 25 +8 = 33
and �(ta(c1), ta(c2))( mod 1440) = 13 which is clearly greater than transfer(C) = 5. Therefore, we have found a connection 
that leads to the same station C , fulfills Inequality (1), and has two arrival times that differ for a value greater than 
transfer(C). Hence, we set D B [C] to true and prune the search for all following connections leading to C since none of 
them can induce a better solution to reach C , i.e. we skip any further switch arc (sB , bi) and its associated connection ci , 
such that Sa(ci) = C . The search continues by extracting b1 and by relaxing its outgoing arcs, thus inserting sC into the 
queue with distance dist(sB , b1) + w(c1) = 2 + 5 = 7, along with the departure node labeled with 26 in Fig. 4, because of 
the outgoing vehicle arc of b1, say v1, with distance dist(sB , b1) + w(v1) = 2 + 11 = 13. The next step of the algorithm 
consists in extracting sC which triggers the termination criterion of DTM-Q, since the switch node sC , associated to the 
arrival station C , is extracted from the queue. Thus, the algorithm returns an itinerary of total (minimum) length equal to 7, 
which induce an according arrival time tC = 13 + 7 = 20.

Algorithm DTM-Q can be adapted to answer a MNTP query (S, T , tS ), by slightly modifying it as follows. First, vector D
is not needed. Second, when a switch node sA is extracted from the priority queue with associated connection c′ , then all 
the switch arcs outgoing it that satisfy transfer time constraints (Inequality (1)) are enabled, and the weight of each switch 
arc (sA, dc) is set to 0, if Z(c) = Z(c′), and to 1 otherwise.

Theorem 2. DTM-Q solves EAP and MNTP in O (|C| log |C|) worst case time.

Proof of Theorem 2. Given an EAP query (S, T , tS), by the construction of the dynamic timetable graph, the path found by
DTM-Q is an itinerary in T starting from S at time t ≥ tS and arriving at T at time tT .

We now prove that such an itinerary has minimum length. The proof mimics the correctness proof of Dijkstra’s algorithm. 
In particular we prove that, when a switch node sA is extracted from the Dijkstra’s queue, the value of dist(sS , sA) is 
minimum, therefore inducing a minimum-length itinerary from S to A.

Let us assume by contradiction that A is the station such that sA is the first node, extracted from the queue, whose 
value of dist(sS , sA) is not minimum. Clearly S A �= S S . Moreover, when sA has been inserted or decreased from the queue 
for the last time, it was due to the relaxation of a connection arc (d(c′), sA) and a switch arc (sB , td(c′)), for some station B
and connection c′ . Furthermore, during the enabling phase, the switch arc (sB , td(c′)) is enabled (i.e. its weight is set to a 
non-infinity value) only if, among all possible connections that connect station B to station A and that satisfy Inequality (1), 
c′ is the one having minimum length �(c′). Moreover, since the priority of sA has been updated for the last time because 
of the relaxation of arc (d(c′), sA), then all the other connection arcs leading to sA correspond to longer paths. Therefore, 
it must be the case that, when the switch node sB of station B is extracted from the queue, dist(sS , sB) is not minimum, 
which contradicts the fact that sA was the first node extracted with non-minimum distance.

The computational complexity of DTM-Q is that of the Dijkstra’s algorithm in a graph with n = |B| + |C| nodes and 
m ≤ 3|C| arcs, plus the additional cost of the enabling step, which must be done, in the worst case, for each outgoing arc of a 
switch node, say sA , extracted from the priority queue, like the relaxation in the classical Dijkstra’s algorithm, and it requires 
to look for an element of array D A . Therefore, the relaxation of an arc requires O (log |D A |) time in DTM-Q while it requires 
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Fig. 5. Handling delays in the DTM model. A delay of 20 minutes induces two arc weight changes (red arcs) and the update of the time associated to the 
corresponding departure nodes (red nodes). (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

constant time in Dijkstra’s algorithm. Since D A has at most |B| elements, this takes at most O (log |B|) time for each arc in 
the graph. Overall, the overhead is O (m log |B|) and the time complexity of DTM-Q is O (n log n + m log |B|) = O (|C| log |C|), 
as |B| ≤ |C|.

The correctness and the complexity of the DTM-Q algorithm modified to answer to MNTP queries follow straightfor-
wardly form the discussion above. �
5.3. Update algorithm

In what follows, we present the update algorithm, named DTM-U, for handling delays occurring on the given input 
timetable, and for reflecting such delays to the corresponding DTM graph.

Let us assume that we are given a timetable T , a delay � occurring on a connection c of T , and the corresponding 
disposition timetable T ′ . If T is represented as a dynamic timetable graph G , then the DTM update algorithm computes 
the dynamic timetable graph G ′ corresponding to T ′ as follows. For the sake of clarity and in order to better illustrate how
DTM-U works, similarly to what we did in Section 4.3, we make use of a running example based on the very same Station B
of Fig. 4 (before a delay) and Fig. 5 (after a delay). We again assume that the vehicle’s delay is � = 20 mins.

First, the weight of both the connection arc (dc, sS ′) and that of the vehicle arc (dc, dĉ) is updated by adding the amount 
�( mod 1440), where S ′ = Sa(c) and dĉ is the departure node of S ′ such that Z(c) = Z(ĉ) (if any). An example of this 
behavior is shown in Fig. 5, where the weight of connection arc connecting departure node 4 of Station A to switch node 
sB of Station B , and the weight of the vehicle arc connecting the same departure node to the departure node 15 of Station B , 
are increased by � = 20.

Second, for each connection c′ that is affected by the delay occurring on c, i.e. such that the departure time in T differs 
from that in T ′ , the time reference of the departure node dc′ is updated by adding �( mod 1440). An example of this 
behavior is shown in Fig. 5 where the departure nodes of Station B and C , originally having departure times 15 and 26
(see Fig. 4), respectively, are updated to the delayed departure nodes of Station B and C , having departure times 35 and 46, 
respectively.

Note that the search for affected connections c′ can be done by performing a graph visit of G , starting from the de-
parture node dc , and by selecting, during the visit, all connections c′ such that Z(c′) = Z(c). Note also that, some further 
computation is required in the case G is used to answer EAP queries. In this scenario, in fact, the update of arc weights 
and time reference might break the ordering within the array representing the arcs. In order to restore this ordering, it is 
enough to compare the new values of arrival times of the few changed arcs and swap them, within the array, if needed. 
For instance, departure node 15 of Station B in Fig. 4 is moved down by two positions in Fig. 5 in order to restore the 
proper ordering with respect to departure time, while departure node 26 of Station C in Fig. 4 keeps its position despite 
the increase.

Theorem 3. DTM-U requires O (|C|) worst case time.

Proof of Theorem 3. The first part of the proof aims at proving that G ′ is the dynamic timetable graph representing T ′ .
First of all, note that no topological changes are performed on G . Therefore, in order to prove the claim, we simply point 

out that: (i) all arcs in G ′ associated with affected connections c′ (i.e., of either connection or vehicle type) are properly 
weighted, according to the definition of dynamic timetable graph; in fact, for each of the delayed connection c, the weight 
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of both the connection arc (dc, sA) and the vehicle arc (dc, dĉ) (if any) are updated by adding the amount �( mod 1440); 
(ii) departure nodes have appropriate time reference; in fact, notice that the time reference of departure nodes dc′ of 
affected connections c′ is increased by the same amount �( mod 1440); (iii) in the case the dynamic timetable graph is 
used to solve EAP, departure nodes are ordered with respect to new arrival times; in this case, it is easy to see that the 
ordering can be restored, within the array, by moving the changed arcs in the proper position, according to the new updated 
arrival time.

The second part of the proof aims at proving that DTM-U computes G ′ in O (|C|) worst case time.
Let us denote by mi the number of outgoing arcs from the switch node si of the DTM graph G , for each i ∈ B. Then, 

if G is being exploited for answering MNTP queries, the algorithm, i.e., the search for affected connections c′ and the 
corresponding time and weight updates, simply requires O (

∑
i∈B mi) = O (m) = O (|C|). Otherwise, if G is being exploited 

to answer EAP queries, then we have to take into account also the cost of reordering the array. This can be done in 
O (

∑
i∈B mi) = O (m) = O (|C|) by using Radix–Sort. Note that, since only one element is out of order in each array, the same 

result can be obtained by moving the unique entry whose time reference has changed to the right place in the array. This 
takes again O (

∑
i∈B mi) = O (m) = O (|C|) time. �

Notice that Theorem 3 gives an upper bound which is far from being realistic as the stations that change some time 
references are much less than |B|, especially thanks to the robust design of timetables [7–9,24,28,32]. We will show in 
Section 7 that the number of arcs that have to be updated as a consequence of a delay is always a small constant with 
respect to the graph size.

5.4. Engineering the query algorithm

Also for DTM, we propose an engineered variant of the basic query algorithm, named DTM-QH, which exploits the model 
structure and some restrictions to reduce the query time. In particular, we adopt the following approaches.

First, we propose and apply to DTM-Q a modification of the general node blocking technique (see [16]). The purpose of 
this strategy is that of pruning the search by reducing the size of the Dijkstra’s priority queue. This is achieved by exploiting 
the structure of the timetable graph which allows to avoid the insertion of sets of nodes that are clearly not part of shortest 
paths. In particular, when performing the query algorithm, if nodes belonging to a station that has already been reached, 
i.e., such that its switch node has already been settled by the visit, are touched (either visited for the first time or not), they 
are immediately discarded and not inserted in the priority queue, thus inducing smaller overall queue size and reduced 
number of queue related operations (i.e., insertion, decrease-key and delete-min operations). The correctness in this case is 
easily guaranteed. In fact, if the switch node of a station has been settled, we can be sure, by the sub-optimality property of 
shortest paths, that no path shorter than that already discovered can be found. Note that this approach is somehow similar 
to the modified node exploration criterion we applied to the reduced time-expanded graph (see Section 4.2). However, in 
the case of DTM-Q, we do not need to store current arrival times for reached station, as switch nodes represent all arrival 
events of a station.

Second, we propose and apply to DTM-Q a “runtime” modification of the omitting nodes technique proposed for reducing 
the size of time-expanded graph in [31]. The original technique [31] aimed and allowed to (permanently) reduce the size 
of time-expanded graphs by short-cutting nodes (i.e., bypassing with two suitable arcs) with out-degree equal to one. In 
this case, we exploit the case of nodes with out-degree equal to one at runtime as follows: when the query routine touches 
a node x with out-degree equal to one, the relaxation depth is extended to two, node x is not inserted in the queue, 
and the target node of the single arc outgoing x is evaluated, to check whether it provides an improvement w.r.t. to the 
current shortest path search. It is easy to see that this strategy does not affect the correctness of the query algorithm, 
though it provides a clear reduction in the average queue size and in the number of queue related operations (i.e., insertion, 
decrease-key and delete-min operations).

Third, we propose and apply to DTM-Q a slightly different topological approach in order to reduce the unnecessary 
exploration and labeling on nodes and arcs during the query phase. In this variant, at each station, the switch arcs are 
grouped by adjacent arrival station and then for each group its arcs are sorted by arrival time. Therefore, when an adjacent 
arrival station S is reached, the whole group of the switch arcs heading to S can be skipped directly. Also in the procedure 
for handling delays this reduces the swap arc operations which are now limited only in the affected station’s grouped arcs.

Note that these approaches are also independent and compatible with the use of other speed-up techniques (such as 
ALT).

5.5. Comparison with time-expanded models

In this section, we compare DTM with the realistic and the reduced time-expanded models.
In case of delays the DTM-U algorithm requires the same worst-case computational time with that of the update algo-

rithms for the two time expanded models. However, the time-expanded models require, after a reordering of the arrival, 
departure, and transit nodes, also an update (insertion/deletion) of arcs of the graph (see e.g., [15]). This behavior could 
imply a large computational time which depends on the way the graph is stored. On the contrary, DTM-U is able to keep 
updated its data structure in case of delays in almost linear time and without any change in the graph topology. In fact, 
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a delay in the timetable induces few arc weight changes and the update of the time associated to the corresponding depar-
ture nodes. Note that, this last operation can require, in some cases, a reordering step in the departure nodes of the stations 
involved by the change with respect to new arrival times.

Although DTM and the two time-expanded models asymptotically require the same space complexity, the graph in the 
new model has a smaller number of nodes and arcs. In fact, the realistic time-expanded model requires 3|C| nodes and at 
least 4|C| arcs, the reduced time-expanded model requires 2|C| nodes and at least 3|C| arcs, while DTM requires |B| + |C|
nodes and at most 3|C| arcs (we recall that |C| ≥ |B|).

Even if the three query algorithms require the same worst-case computational time, the DTM-Q algorithm must perform 
the additional step of enabling arcs and computing the weights of the switch arcs.

6. Combining graph-based models with ALT

One of the advantages of graph-based models for timetable information systems, over the array-based ones, is that the 
former can exploit the so-called speed-up techniques, that have been developed during the last years for accelerating the 
computation of shortest paths in other important applications, like e.g., route planning in road networks. Indeed, many of 
such techniques can be adapted to be used in combination with graph-based models for timetable information systems and 
thus improve the query time.

In this context and in order to boost the performance of our query algorithms, we combined them with ALT [25], one 
of the simplest and most used speed-up techniques. ALT is a goal-directed technique, i.e., its main aim is that of pushing 
the shortest-path search faster towards the target node/station. Many experimental studies have shown that ALT provides 
very good speed-ups, notwithstanding its simplicity, and that the magnitude of the speed-up, in general, depends on the 
structure of the input graph.

The adaptation of ALT to the query algorithms of the time-expanded models is relatively easy, and several variants have 
already been proposed; see e.g., [16]. Hence, we shall not provide any details of this combination.

The DTM model is somehow different and thus we provide below the adaption of ALT to its query algorithm.
As already mentioned, the basic idea behind the goal-directed ALT algorithm is to direct the Dijkstra’s search by pruning 

the corresponding search space towards the target t of the query. This is achieved by adding a feasible potential to the priority 
of each node in the queue. The feasible potentials are computed as follows. Given a set of nodes L ⊆ V called landmarks, the 
feasible potential of a node u ∈ V towards a target t is computed as πt(u) = max�∈L max{d(u, �) − d(t, �); d(�, t) − d(�, u)}. 
By the triangle inequality, it follows that πt(u) is a lower bound to the distance d(u, t) and this is enough to prove the 
correctness of the shortest path algorithm (see [25] for more details). It is easy to see that the tighter the lower bounds are, 
the more narrowed the search space is (i.e., the faster the query algorithm performs). Therefore, choosing good landmarks 
that provide tight lower bounds is a fundamental part of the preprocessing phase of ALT. Note that many approaches have 
been proposed for the selection of landmarks in the literature.

For DTM, we apply an approach similar to that proposed in [16]. In particular, we select as landmarks the switch nodes, 
each of which represents the arrival node group of a station. Therefore the lower bound distance, dist(sA , sB), between two 
switch nodes, sA and sB , denotes the minimum travel time among connections traveling from station A to station B . These 
lower bound distances can be computed during the preprocessing phase by running single-source queries from each switch 
node. The tightest lower bounds, with this method, can be obtained by storing all pair station distances O (|B|2) and by 
computing all-pairs shortest paths on the condensed version of the input graph (see [16]). This makes sense particularly 
when the stations are relatively few in number.

Finally, we combined ALT along with the heuristics described in Section 4.2 for reduced time-expanded graphs, and 
with the heuristic described in Section 5.4 for DTM graphs. We denote the two resulting algorithms as TE-QH-ALT and
DTM-QH-ALT, respectively. The combination of the approaches reduces much more the search space size and leads to a 
more efficient algorithm.

7. Experimental analysis

In this section, we present an extensive experimental study to assess the performance of all algorithms presented in 
the previous sections. Our experiments have been performed on a workstation equipped with an Intel Quad-core i5-2500K 
3.30 GHz CPU and 12 GB of main memory. All our implementations were done in C++ (gcc compiler v4.6.3 with optimiza-
tion level O3).

For all the considered graph-based models, we implemented: (i) the routines for building the graph; (ii) the basic query 
algorithms as well as their corresponding engineered heuristic versions for the reduced time-expanded model and the 
dynamic timetable model; (iii) the update routines for handling delays; (iv) the query algorithms empowered with the ALT 
technique. All implementations are used in combination with the dynamic packed-memory graph structure in [29] which is 
able to efficiently handle topological changes to the graph.

7.1. Input data and parameters

As input data to our experiments we used: (a) Three train timetables (namely efz, ger, and eur) and three bus timetables 
(namely bts, ks, and bvb) extracted from a large data set, provided by HaCon [26] for scientific use. (b) Eight different 
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Table 1
Tested timetables and sizes of the corresponding realistic time-expanded (real) and reduced time-expanded (red) 
graphs.

Source T |B| |C| TE (real) TE (red)

|V | |E| |V | |E|
HaCon bts 716 12 689 38 067 63 445 25 378 49 862

ks 1 865 44 744 134 232 223 720 89 488 175 536
efz 2 198 41 613 124 839 208 065 83 226 159 290
bvb 2 874 292 542 877 626 1 462 710 585 084 1 154 792
ger 6 493 428 982 1 286 946 2 144 910 857 964 1 668 171
eur 7 786 596 129 1 788 387 2 912 210 1 192 258 2 316 081

GTFS Victoria 2 230 403 709 1 211 127 2 018 545 807 418 1 604 359
Madrid 4 636 2 070 490 6 211 470 10 352 450 4 140 980 8 200 875
Athens 7 897 1 694 069 5 082 207 8 436 181 3 388 138 6 742 112
Rome 8 560 2 727 672 8 183 016 13 550 426 5 453 344 10 822 754
Berlin 12 838 4 322 549 12 967 647 21 612 745 8 645 098 17 024 138
London 20 843 14 064 967 42 194 901 70 324 835 28 129 934 55 758 468
Switzerland 31 213 7 097 772 21 293 316 33 961 786 14 195 544 26 841 306
Sweden 50 387 5 884 019 17 652 057 29 169 177 11 768 038 23 285 158

Table 2
Tested timetables and sizes of the corresponding dynamic timetable graphs.

Source T |B| |C| DTM

|V | |E|
HaCon bts 716 12 689 13 405 38 067

ks 1 865 44 744 46 609 134 232
efz 2 198 41 613 43 811 124 839
bvb 2 874 292 542 295 416 877 626
ger 6 493 428 982 435 475 1 286 946
eur 7 786 596 129 603 915 1 719 952

GTFS Victoria 2 230 403 709 405 939 1 200 658
Madrid 4 636 2 070 490 2 075 124 6 130 385
Athens 7 897 1 694 069 1 701 966 5 048 136
Rome 8 560 2 727 672 2 736 232 8 097 361
Berlin 12 838 4 322 549 4 335 387 12 701 695
London 20 843 14 064 967 14 085 810 41 837 355
Switzerland 31 213 7 097 772 7 128 985 20 521 440
Sweden 50 387 5 884 019 5 934 406 17 402 734

timetable data sets in the General Transit Feed Specification (GTFS) format, containing various means of public transport. 
In particular, these data sets concern the metropolitan areas of Athens, Rome, Victoria, Madrid, Berlin, and London, and the 
country-sized timetables of Sweden and Switzerland. The London data set was obtained from [35], while the rest from [34].

For each timetable T , we built: (i) the realistic time-expanded graph; (ii) the reduced time-expanded graph; and (iii) the 
dynamic timetable graph. For storing the graphs, we used the packed-memory graph data structure [29]. For the dynamic 
timetable graph, the outgoing switch arcs (sS , dc) of each switch node sS are sorted according to the arrival time ta(c) of 
the elementary connection c associated with node dc , in non-decreasing order. We used a classic binary heap whenever a 
priority queue was needed.

Tables 1, 2 and 3 provide detailed information about the input timetables. In Tables 1 and 2, we report, for each 
timetable, the number of stations |B| and the number of elementary connections |C| between stations (a proxy for size), 
as well as the number of nodes |V | and arcs |E| of the corresponding graph, for each model. In Table 3, we report, for 
each timetable, the average transfer time for changing vehicles, the average number of adjacent stops or stations, and the 
percentage of the existed transportation means to the total number of the elementary connections. In the timetables of 
Madrid, Athens and Rome, the transfer times were not available, and we set it arbitrarily to 3 minutes.

Tables 1 and 2 confirm the analysis reported in Sections 4 and 5, regarding the graphs sizes. In fact, for each timetable 
T = (Z, B, C), we notice that the number of nodes is exactly 3|C|, 2|C|, and |B| + |C|, while the number of arcs is always 
smaller than 5|C|, 4|C|, and 3|C| for the realistic time-expanded, the reduced time-expanded, and DTM graphs, respectively.

The results of our experiments on the query time and the update time for the graph-based models are summarized 
in Table 5 and 6 respectively. The combination of the query algorithms with ALT require a preprocessing phase, whose 
requirements are reported in Table 4. In what follows we analyze and comment the results of Tables 5 and 6, first with 
respect to the query time, and then with respect to the update time.
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Table 3
Timetable attributes: average transfer time (mins), average degree of adjacent stops/stations and percentage of 
transportation means (% of total).

T efz ger eur bts ks bvb Victoria Madrid Athens Rome

transfer time 6.5 6.5 6.5 6.5 6.5 6.5 6.5 3 3 3
outdeg 2.2 2.7 2.7 2.5 2.7 2.3 1.1 1.4 1.2 1.3
bus 100% 95.6%
light rail 100% 4.4%

T Berlin London Switzerland Sweden

transfer time 0.7 0.8 0.3 0.2
outdeg 2.7 1.2 2.4 2.3
bus 76% 98% 80% 92.7%
light rail 11% 2% 12% 1.0%
commuter rail 4% 7% 0.4%
subway 1% 2.2%
tram 9% 3.7%

Table 4
ALT-based preprocessing time and space requirements for all timetables.

T bts ks efz bvb ger eur

Space (GB) 0.002 0.014 0.019 0.032 0.161 0.177
Time (mins) 0.002 0.011 0.019 0.026 0.162 0.191

T Victoria Madrid Athens Rome Berlin London Switzerland Sweden

Space (GB) 0.019 0.082 0.183 0.253 0.629 1.4 2.6 9.4
Time (mins) 0.022 0.063 0.153 0.249 0.729 1.785 4.004 15.648

Table 5
Comparison between reduced time-expanded graphs and dynamic timetable graphs with respect to average query 
time.

Type T Query (ms)

TE-QH-ALT TE-QH DTM-QH-ALT DTM-QH

HaCon bts 0.17 0.28 0.14 0.15
efz 0.26 0.97 0.43 0.53
ks 0.43 0.82 0.42 0.47
bvb 1.02 1.77 1.51 1.79
ger 1.21 4.48 1.53 4.08
eur 1.61 5.13 1.58 4.32

GTFS Victoria 1.16 1.43 2.12 2.39
Madrid 3.05 8.14 5.77 9.63
Athens 2.12 4.60 3.62 7.61
Rome 2.94 7.37 4.54 9.75
Berlin 6.88 18.34 12.17 27.63
London 5.14 15.13 10.25 31.12
Switzerland 24.13 37.22 48.19 86.83
Sweden 29.98 59.10 55.27 99.58

7.2. Timetable queries

In order to test the performance of the three models, we evaluated the time required for answering a bunch of EAP 
queries on each timetable. For each timetable, we generated 1,000 EAP queries between pairs of stations, randomly chosen 
with uniform probability distribution, and measured the time for executing the query algorithms on each type of graph.

The query algorithms tested in the experiments are: TE-Q, TE-QH, TE-QH-ALT, DTM-Q, DTM-QH and DTM-QH-ALT, 
respectively.

Preliminary experiments revealed that: (i) the performance of TE-QH is always better than that of TE-Q (in accordance 
with [31]); (ii) DTM-QH is always faster than DTM-Q. For these reasons, in Tables 5 and 6 we report only the results of
TE-QH, TE-QH-ALT, DTM-QH and DTM-QH-ALT, respectively. We performed analogous experiments for MNTP queries, 
but we omit the results as they lead to similar analysis.

First of all, our experiments show that: (i) combining ALT with the restricted node exploration leads to a significant 
speed-up in query time with respect to the plain query algorithm, for both models; (ii) DTM query time is competitive to 
that of the reduced time-expanded model. Regarding this latter result, notice that part of the overhead, with respect to the 
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Table 6
Comparison between reduced time-expanded graphs and dynamic timetable graphs with respect to average up-
date time. We also report the average number of affected arcs, that is, the arcs updated (weight change and/or 
rewiring) by TE-UH as well as the affected elementary connections (a proxy for the number of node time refer-
ences) that need to be updated by DTM-U.

Type T Update (μs)

TE-UH DTM-U

time aff. arcs time aff. arcs

HaCon bts 34.47 37.7 2.19 8.8
efz 25.31 30.9 2.25 7.2
ks 39.49 53.8 3.04 11.1
bvb 95.98 63.5 15.17 13.5
ger 40.32 32.2 7.17 7.6
eur 43.10 33.5 8.07 9.1

GTFS Victoria 96.36 64.7 14.31 10.2
Madrid 124.50 64.5 29.45 11.1
Athens 424.74 181.0 46.98 59.4
Rome 381.47 107.3 49.73 81.4
Berlin 194.54 61.6 80.23 9.9
London 477.23 130.4 271.46 29.0
Switzerland 678.92 55.5 356.15 40.3
Sweden 604.77 85.5 293.62 20.0

query time, of DTM is probably due to the fact that there are no separated arrival to departure arcs. In fact, for instance, 
during a query (S, T , tS), in order to find the next valid departure node (i.e. having departure time greater than tS ), there 
is a need for searching among many departure nodes (possibly all), as they are stored in increasing order of arrival time 
instead of departure time. This makes the algorithm more time-consuming with respect to the reduced time-expanded 
model, where arrival to departure arcs allow to perform directly a binary search within the set of departure nodes (ordered 
by departure time). Therefore, the arrival node contraction in DTM results in this disadvantage.

Another outcome of our experiments is that all the query algorithms of DTM, i.e. DTM-Q, DTM-QH and DTM-QH-ALT, 
are much faster with respect to previously proposed versions, as they are the result of a further fine tuning. We refer 
the reader to [10] for the query times of previous versions of these algorithms. By comparing such results with those of 
Table 5, it is easy to see that: (i) the new version of DTM-QH is up to 50% faster than the previous one; (ii) the new 
version of DTM-QH-ALT is up to 30–35% faster than the previous one. Moreover, since it has been shown that queries on 
time-dependent graphs are faster than those on time-expanded graphs by a small constant factor in the realistic setting [31], 
our experiments show that the query time of DTM is comparable to that of the time-dependent model.

The query time depends on some critical transportation attributes, like the number of the adjacent stops and the number 
of the different transportation means. Based on Table 3, Sweden, Switzerland and Berlin network instances have greater 
density in those terms, resulting in a more expensive shortest path routing computation unlike in the other instances.

Our data also show that the query times of graph-based models are competitive with respect to those of array-based 
approaches. For instance, the query time of CSA is 2 ms on a snapshot of the network of London with around 5 millions con-
nections [3], while the query time of TE-QH-ALT and DTM-QH-ALT is 5.14 ms and 10.25 ms, respectively, on a snapshot 
of the network of London with 14 millions connections (i.e., almost three times larger).

7.3. Timetable updates

In order to evaluate the performance of the update algorithms, we performed a set of experiments as follows: for each 
timetable, we randomly selected 1,000 elementary connections and, for each elementary connection, we randomly generated 
a delay affecting the corresponding train or bus, chosen with uniform probability distribution between 1 and 360 minutes.

For each change in the timetable, we ran DTM-U for updating the dynamic timetable graph (presented in Section 5.3), 
as well as TE-UH for updating the reduced time-expanded graph (presented in Section 4.3). We measured the average 
computational time and the number of connections affected by the change, that is the number of connections associated to 
the same train or bus which has experienced the delay. We omit the results regarding the update routine of the realistic 
time-expanded graphs, i.e. TE-U, as preliminary experiments we conducted showed that the reduced time-expanded update 
routine is always at least 50% faster than the original one.

The experimental results are shown in Table 6. In this case DTM-U outperforms TE-UH with respect to the update time. 
The results confirm that the upper bound given in Section 5 for the computational time of the update algorithm is really 
far from being realistic, thus making DTM suitable to be used in practice. In fact, even in the biggest networks (London, 
Sweden and Switzerland), the updating algorithm requires less than 360 μs. Moreover, only (at most) two arc weights and 
few node time references need to be changed in the original graph to keep the EAP queries correct (in the tested timetables 
we measured at most 81.4 affected elementary connections on average). This is due to the fact that the number of stations 
where something changes, as a consequence of a delay, is small with respect to the size of the whole set |B|.
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Table 7
Query times required by graph-based models and by RAPTOR on the public transportation system of London 
(around 14 M elementary connections).

TE-QH TE-QH-ALT DTM-QH DTM-QH-ALT RAPTOR

Query (ms) 15.13 5.14 31.12 10.25 7.79

7.4. Comparison with RAPTOR

For the sake of completeness, we directly compared the query time of our graph-based models with one of the fastest 
array-based algorithms that does not rely on a preprocessing phase, i.e. Round-Based Public Transit Routing (in short, RAP-
TOR), proposed in [17].

RAPTOR is explicitly developed for public transit networks and its basic version optimizes arrival time and the number 
of transfers taken. Instead of using a graph, it organizes the input as a few simple arrays of trips and routes. Note that, a trip
is a sequence of stations that are connected by elementary connections served by the same vehicle, while a route is a set of 
trips that share the same set of stations.

Essentially, RAPTOR is a dynamic program: it works in rounds, with round i computing earliest arrival times for journeys 
that consist of exactly i transfers. Each round takes as input the stops whose arrival time improved in the previous round 
(for the first round this is only the source stop). It then scans the routes served by these stops. To scan route r, RAPTOR
traverses its stops in order of travel, keeping track of the earliest possible trip (of r) that can be taken. This trip may improve 
the tentative arrival times at subsequent stops of route r. Notice also that RAPTOR scans each route at most once per round, 
which is very efficient in practice. Moreover, RAPTOR can be parallelized by distributing non-conflicting routes to different 
CPU cores. For a more detailed description of the algorithm and its performance, we refer the reader to [19].

The comparison between graph-based models and RAPTOR is reported in Table 7. In particular, we report, for each 
model the average query time achieved with a snapshot of the local public transportation system of London made of 
about 14 M elementary connections. Unfortunately, we are not able to directly evaluate RAPTOR in terms of update time, 
since, concerning its performance in dynamic scenarios, there is no evidence in the literature, and it is not clear how to 
apply/modify the RAPTOR code to handle dynamic updates to the timetable. In particular, in RAPTOR, in order to exploit 
data locality, both routes and trips are sorted within the arrays, with respect to time [19]. Therefore, any update occurring 
on the original timetable, in order to keep queries correct, would at least require: (i) to update the time associated to trips 
and/or routes; (ii) to check whether the corresponding entries, after the update, violate the ordering within the arrays; 
(iii) in that case, to move them in order to restore the ordering.

Table 7 shows that graph-based models are comparable to RAPTOR in terms of query time, and that the reduced time-
expanded query algorithm, when equipped with ALT, is faster then RAPTOR.

Notice that for all graph based models, we considered their non-acyclic version, i.e., we do not unroll the timetable for 
several consecutive periods in order to handle overnight connections, as indeed is the case with array-based models. For 
this reason, we have to use a priority queue based algorithm for computing the shortest paths, such as the modifications of 
Dijkstra’s we described in Sections 3.2, 4.2 and 5.2. This choice allows to us to save space at the price of losing something in 
terms of query time. Note that, a different trade off would result in better query time at the price of worse space occupancy.

8. Conclusions

In this work, we have studied the journey planning problem. We focused on the behavior of a prominent class of models, 
namely graph-based models, in the realistic case of dynamic scenarios, i.e., when the input timetable can (unpredictably) 
change subject to delays.

We made the following contributions: First, we have considered the graph-based reduced time-expanded model and have 
given a simplified and optimized routine for handling delays, and an engineered query algorithm. Second, we have proposed 
a new graph-based model, namely the dynamic timetable model, natively tailored to efficiently incorporate dynamic updates, 
along with a query algorithm and a routine for handling delays. Third, we have shown how to adapt the unidirectional ALT 
algorithm to such graph-based models, in order to improve the query algorithm performance. Finally, we have conducted 
an experimental study to assess the effectiveness of all proposed models and algorithms and to compare them with the 
array-based state of the art solution for the dynamic case, i.e., RAPTOR. We evaluated both new and existing approaches by 
implementing and testing them on real-world timetables subject to synthetic delays. Our experimental results have shown 
that: (i) the dynamic timetable model is the best model in terms of computational time required for handling delays; 
(ii) graph-based models and RAPTOR are comparable in terms of query time; (iii) the dynamic timetable model compares 
favorably with the reduced time-expanded model from the space occupancy point of view; (iv) combining the graph-based 
models with some speed-up techniques designed for road networks, such as ALT, is a very promising approach.

We plan to extend the current work by: (i) analyzing different types of timetable modifications corresponding to dif-
ferent policies for delay management; (ii) taking into account possible slack/buffer times in the timetable; (iii) considering 
footpaths between stations in DTM. To this regard, we believe that footpaths can be easily incorporated to our graph based 
models in an efficient way. In fact, in the time-expanded models, if there is a footpath from stop pi to stop p j , then for 
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each arrival event at stop pi one adds an arc to the earliest reachable transfer vertex at p j . On the contrary, in the dynamic 
timetable model, it is enough to slightly modify the query algorithm as follows: when a switch node of a certain stop pi is 
extracted, if there is a footpath to a neighboring stop p j , then the arrival time to p j via a departure node simply has to be 
compared with the arrival time to p j via the footpath, which is given by the sum of the arrival time to pi plus the weight 
of the footpath, mod 1440.

There are several other directions for future work. One is that of combining other known speed-up techniques to the 
tested graph-based models. To this aim, the most promising ones are those based on Arc-flags [27] as they can be combined 
with ALT [16] and support dynamic updates [12]. Furthermore, the efficient implementation of ALT given in [22] could 
further improve the query time. Given these combinations, it would be also interesting to experimentally compare the 
models studied in this paper with other array-based models and time-dependent approaches. Another future direction 
could be that of tackling multi-criteria problems.
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