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Abstract. We present a cloud-based time-dependent routing service,
which is a core component in providing efficient personalized renewable
mobility services in smart cities. We describe the architecture of the time-
dependent routing engine, consisting of a core routing module along with
the so-called urban-traffic knowledge base, which creates, maintains and
stores historic traffic data, as well as live traffic updates such as road
blockages or unforeseen congestion. We also provide the crucial algo-
rithmic details for providing the sought efficient time-dependent routing
service. Our cloud-based time-dependent routing service exhibits an ex-
cellent practical behavior on a diversity (w.r.t. to scale and type) of
real-world road networks.

1 Introduction

The development of efficient route planning services for traveling in smart cities
is a highly sought-after commodity nowadays. Such services are delivered to the
smartphones of travelers, who pose route planning queries and receive answers
in these devices.

Nevertheless, real-world road networks are typically of very large scale, and
demonstrate a time-varying behavior. For instance, the traversal-times of the
road segments in the network depend strongly on the actual times of the traver-
sal. This in turn makes it hard, if not impossible due to the practically prohibitive
storage and computing requirements, for advanced time-dependent (TD) route
planning services to run on isolated devices that have limited computational
capabilities, such as our portable navigation devices (PNDs) and smartphones.
Additionally, even for a typical route planning server, classical route planning
algorithms, such as Dijkstra’s algorithm, are not an option. Such a server would
have to respond to several dozens, or even hundreds of queries per minute, and
Dijkstra’s algorithm would require a few seconds per query for large-scale, time-
dependent instances of road networks, thus making such an approach highly
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impractical. For this reason, extremely efficient heuristic approaches (speedup
techniques, see e.g., [2] and references therein) and approximation algorithms
with provable guarantees (distance oracles, see e.g., [1,9,10,11,12,13,14,15] and
references therein) have been designed, analysed and experimentally tested dur-
ing the last years, also for time-dependent instances [5,6,7].

Another axis of complexity, for providing route plans in time-dependent road
networks, is the fact that the historic traffic data and, most importantly, the
traffic metadata which are created by the routing service, are typically extremely
demanding in terms of computational capabilities. Moreover, rather than being
created and stored only once, they also have to be periodically updated (say, on
a weekly basis), according to the aggregated traffic information of actual speed
samples provided by the connected travelers to the service. This is an extremely
demanding task for a single server. On the other hand, this maintenance task
is extremely parallelizable and of varying computational demands, based on the
required changes for the updates. Therefore, the elasticity of a cloud architecture
would allow for the adaptation of the reserved computing resources to the actual
demands for preprocessing traffic-related data and metadata.

One more complication is posed by the fact that the characteristics of the real-
world road networks, apart from demonstrating a predetermined time-dependent
behavior, also have to cope with unpredicted incidents (e.g., temporal blockages
of road segments due to construction works, accidents, etc.), which are typically
reported by several sources of information, such as the municipality, the police,
or even the travelers themselves. This live-traffic information has to be inter-
leaved with the historic (time-dependent) traffic information, in order for the
time-dependent routing (TDR) service to provide live-traffic aware routes to the
travelers.

All these crucial challenges necessitate the adoption of more sophisticated
TDR architectures, which are able to both digest very large amounts of historic
information, and also continuously interact with live-traffic sources of informa-
tion in real time. The heart of such a sophisticated TDR service would have to lie
on a cloud architecture, which would be able to guarantee data persistence, inter-
operability with other sources of traffic-related information, real-time elasticity
of computing resources, and also transparent accessibility of the TDR service by
the travelers. In such an environment, the queries are sent to a routing engine
residing at the cloud infrastructure, which in turn sends back the answers tak-
ing into account the updated historic and live-traffic information which is at its
disposal.

In this paper, we make two contributions: (i) we describe the architecture of
a cloud-based TDR engine that consists of a core module, the so-called urban-
traffic knowledge base (UTKB), whose role is to create and periodically maintain
historic traffic data and metadata, and also to digest in real-time live-traffic up-
date data that are spontaneously provided by diverse sources of information;
and (ii) we provide the algorithmic details for providing the sought-after ef-
ficient TDR service that exploits all this periodically processed traffic-related
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information along with the live-traffic updates, in order to respond in real-time
to arbitrary route planning queries.

The specific cloud-based architecture of our TDR service constitutes part of
a broader cloud-based platform, developed in the frame of [8], whose aim is to
provide a live community of travelers, equipped with an arsenal of interoperable
personalized renewable mobility services, for large-scale urban road networks.
Extensive experimentation with real-world data sets (road networks of Berlin and
Germany) demonstrated an excellent performance of the core TD algorithmic
routing engine [5]. The specific cloud-based TDR service has been also tested in
a pilot phase (in the frame of [8]) in the city of Vitoria-Gasteiz, demonstrating
very efficient practical behavior.

The rest of the paper is organized as follows. Section 2 presents the formal
problem setting along with the necessary definitions and notation. Section 3
presents the architecture of the TDR service that involves the details of the
TDR algorithmic engine, the UTKB, as well as the digestion of unforeseen live-
traffic (e.g., emergency) reports and traffic prediction alerts. Section 5 presents
the results of the application of our TDR service on a real-world environment.
We conclude in Section 6.

2 Preliminaries

In this section, we provide the necessary definitions and notation that will be
used throughout the paper adopted from [6,7]. For any integer k ≥ 1, let [k] =
{1, 2, . . . , k}. We consider the classical modeling of a road network as a directed
graph G = (V,A), with |V | = n nodes or vertices, and |A| = m ∈ O(n) arcs (as
is the typical case of such networks). Nodes represent road crossings and an arc
a = (u, v) between two nodes u and v represents a road segment between two
road crossings (without any other crossing intervening between them).

Every arc a ∈ A is accompanied with a continuous, periodic, pwl arc-traversal
time function defined as follows: ∀k ∈ N,∀t ∈ [0, T ), D[a](kT + t) = d[a](t),
where d[a] : [0, T ) → [1,Ma] such that limt↑T d[a](t) = d[a](0), for some fixed
integer Ma denoting the maximum possible travel time ever seen at arc a. Let
also M = maxa∈AMa denote the maximum arc-traversal time ever seen in the
entire network. The minimum arc-traversal time value ever seen in the entire
network is also normalized to 1. Since every D[a] is periodic, continuous and
pwl function, it can be represented succinctly by a number Ka of breakpoints
defining d[a]. Let K =

∑
a∈AKa denote the number of breakpoints to represent

all the arc-traversal time functions in G, Kmax = maxa∈AKa, and let K∗ be the
number of concavity-spoiling breakpoints, i.e., the ones in which the arc-delay
slopes increase. Clearly, K∗ ≤ K, and K∗ = 0 for concave arc-traversal time
functions.

The arc-arrival-time function of a ∈ A is defined as Arr[a](t) = t+D[a](t),
∀t ∈ [0,∞). The path-arrival-time function of a path p = 〈a1, . . . , ak〉 in G
(represented as a sequence of arcs) is the composition of the arc-arrival-time
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functions for the constituent arcs:

Arr[p](t) = Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · ·)) .

The path-travel-time function is then D[p](t) = Arr[p](t) − t. For any pair of
vertices (o, d) ∈ V × V , let Po,d be the set of od-paths in G.

The earliest-arrival-time and shortest-travel-time functions are defined as fol-
lows: ∀to ≥ 0,

Arr[o, d](to) = min
p∈Po,d

{Arr[p](to)}

D[o, d](to) = min
p∈Po,d

{D[p](to)} = Arr[o, d](to)− to.

The set SP [o, d](to) = {p ∈ Po,d : Arr[p](to) = Arr[o, d](to)} is the set of
shortest-travel-time paths for the query (o, d, to).

A (1 + ε)-upper-approximation ∆[o, d] and a (1 + ε)-lower-approximation
∆[o, d] of D[o, d], are continuous, pwl, periodic functions, with a (hopefully
small) number of breakpoints in [0, T ), such that the following inequalities hold:

∀to ≥ 0, D[o,d](to)
1+ε ≤ ∆[o, d](to) ≤ D[o, d](to) ≤ ∆[o, d](to) ≤ (1 + ε) ·D[o, d](to) .

3 Architecture of the TDR Service

The time-dependent routing (TDR) service aims at supporting the TD route-
planning functionality for vehicles (be it conventional cars, or electric vehicles),
where the typical optimization criterion is the minimization of the total travel-
time. In particular, the TDR service is responsible for executing several types
of queries made by users. Based on the user requirements or/and preferences, it
computes one or several routes which satisfy at least one optimization criterion
(such as distance, travel time, fuel consumption, eco-friendliness) and use at least
one transportation mode (bus, train, EV, bicycle), at specific departure times
or time windows.

An overview of the overall architecture of the TDR service, along with its
interaction with other services of the broader cloud system of [8], is depicted
in Fig. 1. The TDR service consists of data and metadata structures, mecha-
nisms for creating and maintaining these structures, as well as algorithms that
answer user route planning requests in real-time by exploiting the stored data
and metadata.

In particular (cf. Fig. 1), the raw-traffic data (RTD) is a collection of se-
quences of breakpoints, one per arc in the network. Each breakpoint is a pair of
departure-time (from the tail) and traversal-time (up to the head). The urban-
traffic knowledge base (UTKB) consists of mechanisms for creating and main-
taining the RTD structure. Apart from that, in order for the travelers’ PNDs
and smartphones to be able to provide elementary route plans even when there
is no connection to the cloud, the UTKB aggregates the RTD structure into
(static) traffic snapshots (SNAP), which are to be stored in the travelers’ de-
vices, as a means of contingency plan in case of loss of connectivity. In support
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Fig. 1: Overall architecture of the Time-Dependent Routing (TDR) service.

of the sophisticated route planning algorithms (cf. Section 4.2), relevant traffic
metadata (TMD) is created and periodically updated. This structure concerns
the succinct representation of the (approximate) min-travel-time functions from
selected vertices (called landmarks) to reachable destinations from them. The
UTKB also provides the appropriate procedures to digest live-traffic reporting,
i.e., for creating and maintaining temporal RTD and temporal SNAP structures.
These are succinct representations (i.e., sequences of breakpoints) of approximate
min-travel-time functions from landmarks, which are only effective for a given
time-window (depending on the duration of the reported incident). Last but not
least, the TDR service also hosts the core TDR query algorithms (its most vital
part) that exploit all the aforementioned traffic-related data and metadata.

As mentioned above, all these TDR functionalities, be it data-maintenance
procedures or route-planning query algorithms, constitute the urban traffic knowl-
edge base (UTKB) which resides on one or more computing resources of the
cloud, depending on the actual computational demands of these functionalities.
In the rest of this section, we provide the architectural details of UTKB.

3.1 Urban Traffic Knowledge Base

All the time-dependent urban traffic information and live-traffic monitoring in-
formation is organized and maintained in a periodically updated and dynamically-
evolving urban-traffic knowledge base (UTKB), so as to support responses to
route-planning queries in real time. The UTKB is responsible for the creation
and maintenance of traffic-related metadata, to be exploited by route planning
and mobility-on-demand services supported by the overall cloud platform. Its
main purpose is to handle the periodically changing urban traffic information,
by dynamically updating the preprocessed traffic data kept in the system, when
needed.
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The UTKB receives input mainly by two system modules, the Crowd-sourcing
Module (CM) and the Traffic Prediction Module (TPM), which are used as black-
box services and are responsible for creating and assessing the traffic-related
information received either by the road network itself, or by the travelers, before
sending appropriate update signals to the UTKB.

More precisely, the incoming data may concern periodic traffic reports (e.g.,
traversal-time samples of road segments, every 5 minutes), emergency reports
(e.g., spontaneous reports of accidents, predictions of unforeseen evolution of
congestion in particular road segments, etc.), information on changes of external
parameters (e.g., weather conditions), updates on public-transport’s mobility
plans, or updates on publicly used EVs’ availability information. Each of these
reports actually demands for an appropriate update of the involved traffic-related
information. Both the range of affection of a newly reported incident (within the
network) and the temporal traffic-related metadata in response to this particular
report, has to be determined by the UTKB itself. As a result, the historic traffic
data and metadata kept within the UTKB is interleaved with the temporal
traffic metadata created per reported incident, but only for those routes which
are indeed affected by it, so that live-traffic aware responses to arbitrary route-
planning queries are provided by the query algorithms in real time.

As previously mentioned, the UTKB also creates and periodically maintains
snapshots of the current traffic status (that is, average arc-traversal time values
rather than time-dependent arc-traversal time functions, e.g., for rush-hours or
free-flow route plans, depending on the traveler’s departure time), to be at the
disposal of the travelers for downloading them to their personal devices, so as
to assure a minimum level of the routing service even without connection to the
cloud system.

The main purpose of the UTKB is to gather and digest all the (spontaneous,
or periodic) observations of the live-traffic situation, and dynamically update its
contents. The input data and the corresponding update actions applied to them
can be divided into seven basic categories: (i) user generated periodic speed
reports, mainly concerning private cars and EVs; (ii) information on public-
transport data (that includes static information, such as timetables, but also
planned events, e.g. a subway station must be closed due to maintenance, as
well as live traffic data, where in particular, delays are important); (iii) energy-
consumption information (e.g., current state-of-charge) concerning EVs; (iv)
spontaneously provided emergency reports, which include unpredictable traf-
fic disruptions (i.e., currently unavailable road segments, changes on weather
conditions, etc.), reported either by a (totally reliable) public authority, or by
(possibly unreliable) travelers whose credibility is based on a wisdom-of-the-
crowd approach (the more travelers reporting an incident, the more likely it
is that it is actually true); (v) short-term traffic prediction alerts, as reported
by the TPM, acting as periodic travel-time samples (say, every 5 minutes) of
the entire network; (vi) long-term traffic prediction alerts, as reported by the
TPM (say, every 30 minutes), in order to automatically detect unforeseen evo-
lution of the traffic pattern and provide appropriate signals (analogous to the
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Fig. 2: Detailed DFD for the UTKB Architecture.

emergency reports) whenever the predicted behavior of a road segment devi-
ates significantly from the behavior described in the historic raw data; and (vii)
users’ post-route spontaneous reports, containing route-related information, or
a kind of like/dislike feedback on the routes recommended to them, as a means
of self-assessment of the TDR service.

In each case, an appropriate update on the historical or the temporal traffic
data and metadata kept in the system must be performed by the UTKB. A
corresponding bubble, describing each update process, is added in a detailed data
flow diagram (DFD) of the UTKB, shown in Fig. 2. All the aforementioned types
of information are carefully collected and stored in the UTKB, therefore a data
storage is displayed for each type of data. Additionally, a unique process should
take over the responsibility of periodically creating a snapshot of the current
traffic status, which will be available for downloading to the users’ portable
devices, upon their own request.

A second-level refinement of UTKB’s architecture is accomplished by map-
ping individual bubbles or groups of bubbles on the same side of a boundary of
the DFD into appropriate modules within the UTKB’s architecture. Four main
sub-modules of the UTKB module are considered: (i) Historical Traffic Data Up-
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Fig. 3: The high-level architecture diagram for UTKB Module.

date; (ii) Temporal Traffic Data Update; (iii) Statistical Feedback Information
Update; and (iv) Periodic Traffic Snapshot Creation. The data that the UTKB
module keeps and handles, either historical or temporal, may concern all types
of transport modes, be it private cars, EVs or public-transport modes. Based
on the resulting sub-modules, the corresponding hierarchical schema turns out
to be too simple. The result is depicted in Fig. 3, which shows the high-level
architectural diagram of the UTKB.

4 Functionality of the Cloud-based TDR Service

In this section, we describe the functionality of the TDR service for computing
routes in road networks, concerning mainly private cars.

4.1 Creation and Maintenance of Traffic Metadata

We start with the algorithmic technique used for the actual creation of the
traffic metadata (TMD) concerning private cars, as well as the methodology
adopted for the efficient maintenance of all the traffic-related information kept
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in the UTKB, so that it can be continuously available and exploited by the TDR
service residing at the UTKB server. The theoretical analysis (correctness and
complexity bounds) of the algorithmic technique is provided in [6].

The TDR service is able to respond in real time to arbitrary shortest-path
queries, by computing an optimal origin-destination path providing the earliest-
arrival time at a destination, when departing at a given time from the origin.
In order for the route-plans given by TDR to be fast and accurate, the service
exploits the appropriately selected shortest-path information, precomputed off-
line. In particular, a carefully selected subset of vertices (landmarks) is equipped
with succinct representations of shortest-travel time functions to all other ver-
tices in the network. Apart from creating these traffic metadata, the UTKB has
also to update them periodically, according to the periodical adaptations of the
historic traffic data kept in it. Both the creation and the periodic updating of
all this landmark-related traffic metadata, are extremely time-consuming tasks
whose exact computational needs are indeed unclear.

The role of the cloud, which allocates the appropriate amount of processing
power depending on the work to be done, is actually crucial at this preprocessing
phase which has to be completed within a few hours and is repeated frequently
(e.g., once per week). Since computing and storing the exact shortest-travel time
functions turns out to be hard (in particular, super-polynomial) [3], we compute
(1 + ε)-approximations of these functions, called travel-time summaries, from
the selected landmarks towards all other vertices. The main challenges of this
major task are: (i) to ensure that the preprocessing time and space complexity is
actually manageable (e.g., subquadratic in the size of the network); (ii) to allow
for route-planning query algorithms which provide fast responses, both in theory
and in practice; and (iii) to obtain provably good approximation guarantees.

Approximating travel-time summaries. Our main building block for the
preprocessing is an approximation technique for the computation of all landmark-
to-vertex approximate travel-time summaries. We briefly describe here a novel
method, the trapezoidal technique (TRAP), which is a one-to-many method that
concurrently computes travel-time summaries from a given landmark to many
(or even all) destinations which are reachable from it.

For a given set of landmark-nodes L (whose choice will be determined later),
our goal is to construct all the (1 + ε)-upper-approximation shortest travel-time
functions (travel-time summaries) from each landmark towards all reachable
destinations, for a time period of a day, i.e., in the interval [0, T = 86400sec).

Instead of computing the exact minimum-travel-time (which are continuous,
pwl and periodic) functions D[`, v] from each ` ∈ L towards each reachable
v ∈ V , we seek for their (1 + ε)-upper-approximations ∆[`, v] (the travel-time
summaries). Recall from Section 2 that ∆[`, v] and ∆[`, v] denote (1 + ε) upper-
and lower-approximations of D[`, v] which are also continuous, pwl, periodic
functions, hopefully with a small (in particular, independent of the size of the
network) number of breakpoints in [0,T), such that the following inequalities
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hold: ∀t` ≥ 0,

D[`, v](t`)

(1 + ε)
≤ ∆[`, v]](t`) ≤ D[`, v](t`) ≤ ∆[`, v](t`) ≤ (1 + ε)D[`, v](t`)

The trapezoidal method (TRAP) is a one-to-all approximation algorithm for
computing concurrently all functions ∆[`, v] for a given landmark ` and all reach-
able destinations v ∈ V . The theoretical analysis of TRAP can be found in [6].
TRAP splits the entire period [0, T ) in small (length-τ) subintervals, and within
each of them, say [ts, tf = ts + τ) ∈ [0, T ), it provides the appropriate projection
of ∆[`, v], by essentially exploiting the fact that τ > 0 is indeed small, along with
the following assumption on the travel-time slopes of all minimum-travel-time
functions in the network:

Assumption 1 (Bounded Travel-Time Slopes) All min-travel-time slopes
are bounded in a given interval [−Λmin, Λmax], for Λmin ∈ [0, 1) and Λmax ≥ 0.

The validity of this assumption has been experimentally verified in real-world
data sets that we have at our disposal [5].

Within each subinterval ts, tf = ts + τ), TRAP provides a crude approxima-
tion of the unknown function D[`, v], concerning the minimum slope −Λmin and
maximum slope Λmax of the actual shortest-travel-time functions in the instance.
In particular, for every subinterval [ts, tf ), TRAP works as follows. For the two
boundary departure times ts and tf , we sample concurrently (by making two
calls to the time-dependent variant of Dijkstra’s algorithm) the travel-time val-
ues for each destination v ∈ V . We then consider the semi-lines with slope Λmax

from ts and −Λmin from tf . The upper-approximating function ∆[`, v] that we
consider within [ts, tf ) is the lower-envelop of these two semi-lines. Analogously,
the lower-approximating function ∆[`, v] is the upper-envelop of the semi-lines
that pass through ts with slope −Λmin, and from tf with slope Λmax. In par-
ticular, TRAP considers the following two (upper- and lower-) approximating
functions of D[`, v] for every possible departure time t ∈ [ts, tf ):

∆[`, v](t) = min
{
D[`, v](ts)− Λmaxts + Λmaxt,D[`, v](tf ) + Λmintf − Λmint

}
∆[`, v](t) = max

{
D[`, v](tf )− Λmaxtf + Λmaxt,D[`, v](ts) + Λmints − Λmint

}
Considering ∆[`, v] as the required travel-time summary for departure-times

in [ts, tf ), the algorithm has to decide whether this is actually a (1 + ε)-upper-
approximation of D[`, v]. For this reason, we must compute the maximum ad-
ditive error MAE(ts, tf ), which is the maximum delay-axis distance of the two
functions ∆[`, v] and ∆[`, v] within [ts, tf ). This is done as follows. Let (tm, Dm)
be the intersection point of the two legs involved in the definition of ∆[`, v].
Similarly, let (tm, Dm) be the intersection point of the two legs involved in the
definition of∆[`, v]. The (worst-case) maximum additive error MAE(ts, tf ) guar-
anteed for ∆[`, v] within [ts, tf ) is:
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MAE(ts, tf ) := max
t∈[ts,tf )

{
∆[`, v](t)−∆[`, v](t)

}
= ∆[`, v](tm)−∆[`, v](tm)

= ∆[`, v](tm)−∆[`, v](tm)

 

Fig. 4: The upper-approximating function ∆[`, v] (the orange, upper pwl line),
and lower-approximating function ∆[`, v] (the yellow, lower pwl line), of the
unknown distance function D[`, v] within [ts, tf ).

Fig. 4 provides a visualization of all the above mentioned quantities, as well as
the upper- and lower-approximating functions returned by TRAP within [ts, tf ).

For each subinterval [ts, tf ), the algorithm checks whether the constructed
upper-approximating function ∆[`, v], valid for every possible departure time
t ∈ [ts, tf ) from the origin `, is actually a (1 + ε)-upper-approximation of the
exact shortest-path function in the same interval. If this is the case, ∆[`, v][ts, tf )
is accepted. Otherwise, the length of the sampling interval τ needs to be even
smaller. TRAP handles all possible sampling intervals as follows.
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Rather than splitting the entire period [0, T ) in a flat manner, i.e., into equal-
size intervals, we start with a coarse partitioning based on a large length τ and
then in each interval and for each destination vertex we check for the provided
approximation guarantee by TRAP. All the vertices which are already satisfied
by this guarantee with respect to the current interval, become inactive for this
and all its subsequent subintervals. If there is at least one active destination
vertex, for which the function ∆[`, v] constructed in the current interval violates
the maximum absolute error, we proceed by splitting in the middle the current
subinterval, and repeat the check within the new subintervals created. The al-
gorithm terminates when all reachable destinations become inactive for every
subinterval of [0, T ), which means that every one of them has a (1 + ε)-upper-
approximation function for the entire period.

We keep every constructed ∆[`, v] function as a sequence of sampled break-
points, which are of the form (departure-time, travel-time, approximate-path-
predecessor). The predecessor of v results from the sampling that the algorithm
performs at each subinterval [ts, tf ). To reduce the required space in memory,
we do not store the node-id of each predecessor. Instead, we only need to keep
a small integer indicating the index of the corresponding incoming arc of v in
the adjacency list. We have further developed a host of heuristic algorithmic im-
provements to boost performance in practice [5]; for completeness, we describe
them in Appendix A.

Maintenance of Traffic Metadata. The traffic metadata produced by TRAP
are efficiently maintained in the UTKB server, according to the following method-
ology. In order to access the data blocks of each landmark in O(1) time, we use
a mapping. For retrieving efficiently each approximate travel-time function from
a landmark to any destination vertex, we need to store an index. In particular,
for each landmark ` we maintain a vector of pointers, the size of which equals
to the number of destinations. The order of the pointers is in ascending order of
node id and each one of them corresponds to a destination v. Thus, the address
of the ∆[`, v](t) data is provided in O(1) time, while the required space for this
indexing is O(n · |L|).

To keep the preprocessing space small, we store the information about both
predecessors using the same unit of memory. In the case that the approximate
function from a landmark ` to a destination v is constant, we expect the ap-
proximate predecessor of v to be the vertex ` and the predecessor corresponding
to the piecewise composition (not performed in this case) to be the destination
vertex v itself.

We describe next how the appropriate traffic metadata related to every day
of the week are uploaded in the UTKB server, so that they are available to
the TDR service. A continuously running TDR daemon is responsible for this
task. In particular, at the beginning of each day the corresponding traffic-data is
uploaded, while the data related to the previous day is automatically removed.

Finally, the TDR daemon also undertakes the creation of new updated TMD
for any day in an off-line fashion (e.g., at the end of each day). In particular, the
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TPM module (used as a black-box daemon service, also residing at the cloud)
provides the TDR daemon with periodic (say, per 5 minutes) predictions of
travel-time value estimations, for all the road segments in the network. All these
samples constitute, by the end of the day, a fresh image of the historic data
for the entire day, which is then aggregated by the TDR daemon in the current
historic data (with an appropriately small weight, so as to avoid over-fitting or
oscillation effects), so that the historic raw traffic data residing at the UTKB
converge to the actual travel-time functions of all the road segments, per day.

4.2 TDR Query Algorithms

The TDR service is developed to provide significantly fast and accurate min-cost
route plan responses to arbitrary shortest-path queries, exploiting (i) a carefully
selected landmark-set of vertices; (ii) the historical and temporal traffic-related
information kept in the UTKB server; and (iii) an efficient approximate query
algorithm, designed to provide the required routes. In this section, we describe
how the query algorithms supported by the routing service work, as well as how
the exploitation of the historical traffic-data and those provided by the Traffic
Prediction Module and the Crowd-sourcing Module is achieved.

The daemon residing at the UTKB server continuously runs and accepts
incoming origin / destination / departure-time shortest-path queries (o, d, to).
For each one of them, the query algorithm provided by the routing service is
called and returns either the exact minimum-travel-time value, along with the
corresponding o-d path, or an approximate travel-time value via an appropriate
landmark-node ` and the corresponding approximate o-`-d path.

Three query algorithms have been implemented and extensively tested. We
describe them below. Their theoretical analysis (correctness and complexity
bounds) is provided in [6,7].

The first one, which is called FCA, grows a Time-Dependent-Dijkstra (TDD)
ball from (o, to) until either d or the closest landmark lo is settled. In the former
case it returns the minimum travel-time value and the corresponding shortest
path. In the latter case, the (1 + ε+ ψ)-approximate travel-time value of an o-d
path passing by lo is returned, where ψ is a constant that depends on charac-
teristics related with travel-times, but is independent of the size of the network.

The second algorithm, called FCA+(N), is a variant of FCA which keeps
growing a TDD ball from (o, to) until either d or a given number N of landmarks
is settled. FCA+ then returns the exact travel-time value, or the smallest via-
landmark approximate travel-time value, among all these settled landmarks.
Theoretically, the approximation guarantee of FCA+ is the same as that of
FCA, but its practical performance is actually impressive [5].

The third algorithm, called RQA, improves the approximation guarantee pro-
vided by FCA, by exploiting carefully a number r (called the recursion budget)
of recursive accesses to the preprocessed information, each of which produces
(via calls to FCA) additional candidate o-d paths. RQA works as follows. As
long as the destination vertex within the explored area around the origin has
not yet been discovered, and there is still some remaining recursion budget, it
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“guesses” (by exhaustively searching for it) the next vertex wk of the bound-
ary set of touched vertices (i.e., still in the priority queue) along the unknown
shortest o-d path. Then, it grows an outgoing TDD ball from every new center
(wk, tk = to + D[o, wk](to)), until it reaches the closest landmark `k to it, at
travel-time Rk = D[wk, `k](tk). Every new landmark offers an alternative o-d
path by a new application of FCA for every boundary center wk. RQA finally
responds with a (1 + σ)-approximate travel-time to the query, for any constant
σ > ε.

The response-times as well as the approximation guarantees provided by all
three query algorithms have a strong dependence on the selected landmark-set
[5]. Our experimental study [5] has shown that FCA has the fastest performance
(as expected), and provides quite small approximation guarantees. Both RQA
and FCA+ are fast, i.e., they run in time less than 1 msec, but also significantly
accurate, since they produce solutions with relative errors less than 1% in the
average case. FCA+ is in some cases better than RQA regarding accuracy, while
it is almost as fast as RQA. In fact, we can control the trade-off between time and
accuracy, by selecting a smaller or larger number of landmarks to be discovered
by the algorithm. For those reasons, FCA+ is the default algorithm running in
the TDR service.

Live-traffic awareness and route computation. We describe in detail the
way in which the query algorithm manages to exploit the historical traffic-data as
well as the temporal data corresponding to live-traffic updates, and finally pro-
vides the resulting route as output, after the application of a path reconstruction
method, for retrieving the unknown approximate paths.

For any incoming shortest-path query, the algorithm considers the flags as-
sociated with all arcs and landmarks in the network, to indicate whether there
exists active temporal data for them or not. Any temporal traffic-updates have to
be adopted. As described in Section 4.3, if there are any road segments (and the
relevant raw-traffic data), or landmark-nodes (and the associated traffic meta-
data maintained by the UTKB) affected by an emergency report or traffic pre-
diction alert, a flag corresponding to those arcs and landmarks in the network
is raised, to indicate that for a specific time-window the temporal RTD and
temporal TMD structures have to be considered, rather the original historic
information kept in the RTD and TMD structures, respectively. The query algo-
rithm absorbs the live-traffic changes, by taking into account these flags on the
affected arcs and landmarks.

More precisely, we consider the two basic phases of any query algorithm,
i.e., the first step, which is a TD Dijkstra-based search, and the second one,
which retrieves the approximate distance from a settled landmark-vertex to the
destination, by searching into the appropriate preprocessed distance function.
For the first step, we perform the following modification on the relaxation of arcs.
Each time that we need to compute the travel-time needed to traverse an arc,
given a departure-time from its tail, the algorithm checks the flag corresponding
to the arc, so as to search for its travel-time function either in the current or



A Cloud-based Time-Dependent Routing Service 15

the temporal RTD. We need to take the temporal raw traffic-data into account,
in the case that a specific arc was recently affected by a live-traffi update, for
a particular time-window around the departure time from its tail. The update-
daemon running on the UTKB server is responsible to modify the temporal
RTD for all affected arcs and raise the bit flag on them so long as an update has
been adopted and is still active. Both the historic and the temporal travel-time
functions are stored per arc.

The second phase of the algorithm adopts a similar modification for land-
marks. If the destination was not discovered by the first step, the algorithm
collects one or more landmarks, each providing a distinct approximate solution
towards the destination. If a landmark-node has been affected by a live-traffic
update, we have to store the time window of corresponding departure times from
it for which the update will still be active, as well as a pointer to the address
of the corresponding temporal TMD for this landmark. For each landmark, the
algorithm checks whether its update-flag bit is 0 or not, so as to decide if the
specific landmark has active temporal traffic-data for a particular time window,
and therefore there exists an updated approximate distance function from it,
kept at the appropriate memory block. The temporal TMD are considered for
a landmark ` when its update-flag bit is still 1 upon arrival at `, meaning that
there is a pointer to a memory address which is not NULL, and the departure
time from ` is within an affected time window.

By adopting these simple modifications, we are able to exploit the real-time
traffic conditions of the network and provide fast and accurate responses to
route-planning requests.

Finally, we describe the Path Reconstruction method followed for the genera-
tion of the computed o-d path, as a sequence of arcs. In the case that the shortest
path returned by the query algorithm is exact, i.e., the destination was discov-
ered during the TDD-search (which is actually quite possible to occur), the path
is constructed by simply following the predecessors from the destination to the
origin, which the TDD ball provided. However, if the algorithm decides that the
destination is to be reached via an appropriate landmark `, we need a method
to retrieve the unknown sequence of predecessors from the destination up to
the landmark, corresponding to the approximate `-d path. For this purpose, we
exploit the information kept in all TMD. For every possible destination d and
for any departure time from `, the travel-time function contains the immediate
predecessor of d, valid for a specific time interval, where TRAP performed its
sampling. Based on this information, along with some heuristic ideas, the path
reconstruction works as follows.

Let v denote every node that belongs on the path we want to construct.
We start with v = d. We then obtain the immediate (approximate) predecessor,
approxPred(v), given by the approximate travel-time function D[`, d](t), when
departing from ` at time t` = Arr[o, `](to), which denotes the arrival time set by
the Dijkstra-ball. We then mark node v as visited, we set v = approxPred(v) and
repeat. The procedure terminates when we reach the landmark `, i.e., v = `, or at
least some already settled vertex by the first time-dependent Dijkstra (TDD) ball
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grown from (o, to). The retrieval of all predecessors is done by searching either
the historical or the temporal TMD, depending on the flag that the algorithm
previously considered for `.

In practice, we observed the following phenomena which we tackled accord-
ingly. Firstly, as we reversely approach the landmark `, the sequence of nodes v at
some point enters the area explored by the query algorithm. We decided to collect
all those explored nodes v and compute the total travel-time D[v, d](tv), exploit-
ing the reverse arc-traversal time functions on all arcs connecting all nodes v up
to that point. When the main loop of our method terminates, we check which
explored node on the path we constructed (including the landmark `) gives the
minimum D[o, v](to)+D[v, d](tv). This means that there can be some cases where
we construct the approximate path via an appropriate explored node v of the
TDD ball and not the proposed landmark `, which mainly acts as an “attractor”
during the path reconstruction phase, rather than an actual intermediate node
of a candidate o-d path.

Next, we observed that a predecessor given by the travel-time summaries
stored in UTKB can in fact be already visited, which means that a cycle is
possibly created. This can be expected since we search different approximate
functions ∆[`, v](t) for each vertex v, departing from `. The TRAP method sam-
ples the exact travel-time-function in different subintervals for each destination.
We choose to face this case as follows. The path reconstruction method returns
to its initial step, where v = d. Instead of departing from landmark ` at the
exact departure time t`, we seek for the closest departure time to t` contained as
a breakpoint in all approximate distance functions of the predecessors involved
to an approximate path up to `. This safely means that this departure time is
a sampling time for all those destinations and thus, they all belong to the very
same shortest-path tree, created by the TRAP method during the preprocessing.
To avoid the cycle (which in practice is a rare case), we consider the sequence of
vertices created, considering the above departure-time from `, which is usually
very close to the actual.

After the sequence of predecessors has been constructed, the method simply
walks on the arcs connecting them and the `-v path-travel-time value is provided
by the (actual) path-travel-time function, when departing from ` at its actual
arrival-time, set by the algorithm. The path-travel-time function can be provided
by historic or temporal raw traffic-data, depending on the flags kept on each
arc. The resulting value is at most the approximate one. In practice, we obtain
a much better travel-time value. The last step is to connect the constructed `-v
path with the exact o-` path, given by the query algorithm, leading to a total
o-d route-response, which is usually very close to the exact one.

4.3 Adaptation to Emergency Reports and Traffic Prediction Alerts

The TDR service is responsible for computing shortest paths with respect to
the current status of the network. In such a service that responds to several
queries in real-time, various disruptions may occur “on the fly” (e.g., unforeseen
congestion, or even blockage of a road segment). In such a case, the new traffic
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conditions have to be absorbed in real time and they have to be taken into
account by the TDR.

The update of the arc-traversal time functions and the landmark travel-time
summaries which are used by the query algorithms is assigned to an online
update-daemon worker within TDR. The daemon performs three tasks, whose
main functionalities are detailed in the following.

Periodic inspection for Emergency Alerts (EMAs). The arc-traversal
time changes in the network are supplied by reports. These are produced by
the TPM and they are stored in a file called alerts.csv, within UTKB. The
daemon periodically reads the file (every 15 minutes), in intervals in which the
TPM-daemon does not write. For preventing the infrequent case of reading the
file when is still being written by the TPM-daemon, its last modification time
in the file system is probed. If it is different before and after the reading phase,
then the reading phase is repeated after 1 min. If alerts.csv is not empty, then
the update-daemon loads in TDR the affected arcs which have to be updated.

Network data update. The TDR must work continuously in order to answer
to any user or service query. On this requirement, the update steps have to be
performed independently without interrupting the TDR. Under normal condi-
tions, the arcs which need to be updated are few. Therefore the chance for an
update not be absorbed in the shortest path computation is small. Also, in the
worst case, since the update can be completed in a few milliseconds, running
shortly a new query will eventually output the updated shortest paths.

During the reading phase of the disrupted arcs from alerts.csv, the daemon
inserts them in a queue. Then, it runs the update process for each such arc
a = (u, v). Let T = (ts, te] be the affection interval associated with an affected
(closest) landmark ` and related to the disruption occurred at arc a. During that
interval, the temporal data from ` should be taken into account. Let the new
traversal-time value along arc a be ∆ at the time interval T = (ts, te], and the
original arc-traversal time function be

travelT imea(t) =


t · slope1 + offset1, [t0, t1)
t · slope2 + offset2, [t1, t2)

. . . . . .
t · slopek + offsetk, [tk−1, tk)

. . . . . .

The update steps are as follows.

STEP 1: Initially, the daemon inserts the affection expiration time te of the
new travel time on a in a priority queue PQ. This is because the emergency
alerts may concern short-term changes. Consequently, after the expiration of the
time-window of affection, the original travel time function of a will be restored.

STEP 2: The daemon generates the updated travel time function of arc a. Ini-
tially, it detects the affected legs of travelT ime(t) which have to be updated,
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within the time interval [ts, te]. For example, if the new travel time ∆ is oc-
curred in [tk−1, tk), then the candidate legs to be modified are (slopei, offseti),
i = k − 1, k, k + 1. In such a case, the linear interpolation is applied on the
new travel time values throughout the interval [ts, te]. The updated travel time
function is stored in a different memory address.

In order TDR to be informed about the new travel time function of a, an
update-flag bit is associated to a and it is set to 1 only if the creation of the func-
tion is finished. Consequently, during a shortest path computation the update-
flag bit of a indicates that its travel time function has changed. In addition, if a
belongs to a shortest path, then a pointer to the address of the updated travel
time function is accessed by the routing service.

STEP 3: The daemon re-computes the travel-time summaries for a subset of
landmarks L in the vicinity of the disrupted arc a. In particular, it runs a back-
ward TD-Dijkstra from u (tail-node of a) under the free-flow metric, with travel
time radius of te− tcur, where tcur is the current time (based on the correspond-
ing network’s UTC). The travel-time radius is used to trace only the nearest
landmarks that may actually be affected by the disruption, leaving unaffected
all the “faraway” landmarks. This means that the update has to be performed
only for the involved drivers who are close to the area of disruption. For each
affected landmark `, we consider a disruption-times window T` = [ds, de], con-
taining the latest departure times from ` for arriving at the tail u at any time
in the interval [ts, te) in which the disruption occurs. The T` windows, for all
landmarks ` ∈ L, are computed by running two backward TD-Dijkstra queries
from u under the time-dependent-flow metric, the first with arrival-time equal to
ts and the second with arrival-time equal to te. We then compute the temporal
travel-time summaries for each affected landmark ` at its disruption-times win-
dow T`. The produced travel-time summaries are stored in a different memory
address.

In order TDR to be informed about the new travel-time summaries of land-
mark `, an update-flag bit is associated to ` and it is set to 1 only if the cre-
ation of the travel time summaries is finished. Consequently, during a shortest
path computation, if ` is required at the specific disruption-time window T`, the
update-flag bit indicates that the travel time summaries of ` have changed on
T`. In this case, a pointer with the address of the updated travel-time summaries
is accessed by the routing service.

Expiration monitoring. The daemon wakes up from the idle state when the
affection expiration time te of a disrupted arc is reached, based on the network’s
UTC. In such a case, it extracts the arc a having the earliest te from the priority
queue PQ. Then it sets the update-flag bit to 0 on arc a and any corresponding
landmark ` ∈ L which were updated due to a. Consequently, during a shortest
path computation, when it is required, the routing service will use the original
travel time function of arc a. Similarly, if a landmark ` ∈ L is used on a shortest
path computation, then the routing service will use the original travel time
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summaries of `. In the end, the daemon removes the outdated temporal travel
time functions and summaries.

5 Practical Performance of the TDR service

The TDR cloud-service constitutes part of a broader cloud-based platform, de-
veloped in the frame of [8], that delivers personalized services for renewable
mobility within cities. In this section, we report on the practical performance
of TDR. In particular, (i) we report on an extensive experimental study carried
out with real-world data sets from the road networks of Berlin and Germany
[5]; (ii) we report on a pilot study of the TDR service carried out in real-world
conditions in the city of Vitoria-Gasteiz (in the frame of [8]).

5.1 Experimental Study on Real-world Road Networks

In this section, we succinctly report the outcome of our experiments on the
instances of Berlin and Germany (details can be found in [5]). The instance
of Berlin consists of 473, 253 nodes and 1, 126, 468 arcs, while the instance of
Germany consists of 4, 692, 091 nodes and 11, 183, 060 arcs.

We measured the performance of the basic query algorithms FCA, FCA+

and RQA, with respect to absolute running times and Dijkstra-rank4 values,
respectively, for several types of landmark set selections (for instance, variants
of a random selection, and/or partition-based selection of landmarks from the
boundary vertices of the partition), and various sizes.

In particular, we considered a uniformly at random selection of landmarks
among all vertices, denoted by R, and a random selection of landmarks among
the boundary vertices resulted by the graph-partitioning tool KaHIP [4], denoted
by K. Two variations of S and K stood clearly above others: the variation SR of
R, where each newly chosen random landmark excludes its closest 300 vertices
(under the free-flow metric) from being landmarks in the future; and the (similar
in nature with SR) variation SK of K.

As for the query algorithms, we used recursion budget 1 for RQA and we let
FCA+ settle the 6 closest landmarks, which is roughly the average number of
settled landmarks by RQA as well.

For Berlin, our fastest query algorithm, FCA, combined with the SR-landmark
set, achieved average response times of 83µsec, with relative error of 0.781%, ab-
solute runtime speedup more than 1146, and Dijkstra-rank speedup more than
1570, compared to TDD. If the relative error is of importance, then one should
choose FCA+(6) along with the SK-landmark set, which achieves 0.616msec
query time, and relative error of of 0.226%. In case that space is a main con-
cern, we observed the full scalability in the trade-offs between space and query-
responses. For instance, by consuming space 3.2GB, we can achieve query-
response time 0.73msec and relative error 2.198% for the Berlin instance.

4 The Dijkstra-rank of a vertex v is the number of settled vertices by (plain or TD)
Dijkstra’s algorithm until v is settled.
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In Germany, our findings are analogous. Exploiting 6 computational threads,
the average preprocessing time is less than 90sec and the average space is up
to 25.7Mbytes, per landmark. The best speedup against TDD is achieved by
SK-landmarks, and is more than 1531 in Dijkstra-rank, and more than 902 in
absolute query-time, with worst-case error at most 1.534%.

The aforementioned results suggest that our TDR service (and in particular
its TDR engine) is suitable for practical application. The has indeed happened
and described in the next section.

5.2 Pilot Execution in a Smart City

During 2016, the TDR service has been piloted for more than three months
in the city of Vitoria-Gasteiz (the most intensive tests were carried our in the
period July to October 2016). Two main functionalities of TDR were tested:

1. Its real-time responsiveness to queries for earliest-arrival-time (a.k.a. shortest-
path) route plans of private cars.

2. The application of all the necessary updates of the traffic metadata kept
in the UTKB, in order to incorporate the online traffic as recorded by the
emergency reports generated by the Crowd-sourcing Module.

During the pilot execution, several earliest-arrival-time queries were submitted
to the TDR cloud-service. The following data were recorded:

– For each query, we recorded the origin location, the destination location,
the departure time from origin, the arrival time to destination, the distance,
and for a medium-sized diesel car, the fuel consumption and CO2 equivalent
emissions.

– For each emergency report, we recorded the emergency report id, the start
point and end point of the affected road segment, the distance of the road
segment, the old and new travel time traversing the road segment and the
start and end time point as the duration of the new travel time update.

– For each query before and after the absorption of online traffic updates,
we recorded the emergency report id, the origin location, the destination
location, the departure time from origin, the arrival time to destination, the
distance, and for a medium-sized diesel car, the fuel consumption and CO2

equivalent emissions.

Our pilot consolidation results revealed that more than 70% of the users were
very satisfied with the TDR service, while another 17% were satisfied. Most of
the users found the TDR service useful and easy to use without encountering
any technical problems.

Fig. 5 illustrates the procedure of an earliest-arrival-time query before and
after an emergency report.
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Fig. 5: Earliest-arrival-time query before and after an emergency report.
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6 Conclusions

We presented the architecture of a cloud-based TDR service, aiming at provid-
ing fast real-time responses to arbitrary earliest-arrival-time queries as well as at
updating efficiently the various traffic metadata kept in an urban traffic knowl-
edge base, so that the service remains live-traffic aware. We also provided the
implementation details of the core algorithmic TD routing engine, which is the
most crucial module regarding the performance of the TDR service.

We plan to further enhance our cloud-based TDR service, in particular its
core algorithmic TD engine, with the more sophisticated hierarchical algorithmic
approaches presented recently in [6], which are expected to boost further the
query time.
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A Hueristics for Improving Performance

We describe some heuristic algorithmic improvements, as well as some imple-
mentation details that we apply during the creation and maintenance of traffic
metadata in the UTKB, in order to obtain even better performance, both wrt
the required preprocessing space and wrt the efficiency of the query phase.

Approximately constant functions. The TRAP approximation method intro-
duces one intermediate breakpoint per interval that satisfies the required ap-
proximation guarantee. To keep our algorithm space-efficient, the first thing that
we do, when dealing with every subinterval of the time period, is that we check
for approximately constant functions. More precisely, we perform an additional
sampling at the middle point tm of each [ts, tf ) and we consider the upper-
approximation ∆[`, v][ts, tf ) to be “almost constant”, if the following condition
holds: D[`, v](ts) = D[`, v](tf ) = D[`, v](tm). For those approximately constant
functions, the insertion of the additional breakpoint at tm is unnecessary.

Piecewise composition. Many shortest paths are likely to contain at least one
arc with piecewise travel time, making the shortest-path function also piecewise.
In our case, keeping the predecessor vertex of v in every sample of ∆[`, v](t),
allows us to analyze any `-v approximate shortest path into two sub-paths `-p-v.
Starting from the destination v, we travel back to a predecessor p, as long as all
vertices u up to p have constantly the same predecessor kept in the corresponding
samples of ∆[`, u](t), and all arcs involved in the p-v subpath have a constant
travel-time function. Therefore, there is no need to keep any samples for the
approximate function ∆[`, v](t); instead, we store the necessary information in
the form: (constant-travel-time, predecessor-p, approximate-path-predecessor). In
this way, the approximate travel-time function ∆[`, v](t) is given by taking into
account ∆[p, v](t) and the (approximately) constant travel-time from v to p,
i.e., ∆[`, v](t) = ∆[`, p](t) +∆[p, v](t). In our experiments, this method leads to
around 40-50% reduction of the space requirements.

Delay shifts. In cases that such a predecessor p does not exist, we have to store
the approximate travel-time function as a sequence of breakpoints. However, the
samples collected for ∆[`, v](t) may have small delay variation. Based on this
fact, the required space can be further reduced. We store the minimum travel-
time value and for each leg we only need to store the small shift from this value.
This conversion leads to around 5-10% reduction of the required preprocessing
space.

Fixed range. For a one-day time period, departure-times have a bounded value
range. The same holds for travel-times which are at most one-day for any query
within a country or city area. When the considered precision of the traffic data is
within seconds, we handle time-values as integers in the range [0, 86399], rather
than real values, sacrificing precision for space reduction. In particular, we con-
vert all floating-point time-values tf to integers ti with fewer bytes and a given
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unit of measure. For a unit of measure s, the resulting integer is ti = dtf/se
and needs size dlog2(tf/s)/8e bytes. Converting tf to ti results to an absolute
error of at most 2 seconds. Therefore, for storing the time-values of approximate
travel-time summaries, we can consider different resolutions, depending on the
scale factor s, to achieve further reduction of the preprocessing space.

Compression. Since there is no need for all landmarks to be concurrently active,
we can compress their data blocks. This method leads to significant reduction
of the space requirements, especially for large-scale networks.

Contraction. The space of the preprocessed travel-time summaries can be fur-
ther reduced if we consider a subset of vertices in the network as inactive. More
precisely, we can conduct a preprocessing of the instance that contracts all ver-
tices which are not junctions, i.e., they form paths with no intersections. Each
such path can be represented by a single shortcut arc, which is added at the
endpoints of the chain and equipped with an arc-traversal time function equal
to the corresponding (exact) path-travel-time function. The arcs involved in the
contracted paths are also considered as inactive. All contracted nodes are ignored
and therefore the number of possible destinations from a landmark is smaller.
At the query phase, these paths can be easily retrieved, by exploiting the ap-
propriate information kept on all inserted shortcuts and all contracted nodes for
this purpose.

Parallelism. We can speed up the preprocessing time for computing the one-to-
all approximate travel-time functions, from properly selected landmarks towards
all reachable destinations, as well as the real-time responsiveness to live-traffic
reports, i.e., the re-computation of the travel-time summaries for the subset of
affected landmarks, by exploiting the inherent parallelism of the entire process.
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