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ABSTRACT one. In [5], a modified version of the sliding window algo-

Soft-Input Soft-Output (SISO) equalizers based on lindar fi rithm of [4] was derived having similar performance to the

ters have proven to be good, low complexity, alternatives tcg)rigi_nal one while offering reduced.computationlal complex
trellis-based SISO equalizers. In particular, the Sofietr- Ity via the use of a Cholesky factorization technique. In [6]

ence Canceller (SIC) has recently received great intezest, tr;e autrllorzmoillf_led th_etalgontr;m 0.;541 mh'fh involves Conl' d
pecially for receivers performing Turbo Equalization. hist ~P'X V&IUEE MATICES, IO an aigoriinm that Uses augmente

paper, we modify the way in which the SIC incorporates sof{eal valued matrices yieIdi_ng better performance at approx
information. In existing literature the input to the canael imately the same complexity. More recently, the authors of

C . 7] derived the theoretical (time invariant) transfer ftino
tion filter is th tation of the symbols based solely orh ! . |
1on TIeT 15 the expectation of the Symuols based Soely 0 of an MMSE optimal equalizer and showed that this equal-

the a-priori probabilities coming from the decoder, wherea. . o S
ger reduces to a linear equalizer in the case of no a-pneri i

here we propose to use the conditional expectation of tho ) . o
symbols, given both the a-priori probabilities and the iesxk élrormano_n ortoan MMS.E SIC in the case of pgrfect_a-pnon
Qformatlon. Their algorithm, was shown to be identical to a

sequence. This modification results in performance gains\jx . ) i . )
the expense of increased computational complexity. Ho ow cc_)mplgxny aIgonthm_derlved |_n_[8] in the case where the
ever, by introducing an approximation to the aforemenltibneequa“Z_er f||ters_are restricted to 1_‘|n|te length. I_n [9], l_)hal
algorithm a linear complexity SISO equalizer can be derived?UtPUt |nformat|o_n was properly incorporated in the inptit o
Simulation results for an 8-PSK constellation and hostile r 1€ SIC cancellation filter.

dio channels have shown the effectiveness of the proposed

algorithms in mitigating the Inter-Symbol Interferenc8Ijl In the proposed turbo equalizer, we split the problem of

a-priori probabilities based equalization into two distinp-
timization problems. The first problem consists in the esti-
1. INTRODUCTION mation of past and future symbols using a-priori probabit

o ) and channel output information, while the second problem is
Turbo Equalization [1] was motivated by the breakthrough ot estimation of the current symbol based on past and future

Turbo Codes [2], and has emerged as a promising techniqu&mpols. The solution to the first problem is to use an MMSE
for drastic reduction of the intersymbol interference ia-fr equalizer similar to the one developed in [8], but modified
guency selective w!reless channels. Unfortunately, Iﬁd&s{r appropriately so as to provide all the required symbols in-
based SISO equalizer of [1] can be a heavy computation@keaq of computing only the current symbol estimate. For
burden to wireless receivers with limited processing powetne second problem an MMSE SIC is employed, which has
However, when the channel impulse response has long delggen geveloped under the assumption that its input symbols
spread and the employed modulations are of high order, lingre actually correct symbols (in practice they are provided
ear filter based SISO equalizers offer tremendous complexityy the aforementioned equalizer). As shown experimentally
reduction over trellis based ones, without sacrificing @ns e proposed approach, so-called Conditional Expectation
erable performance. _ Soft Interference Canceller (CE-SIC), exhibits similarfpe
~ Inthis context, it was proposed in [3] to replace the trel-5nce to the exact MMSE solution of [8], at almost the same
lis based equalizer by an adaptive SIC of linear complexityeompytational cost. Furthermore, an approximate version,
In [4] an MMSE-optimal equalizer based on linear filters was;g|led Approximate Conditional Expectation - Soft Interfe
derived and it was proven that several other algorithmsh(sucgpce Canceller (ACE-SIC) has been derived, which has linear
as the one in [3]) could be viewed as approximations of thig.omplexity and is experimentally shown to exhibit very good
This work was partially supported by the Research Acaderioiiter performance CharaCte.HSU.CS making it suitable for higtada
Technology Institute of Patras. rate wireless communications.
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Fig. 2. The proposed CE-SIC equalizer

performance degradation occurs for high order modulations

The rest of this paper is organized as follows. In Section 2 NUS; it is justifiable to use the entire a-posteriori prakigh
the underlying transmission model is formulated. Sect®ns information at the output of the decoder as input to the equal

and 4 explain the CE-SIC and ACE-SIC equalizers proposedZe’-
Finally, simulation results are given in Section 5 and concl

sions are drawn in Section 6. 3. THE CE-SIC EQUALIZER

The CE-SIC, shown in Figure 2, consists of three distinct
2. TRANSMISSION MODEL units, namely, an MMSE Soft Interference Canceller, a Con-

Let us consider the communication system depicted on Figditipnal Expectation Computa’Fion unit that delivers syinbo
ure 1. A discrete memoryless source generates binary dagstimates to the cancellation filter of the SIC, and a Demap-
b;,i = 1...S. These data, in blocks of lengfh enter a con-  Per- The Conditional Expectation Computation unit, pregid
volutional encoder of rat&, so that new blocks of/R bits estimates of the transmitted symbols given the a-priodrinf
(¢c;,j = 1...S/R) are created, under the assumption thaimation coming from the decoder and the output of the chan-
S/R is integer and there is no trellis termination. The out-N€l- Based on these estimates the SIC forms an estipate
put of the convolutional encoder is then permuted by an-intethe current symbol. Finally, the Demapper, exploits the out
leaver, denoted a4, so as to form the corresponding block of PUt of the SIC and the a-priori bit probabilities to comptte t
bits ¢, m = 1...S/R. The output of the interleaver is then COrreésponding a-posteriori bit probabilities. In the dofing,
grouped into groups af bits each (withRiq also assumed in- We describe each of these units in more detail.
teger) and each group is mapped int@%aary symbol from
the alphabetd = {a1,as, ..., a2 }. The resulting symbols 3.1. MM SE Soft Interference Cancellation
_ S ; ;

Ty =1... Rg Ar€ finally transm!tteq through the_ channel. The SIC [3], [4] consists of two filters, i.e., the matchedkfilt
We assume that the communication channel is frequenclg —[pr--po---p]T, (M =k+1+ 1) and the cancel-
selective and constant during the packet transmissiorato t | — WPkt P o T .

ation filterq = [g-x---¢g-1 0 q1---qn]*. The inputto

the output of the channel (and input to the receiver) can bﬁwe filter p is the sampled output of the channel at the sym-

modelled as bol rate, whereas the input to the cancellation filter caasib

L2 past and future symbols. The outpytof the SIC is the sum
Fn = Z hitn—i + wn (1) ofthe outputs of the two filters, i.e.,
i=—L
) i sn =pz, +q"x 2)
whereL;, L, + 1 denote the lengths of the anti-causal and n=P ZnTq Xn,

causal parts, respectively, of the channel impulse regpons, oo _ i 2 2n ] T andg,, — [ g
The output of the multipath channel is corrupted by complex-" — =~ " otk 7w = =i en m = LntK

o ) . . Tn-n]T,With N =+ Ly andK = k+ L;. If we choose
valued Additive White Gaussian Noise (AWGR), . jo minimize the mean squared eriiis,, —a,|2] and assume

.At the receiver, we gmploy an equalizer to compute so hat the cancellation filter contains correct symbols, tthen
estimates of the transmitted symbols. As a part of the equal- ) : . .
involved filters are obtained via equations

izer is also a scheme that transforms the soft estimateof th
symbols into soft estimates of the bits corresponding ts¢ho 1
symbols. The output of the equalizer is the log-likelihood p= m
LéE)(cm), m = 1,...5/R, where the subscript stands for "ex-

trinsic” and the superscript denotes that this log-likedit ra- and

tio comes from the equalizer. Further details about the Gurb q=-H"p+dd"H"p 4
Equalization iterative detection algorithm can be founfin ~ where E;, = d”H¥Hd is the square of the channel norm

Itis interesting to note that, as it was also the case inf7], iandH is the M x (K + N + 1) channel convolution matrix.
the output of the MAP decoder is extrinsic then non negligibl Vectord is defined asl = [0;xx 1 01xn]’. From the

Hd, 3)



above equations it is clear that, the outpuf the canceller vectorx,, is extracted fronk!, by simply keeping only the
does not depend on the symbol estimatesince the central K + N + 1 required elements.

tap (o) of the cancellation filter has been set to zero. Atthis  |mposing the extrinsic-information constraint tiétcan-

point, it is convenient to define a functidh(v, L, Q) which 6t pe a function of a-priori knowledge abouf,, and by

transforms the row vector into anL x ) Toeplitz matrix as keeping only the aforementiondd + N + 1 required ele-

vr e vy 0 0 ments we finally get:
. — pH Hg(e)
T(orvs...v0], L.Q) = 0 - wg—1 wvg -+ 0 Sn szn + qun
0 ... 0 Vi e vg + qHan Fgf) (z,, —H'X, + T,H'd") @)
®)
Thus, the convolution matril can be written al = 7'(h”,  Where )
M,K + N +1)whereh = [h_p, --- ho---hz,]". FlY) =C(F9, K +1,2K + 1+ N) ®)
denotes a matrix consisting of the "centr&l™-1-+ N rows of
3.2. Conditional Expectation Computation F\ = HHH'CYHH +621)~ (fromline K +11t02K +

1+ N) and the superscrige) denotes that the corresponding
statistical quantities have been computed settipg= 0 and
o2 =1.

After converting the log-likelihood ratios coming from tte-
coder to bit probabilities, symbol probabilities are corgau
as products of the corresponding bit probabilities (asagmi “z»

bits are independent). The mean and variance of the transmit 10 the above relation it is interesting to note that the
ted symbols are then given by: suggested solution is, in fact, a classical Soft Interfeeen

Canceller (consisting of the first two terms of equation (7))
24 plus a term to compensate for the fact that, for low a-priori
Tp, = Elz,] = Z a; Pr{z, = a;} information, the symbol estimat&s, are highly biased esti-
i=1 mates of the actually transmitted symbols.
In order to transform the output of the CE-SIC into log-
ando? = E[|z,|*] — E*[|z,|] = 1 — [Z,|* assuming unit likelihood ratios, the mean and variancepf, given that a
average symbol power[|z,, |?]. particular symboky; has been transmitted, must be computed.
The Conditional Expectation Computation unit, sets thg~or these statistics, we get
input to the cancellation filteq equal tox,, = E[x,|z,] in-
stead ofx,, = FEx,] as proposed in [3], wherg,, is com-
puted using only a-priori probabilities. Vecta is definedas and
2z, = [Zniktk c2n - 2n—i—n|T andits length is selected 2 = pH [HCQHH 1 oiIM] p
so that all elements af,, use information from a window of
at leastM samples of the sequende}. We may express

;s .
VeCtOan In matrix fOfm as 4 qHan F'Eze) [chsszlH + O—EJI]\/I/} Fgf’)Hc)I;In C(lo)

Win = Elsn|zn = a;] = (pHHd + qHanF,(f)H'd') ~a; (9)

+ 2Rea|{pH [HC(E) a'H +W} FiOH Cfnq}

/
Xn ,X),

z, = H'x), + w), where
W = [0nxx oply Onxn]
wherex!, = [xp 12K - Tn - Tn_an|, vEctorw’, contains © o ) )
the corresponding noise samples, &fidis the (M’ = K + andC, ' ., is the extrinsic covariance matrix betwegn
M + N) x (2(K + N) + 1) channel convolution matrix de- andx;,. Alsod’ = [01x2x 1 Ouxay]". Finally, for the
fined similarly to matrixt. Thus, Theorem 10.3 of [10], con- Demapping operation, we can use the exact demapper of [7].
cerning the Bayesian General Linear Model, may be applied

assuming that the symbat$, have a prior p.d NV (X;,, Cx ). 4. THE ACE-SIC EQUALIZER
Thus,
Assuming that low a-priori information is present, matrix
X, = E[x|z)]
_ i; + Cx,nH/H(H/Cx;zH/H + Cwl)fl . F;ge) = H/H(H/Ci%T?H/H + JEUI)—I
(z,, - H'X,) 6)  canbe approximated by the matrix

wherex), = E[x,], C,s = o021, is the covariance matrix Frle) — HYHHY +621)71.
of the noise vectow’ andCy, = diag([o} ., -~ 05 -
o2 _..]) is the diagonal covariance matrix of the symbolsNote that when no a-priori information is available tr@ff,)

based solely on a-priori probabilities. Finally, the reqdi equals the identity matrix. Furthermore, if we inspe(ft the



rows of matrixE”(¢), we can easily verify that each one corre- F{) by F and allo2 by o?. It should be noted that after the
sponds to an MMSE linear equalizer of lengtft, designed initial equahzatlon 'some terms of (9) and (10) can be store
for a correspondmg output delay. Thus, an approximation 0fy, that the mean and variance of the ACE-SIC output needed
matrixF';” defined in (8) can be: at later iterations are easily computed.

F=T {dTHH(HHH +02Iy) L,K+1+N,K+M+N At this point it is interesting to note that the low complex-

(11) ity SISO equalizers proposed in [4] and [11], consist in &dct

that is, a single linear equalizer of lengilh is used instead two equalizers, one designed for no a-priori informatiod an
of K 4+ 1 + N different equalizers of length/’ > M, for  the other designed for perfect a-priori information. Intsiac
computing the symbol estimates. This approximation isdvali system, a suitable decision criterion must be used for decid
when the linear equalizer lengtl/ is adequately large, so ing which of the two equalizers must be employed prior to
that two linear equalizers of equal lengY > M, designed each iteration. In contrast, the ACE-SIC equalizer is itbeht
to give estimates of symbols, andx,,; respectively, have to its exact counterpart (CE-SIC) both for perfect a-priovi
equal taps but shifted biplaces, and both of them contain formation (i.e.c2 — 0) and for no a-priori information (i.e.
at leastM’ — M zero elements. Of course, increasing thes2 — 1), Where in the latter case we assume approximation
equalizer lengttd/ and using a channel convolution matkik (1i) is valid.
of larger dimension in (11), makes this approximation more
accurate. Thus, since we can design a sufficiently longidinea

X . ) . S 5. SSIMULATION RESULTS
equalizer quite easily, the most crucial approximatiorhis t

replacement OCSZ by Torcy142n- To test the performance of the proposed equalizers we per-

The above suggested approximation of maR|%’ by  formed some typical experiments. Information bits were-gen
is expected to affect the performance of the ACE-SIC algoerated in bursts of = 6144 bits. Then an R.S.C. code with
rithm compared to the performance of its exact counterpargenerator matrdG (D) = [1%] of rateR = 1/2 was
the CE-SIC. As a remedy to this performance degradatiorgpplied, and the resulting bits were interleaved using-a
we allow the (past and future) symbol estimates contained iRandom interleaverk{=23) [12]. The interleaved bits, were
the cancellation filter to depend on the a-priori informatio mapped to an 8-PSKg = 3) symbol alphabet using Gray
about the current symbal,. As these estimates are subse-code mapping. The 4096 symbols per burst were transmit-
quently combined for the computation of the output of theted over a channel whose impulse response was set either
ACE-SIC, it turns out that the extrinsic information restri h_1 = 0.407,ho = 0.815,h; = 0.407 (channel B of [13])
tion has been relaxed. On the other hand, using the a-prio®r h_s = 0.227,h_; = 0.46,ho = 0.688,h; = 0.46, hy =
information aboutr,, improves the computed past and future0.227 (channel C of [13]). Figures 3 and 4 demonstrate the
symbol estimates. This modification yields the following fil performance of various receivers performing turbo eqaaliz
tering equation: tion for the aforementioned channels. For all simulatidins,

" He " s, — filter lengths were computed usikg= [ = 10.

Sn =P 20+ % + a7 Cx, Flz, - HX,) (12) In Figure 3, we notice that all equalizers exhibit similar
in which the vector multiplying® does not include the term performance. The MMSE equalizer of [4] has superior perfor-
7, H'd’, as opposed to equation (7). It is interesting to ob-mance followed by the CE-SIC, the SWITCHED equalizer of
serve the interplay between, and the output of the linear [11]and the ACE-SIC. All algorithms after eight iteratioats
equalizer in computing,,. For perfect a-priori information, tained the performance bound that corresponds to the AWGN
o2 = 0and%, = T,, whereas for no a-priori information channel. Thus, a high complexity algorithm for the channel

agn = 1 andz, is equal to the output of the linear equalizer. B, does not seem very practical since the same performance
For general a-priori information? serves as a "weight” be- can be obtained by the low complexity solutions.
tween these two estimates. In Figure 4, we notice that the I1SI caused by the channel
Similarly to the CE-SIC, in order to transform the out- is quite severe so that none of the examined algorithmsattai
put of the algorithm into log-likelihood ratios the mean andthe performance bound after eight iterations. The MMSE
variance of the output,, must be estimated. For complexity equalizer of [4] and the CE-SIC have almost the same per-
reasons we assume that the required mean and variance fermance. The MMSE | equalizer of [8] attains better perfor-
main fixed during each iteration, that is, they are computedhance that the ACE-SIC, however, at a higher computational
once prior to each iteration. This can be achieved by keepingomplexity. It is interesting to note that the ACE-SIC equal
all symbol variances equal to a constaft We suggest using izer exhibits better performance than the SWITCHED equal-
izer of [11] (approximately 1dB less SNR is needed to achieve
a BER of1073). Therefore, for hostile channels, switching
which is valid whenever all symbol variances are equal, antietween equalizers optimized for the two extreme cases-(no a
does not amplify the reliability of initially more reliabkym-  priori and perfect a-priori information) can be a less effiti
bols. Then, equations (9) and (10) can be used by substjtutirstrategy than using an algorithm that can smoothly adapt to

2 _ 2 2
o max{azl,am,...,GZS/(Rq)}.



the quality of the a-priori information (such as the ACE-BIC

Also, the ACE-SIC equalizer, at medium SNRs, achieves a _ _ _
performance close to the performance of its exact counterpa [1] C. Douillard, M. Jezequel, C. Berrou, A. Picard, P. Di-
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Fig. 4. BER Performance after 8 turbo iterations, channel C

6. CONCLUSIONS

In this work, a novel SISO equalizer of linear complexity was

(2]

(3]

[4]

[5]

[6]

[7]

(8]

(9]

(10]

presented. This algorithm was derived as an approximate im-

plementation (ACE-SIC) of a new two step minimization al-
gorithm (CE-SIC) which in turn was developed for the prob-

lem of equalization using a-priori probabilities. Simidet

(11]

results have shown that (a) the exact implementation has al-
most identical performance to the MMSE equalizer of [8], and12]

(b) the approximate implementation offers very good perfor
mance at linear complexity. Thus, the latter low complexity,

equalization algorithm is suitable for high data-rate Veiss
communication systems with limited processing power.

(13]
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