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ABSTRACT

Soft-Input Soft-Output (SISO) equalizers based on linear fil-
ters have proven to be good, low complexity, alternatives to
trellis-based SISO equalizers. In particular, the Soft Interfer-
ence Canceller (SIC) has recently received great interest,es-
pecially for receivers performing Turbo Equalization. In this
paper, we modify the way in which the SIC incorporates soft
information. In existing literature the input to the cancella-
tion filter is the expectation of the symbols based solely on
the a-priori probabilities coming from the decoder, whereas
here we propose to use the conditional expectation of those
symbols, given both the a-priori probabilities and the received
sequence. This modification results in performance gains at
the expense of increased computational complexity. How-
ever, by introducing an approximation to the aforementioned
algorithm a linear complexity SISO equalizer can be derived.
Simulation results for an 8-PSK constellation and hostile ra-
dio channels have shown the effectiveness of the proposed
algorithms in mitigating the Inter-Symbol Interference (ISI).

1. INTRODUCTION

Turbo Equalization [1] was motivated by the breakthrough of
Turbo Codes [2], and has emerged as a promising technique
for drastic reduction of the intersymbol interference in fre-
quency selective wireless channels. Unfortunately, the trellis
based SISO equalizer of [1] can be a heavy computational
burden to wireless receivers with limited processing power.
However, when the channel impulse response has long delay
spread and the employed modulations are of high order, lin-
ear filter based SISO equalizers offer tremendous complexity
reduction over trellis based ones, without sacrificing consid-
erable performance.

In this context, it was proposed in [3] to replace the trel-
lis based equalizer by an adaptive SIC of linear complexity.
In [4] an MMSE-optimal equalizer based on linear filters was
derived and it was proven that several other algorithms (such
as the one in [3]) could be viewed as approximations of this
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one. In [5], a modified version of the sliding window algo-
rithm of [4] was derived having similar performance to the
original one while offering reduced computational complex-
ity via the use of a Cholesky factorization technique. In [6],
the authors modified the algorithm of [4] which involves com-
plex valued matrices, into an algorithm that uses augmented
real valued matrices yielding better performance at approx-
imately the same complexity. More recently, the authors of
[7] derived the theoretical (time invariant) transfer function
of an MMSE optimal equalizer and showed that this equal-
izer reduces to a linear equalizer in the case of no a-priori in-
formation or to an MMSE SIC in the case of perfect a-priori
information. Their algorithm, was shown to be identical to a
low complexity algorithm derived in [8] in the case where the
equalizer filters are restricted to finite length. In [9], channel
output information was properly incorporated in the input of
the SIC cancellation filter.

In the proposed turbo equalizer, we split the problem of
a-priori probabilities based equalization into two distinct op-
timization problems. The first problem consists in the esti-
mation of past and future symbols using a-priori probabilities
and channel output information, while the second problem is
the estimation of the current symbol based on past and future
symbols. The solution to the first problem is to use an MMSE
equalizer similar to the one developed in [8], but modified
appropriately so as to provide all the required symbols in-
stead of computing only the current symbol estimate. For
the second problem an MMSE SIC is employed, which has
been developed under the assumption that its input symbols
are actually correct symbols (in practice they are provided
by the aforementioned equalizer). As shown experimentally,
the proposed approach, so-called Conditional Expectation-
Soft Interference Canceller (CE-SIC), exhibits similar perfor-
mance to the exact MMSE solution of [8], at almost the same
computational cost. Furthermore, an approximate version,so-
called Approximate Conditional Expectation - Soft Interfer-
ence Canceller (ACE-SIC) has been derived, which has linear
complexity and is experimentally shown to exhibit very good
performance characteristics making it suitable for high data
rate wireless communications.
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Fig. 1. The model of transmission

The rest of this paper is organized as follows. In Section 2
the underlying transmission model is formulated. Sections3
and 4 explain the CE-SIC and ACE-SIC equalizers proposed.
Finally, simulation results are given in Section 5 and conclu-
sions are drawn in Section 6.

2. TRANSMISSION MODEL

Let us consider the communication system depicted on Fig-
ure 1. A discrete memoryless source generates binary data
bi, i = 1 . . . S. These data, in blocks of lengthS, enter a con-
volutional encoder of rateR, so that new blocks ofS/R bits
(cj, j = 1 . . . S/R) are created, under the assumption that
S/R is integer and there is no trellis termination. The out-
put of the convolutional encoder is then permuted by an inter-
leaver, denoted asΠ, so as to form the corresponding block of
bits cm, m = 1 . . . S/R. The output of the interleaver is then
grouped into groups ofq bits each (with S

Rq
also assumed in-

teger) and each group is mapped into a2q-ary symbol from
the alphabetA = {α1, α2, . . . , α2q}. The resulting symbols
xn, n = 1 . . . S

Rq
are finally transmitted through the channel.

We assume that the communication channel is frequency
selective and constant during the packet transmission, so that
the output of the channel (and input to the receiver) can be
modelled as

zn =

L2
∑

i=−L1

hixn−i + wn , (1)

whereL1, L2 + 1 denote the lengths of the anti-causal and
causal parts, respectively, of the channel impulse response.
The output of the multipath channel is corrupted by complex-
valued Additive White Gaussian Noise (AWGN)wn.

At the receiver, we employ an equalizer to compute soft
estimates of the transmitted symbols. As a part of the equal-
izer is also a scheme that transforms the soft estimates of the
symbols into soft estimates of the bits corresponding to those
symbols. The output of the equalizer is the log-likelihood
L

(E)
e (cm), m = 1, ...S/R, where the subscript stands for ”ex-

trinsic” and the superscript denotes that this log-likelihood ra-
tio comes from the equalizer. Further details about the Turbo
Equalization iterative detection algorithm can be found in[4].

It is interesting to note that, as it was also the case in [7], if
the output of the MAP decoder is extrinsic then non negligible
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Fig. 2. The proposed CE-SIC equalizer

performance degradation occurs for high order modulations.
Thus, it is justifiable to use the entire a-posteriori probability
information at the output of the decoder as input to the equal-
izer.

3. THE CE-SIC EQUALIZER

The CE-SIC, shown in Figure 2, consists of three distinct
units, namely, an MMSE Soft Interference Canceller, a Con-
ditional Expectation Computation unit that delivers symbol
estimates to the cancellation filter of the SIC, and a Demap-
per. The Conditional Expectation Computation unit, provides
estimates of the transmitted symbols given the a-priori infor-
mation coming from the decoder and the output of the chan-
nel. Based on these estimates the SIC forms an estimatesn of
the current symbol. Finally, the Demapper, exploits the out-
put of the SIC and the a-priori bit probabilities to compute the
corresponding a-posteriori bit probabilities. In the following,
we describe each of these units in more detail.

3.1. MMSE Soft Interference Cancellation

The SIC [3], [4] consists of two filters, i.e., the matched filter
p = [p−k · · · p0 · · · pl]

T , (M = k + l + 1) and the cancel-
lation filterq = [q−K · · · q−1 0 q1 · · · qN ]T . The input to
the filterp is the sampled output of the channel at the sym-
bol rate, whereas the input to the cancellation filter consists of
past and future symbols. The outputsn of the SIC is the sum
of the outputs of the two filters, i.e.,

sn = pHzn + qH x̃n , (2)

wherezn = [zn+k · · · zn · · · zn−l]
T andx̃n = [x̃n+K · · · x̃n

· · · x̃n−N ]T , with N = l +L2 andK = k +L1. If we choose
to minimize the mean squared errorE[|sn−xn|2] and assume
that the cancellation filter contains correct symbols, thenthe
involved filters are obtained via equations

p =
1

σ2
w + Eh

Hd , (3)

and
q = −HHp + ddTHHp (4)

whereEh = dT HHHd is the square of the channel norm
andH is theM × (K + N + 1) channel convolution matrix.
Vectord is defined asd = [01×K 1 01×N ]T . From the



above equations it is clear that, the outputsn of the canceller
does not depend on the symbol estimatex̃n since the central
tap (q0) of the cancellation filter has been set to zero. At this
point, it is convenient to define a functionT (v, L, Q) which
transforms the row vectorv into anL × Q Toeplitz matrix as

T ([v1v2 . . . vd], L, Q) =













v1 · · · vd 0 · · · 0

0
. . . vd−1 vd · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 v1 · · · vd













(5)
Thus, the convolution matrixH can be written asH = T (hT ,
M, K + N + 1) whereh = [h−L1 · · · h0 · · ·hL2 ]

T .

3.2. Conditional Expectation Computation

After converting the log-likelihood ratios coming from thede-
coder to bit probabilities, symbol probabilities are computed
as products of the corresponding bit probabilities (assuming
bits are independent). The mean and variance of the transmit-
ted symbols are then given by:

xn = E[xn] =

2q
∑

i=1

αiPr{xn = αi}

andσ2
xn

= E[|xn|
2] − E2[|xn|] = 1 − |xn|

2 assuming unit
average symbol powerE[|xn|2].

The Conditional Expectation Computation unit, sets the
input to the cancellation filterq equal tox̃n = E[xn|z′n] in-
stead ofxn = E[xn] as proposed in [3], wherexn is com-
puted using only a-priori probabilities. Vectorz′n is defined as
z′n = [zn+k+K · · · zn · · · zn−l−N ]T and its length is selected
so that all elements of̃xn use information from a window of
at leastM samples of the sequence{z}. We may express
vectorz′n in matrix form as

z′n = H′x′

n + w′

n

wherex′

n = [xn+2K · · ·xn · · ·xn−2N ]T , vectorw′

n contains
the corresponding noise samples, andH′ is the(M ′ = K +
M + N) × (2(K + N) + 1) channel convolution matrix de-
fined similarly to matrixH. Thus, Theorem 10.3 of [10], con-
cerning the Bayesian General Linear Model, may be applied
assuming that the symbolsx′

n have a prior p.d.fN (x′

n,Cx
′

n
).

Thus,

x̃′

n = E[x′

n|z
′

n]

= x′

n + Cx
′

n
H′H(H′Cx

′

n
H′H + Cw′)−1 ·

·(z′n − H′x′

n) (6)

wherex′

n = E[x′

n], Cw′ = σ2
wIM ′ is the covariance matrix

of the noise vectorw′ andCx
′

n
= diag([σ2

xn+2K
· · ·σ2

xn
· · ·

σ2
xn−2N

]) is the diagonal covariance matrix of the symbols
based solely on a-priori probabilities. Finally, the required

vector x̃n is extracted from̃x′

n by simply keeping only the
K + N + 1 required elements.

Imposing the extrinsic-informationconstraint thatx̃′

n can-
not be a function of a-priori knowledge aboutxn, and by
keeping only the aforementionedK + N + 1 required ele-
ments we finally get:

sn = pHzn + qH x̃(e)
n

= pHzn + qHxn +

+ qHCxnF(e)
n (z′n − H′x′

n + xnH′d′) (7)

where
F(e)

n = C(F′(e)
n , K + 1, 2K + 1 + N) (8)

denotes a matrix consisting of the ”central”K+1+N rows of
F

′(e)
n = H′H(H′C

(e)
x
′

n
H′H+σ2

wI)−1 (from lineK+1 to2K+

1+N ) and the superscript(e) denotes that the corresponding
statistical quantities have been computed settingxn = 0 and
σ2

xn
= 1.

From the above relation it is interesting to note that the
suggested solution is, in fact, a classical Soft Interference
Canceller (consisting of the first two terms of equation (7))
plus a term to compensate for the fact that, for low a-priori
information, the symbol estimatesxn are highly biased esti-
mates of the actually transmitted symbols.

In order to transform the output of the CE-SIC into log-
likelihood ratios, the mean and variance ofsn, given that a
particular symbolαi has been transmitted, must be computed.
For these statistics, we get

µi,n = E[sn|xn = αi] = (pH
Hd + q

H
CxnF

(e)
n H

′

d
′) · αi (9)

and

σ2
i,n = pH

[

HC
(e)
xnHH + σ2

wIM

]

p

+ 2Real
{

pH
[

HC
(e)
xn,x′

n
H′H + W

]

F
(e)H
n CH

xn
q
}

+ qHCxnF
(e)
n

[

H′C
(e)
x
′

n
H′H + σ2

wIM′

]

F
(e)H
n CH

xn
q(10)

where
W =

[

0M×K σ2
wIM 0M×N

]

and C
(e)
xn,x′

n
is the extrinsic covariance matrix betweenxn

andx′

n. Also d′ = [01×2K 1 01×2N ]T . Finally, for the
Demapping operation, we can use the exact demapper of [7].

4. THE ACE-SIC EQUALIZER

Assuming that low a-priori information is present, matrix

F′(e)
n = H′H(H′C

(e)
x
′

n
H′H + σ2

wI)−1

can be approximated by the matrix

F̂′(e) = H′H(H′H′H + σ2
wI)−1 .

Note that when no a-priori information is available thenC
(e)
x
′

n

equals the identity matrix. Furthermore, if we inspect the



rows of matrixF̂′(e), we can easily verify that each one corre-
sponds to an MMSE linear equalizer of lengthM ′, designed
for a corresponding output delay. Thus, an approximation of
matrixF

(e)
n defined in (8) can be:

F̂ = T

{

dT HH(HHH + σ2
wIM )−1, K + 1 + N, K + M + N

}

(11)

that is, a single linear equalizer of lengthM is used instead
of K + 1 + N different equalizers of lengthM ′ > M , for
computing the symbol estimates. This approximation is valid
when the linear equalizer lengthM is adequately large, so
that two linear equalizers of equal lengthM ′ > M , designed
to give estimates of symbolsxn andxn−i respectively, have
equal taps but shifted byi places, and both of them contain
at leastM ′ − M zero elements. Of course, increasing the
equalizer lengthM and using a channel convolution matrixH

of larger dimension in (11), makes this approximation more
accurate. Thus, since we can design a sufficiently long linear
equalizer quite easily, the most crucial approximation is the
replacement ofC(e)

x
′

n
by I2K+1+2N .

The above suggested approximation of matrixF
(e)
n by F̂

is expected to affect the performance of the ACE-SIC algo-
rithm compared to the performance of its exact counterpart,
the CE-SIC. As a remedy to this performance degradation,
we allow the (past and future) symbol estimates contained in
the cancellation filter to depend on the a-priori information
about the current symbolxn. As these estimates are subse-
quently combined for the computation of the output of the
ACE-SIC, it turns out that the extrinsic information restric-
tion has been relaxed. On the other hand, using the a-priori
information aboutxn improves the computed past and future
symbol estimates. This modification yields the following fil-
tering equation:

ŝn = pHzn + qHxn + qHCxnF̂(z′n − H′x′

n) (12)

in which the vector multiplyinĝF does not include the term
xnH′d′, as opposed to equation (7). It is interesting to ob-
serve the interplay betweenxn and the output of the linear
equalizer in computing̃xn. For perfect a-priori information,
σ2

xn
= 0 andx̃n = xn, whereas for no a-priori information

σ2
xn

= 1 andx̃n is equal to the output of the linear equalizer.
For general a-priori informationσ2

xn
serves as a ”weight” be-

tween these two estimates.
Similarly to the CE-SIC, in order to transform the out-

put of the algorithm into log-likelihood ratios the mean and
variance of the output̂sn must be estimated. For complexity
reasons we assume that the required mean and variance re-
main fixed during each iteration, that is, they are computed
once prior to each iteration. This can be achieved by keeping
all symbol variances equal to a constantσ2. We suggest using

σ2 = max{σ2
x1

, σ2
x2

, . . . , σ2
xS/(Rq)

} .

which is valid whenever all symbol variances are equal, and
does not amplify the reliability of initially more reliablesym-
bols. Then, equations (9) and (10) can be used by substituting

F
(e)
n by F̂ and allσ2

xn
by σ2. It should be noted that after the

initial equalization, some terms of (9) and (10) can be stored
so that the mean and variance of the ACE-SIC output needed
at later iterations are easily computed.

At this point it is interesting to note that the low complex-
ity SISO equalizers proposed in [4] and [11], consist in factof
two equalizers, one designed for no a-priori information and
the other designed for perfect a-priori information. In such a
system, a suitable decision criterion must be used for decid-
ing which of the two equalizers must be employed prior to
each iteration. In contrast, the ACE-SIC equalizer is identical
to its exact counterpart (CE-SIC) both for perfect a-prioriin-
formation (i.e.σ2

xn
→ 0) and for no a-priori information (i.e.

σ2
xn

→ 1), where in the latter case we assume approximation
(11) is valid.

5. SIMULATION RESULTS

To test the performance of the proposed equalizers we per-
formed some typical experiments. Information bits were gen-
erated in bursts ofS = 6144 bits. Then an R.S.C. code with
generator matrixG(D) = [1 1+D2

1+D+D2 ] of rateR = 1/2 was
applied, and the resulting bits were interleaved using aK-
Random interleaver (K=23) [12]. The interleaved bits, were
mapped to an 8-PSK(q = 3) symbol alphabet using Gray
code mapping. The 4096 symbols per burst were transmit-
ted over a channel whose impulse response was set either
h−1 = 0.407, h0 = 0.815, h1 = 0.407 (channel B of [13])
or h−2 = 0.227, h−1 = 0.46, h0 = 0.688, h1 = 0.46, h2 =
0.227 (channel C of [13]). Figures 3 and 4 demonstrate the
performance of various receivers performing turbo equaliza-
tion for the aforementioned channels. For all simulations,the
filter lengths were computed usingk = l = 10.

In Figure 3, we notice that all equalizers exhibit similar
performance. The MMSE equalizer of [4] has superior perfor-
mance followed by the CE-SIC, the SWITCHED equalizer of
[11] and the ACE-SIC. All algorithms after eight iterationsat-
tained the performance bound that corresponds to the AWGN
channel. Thus, a high complexity algorithm for the channel
B, does not seem very practical since the same performance
can be obtained by the low complexity solutions.

In Figure 4, we notice that the ISI caused by the channel
is quite severe so that none of the examined algorithms attains
the performance bound after eight iterations. The MMSE
equalizer of [4] and the CE-SIC have almost the same per-
formance. The MMSE I equalizer of [8] attains better perfor-
mance that the ACE-SIC, however, at a higher computational
complexity. It is interesting to note that the ACE-SIC equal-
izer exhibits better performance than the SWITCHED equal-
izer of [11] (approximately 1dB less SNR is needed to achieve
a BER of10−3). Therefore, for hostile channels, switching
between equalizers optimized for the two extreme cases (no a-
priori and perfect a-priori information) can be a less efficient
strategy than using an algorithm that can smoothly adapt to



the quality of the a-priori information (such as the ACE-SIC).
Also, the ACE-SIC equalizer, at medium SNRs, achieves a
performance close to the performance of its exact counterpart.
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6. CONCLUSIONS

In this work, a novel SISO equalizer of linear complexity was
presented. This algorithm was derived as an approximate im-
plementation (ACE-SIC) of a new two step minimization al-
gorithm (CE-SIC) which in turn was developed for the prob-
lem of equalization using a-priori probabilities. Simulation
results have shown that (a) the exact implementation has al-
most identical performance to the MMSE equalizer of [8], and
(b) the approximate implementation offers very good perfor-
mance at linear complexity. Thus, the latter low complexity
equalization algorithm is suitable for high data-rate wireless
communication systems with limited processing power.
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