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Abstract

In this work we propose and develop a comprehensive infrastructure, coined PastryStrings, for supporting rich querieson

both numerical (with range, and comparison predicates) andstring attributes, (accommodating equality, prefix, suffix, and

containment predicates) over DHT networks utilising prefix-based routing. As event-based, publish/subscribe information

systems are a champion application class, we formulate our solution in terms of this environment.

1 Introduction

Peer-to-peer (p2p) data networks are appropriate for building large-scale distributed systems and applications since they

are completely decentralised, scalable, and self organising. All participating nodes have equal opportunities and are providing

services where information is exchanged directly between them. There are two families of p2p networks:structured, where

the data placement and the network topology are tightly controlled, and theunstructuredones. The most prominentstructured

p2p networks are built using a Distributed Hash Table (DHT [1, 18–21,30]). A special class of DHTs employ prefix-based

routing based on Plaxton’s et al. Mesh [16] (Tapestry [30], Pastry [20], Bamboo [19]). DHT architectures provide scalable

resource look-up and routing withO(log(N)) complexity in aN -node network.

A large body of research is currently targeting the extension and employment of p2p data network architectures over either

unstructuredor DHT-basedp2p networks ([6, 10–12,14, 17, 29]). Related work has provided solutions for a large number of

problems, from architectures and algorithms for searchingrelevant data, to range query processing and data integration, and

has started to examine how to support join and aggregate queries. This fact testifies to the importance the distributed systems

community at large is giving to being able to support data-intensive applications over large-scale network infrastructures.

Supporting a‘rich’ set of queries (queries involving prefix, suffix, containment, and equality predicates on strings, and

range and comparison predicates on numerical-typed attributes) in p2p data networks may be very useful to a number of

applications. A representative class of such distributed applications is systems built using the publish/subscribe (pub/sub)



paradigm. With our work in this paper we contribute a comprehensive infrastructure, coinedPastryStrings, supporting

efficiently and scalably a rich set of operators on string andnumerical-typed attributes. Given the popularity of the pub/sub

paradigm, we focus on it and formulate our solution in terms of this environment.

2 Background and contributions

2.1 Plaxton’s mesh and Pastry

Pastry [20], as well as Tapestry [30] and Bamboo [19], are allbased on location and routing mechanisms introduced in

[16].

Plaxton et. al. present in [16] a distributed data structure(a.k.a. Plaxton Mesh) optimised for routing and locating objects

in a very large network with constant size routing tables. Assuming a static network, routing tables consist of multiplelevels,

where in each leveli there are pointers to nodes whose identifiers (or node ids) have the samei-digit long suffix with the

current node’s id. The routing of messages is achieved by resolving one digit of the destination id in each stepi and looking

at thei + 1 level of the local routing table for the next node. This mechanism ensures that a node will be reached in at most

m = logβ(N) logical hops, whereN is the namespace size,β is the base of ids, andm the number of digits in an id. The

size of the routing table is constant and equal toβ × logβ(N).

Pastry [20] offers a robust, scalable, and self-organisingextension to Plaxton’s Mesh under a dynamic environment. The

routing scheme in Pastry, is similar to the one proposed by Plaxton et. al. with routing tables of sizeβ × logβ(N) (with

logβ(N) levels/rows andβ columns per level), resulting inlogβ(N) logical hops to locate a node. However, prefix (instead

of suffix) matching is performed in each routing step towardsthe destination node, while routing table entries point to the

closest node with the appropriate id prefix in terms of a proximity metric (such as round-trip time, RTT). Moreover, in order

to achieve reliable routing, there is the notion of aleaf setfor each node consisting ofL pointers to nodes with id numerically

close to the current node’s id. In Pastry there is also the notion of neighbouring nodes, which is a set ofM pointers to nearby

nodes according to a proximity metric and used for maintaining locality properties. Tapestry [30] and Bamboo [19] are DHTs

with similar routing functionality.

2.2 The publish/subscribe paradigm

In the pub/sub paradigm, subscribing users are interested in particular events, comprising a small subset of the set of all

events that publishing users may generate. Pub/sub systems[8] are separated in two major categories, according to the way

subscribers express their interests; thetopic-basedand thecontent-basedpub/sub systems.Content-basedpub/sub systems

are preferable as they give users the ability to express their interest by issuing continuous queries, termed subscriptions,

specifying predicates over thevaluesof a number of well defined attributes. The matching of publications (a.k.a. events) to

subscriptions (a.k.a. interests) is done based on the content (values of attributes).

The main challenge in a distributed pub/sub environment is the development of an efficient distributed matching algorithm
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and related efficient algorithms to store subscriptions in the network. Distributed solutions have been provided for topic-

based pub/sub systems [5]. More recently, some attempts on distributed content-based pub/sub systems use routing trees

to disseminate the events to interested users based on multicast techniques [3, 4, 7, 12, 22, 23, 25]. Typically, processing

subscriptions and/or events in these approaches requiresO(N) messages inN-node networks. Additionally, there exist

techniques for subscription summarization that significantly reduce the complexity [25, 26].

Some other attempts use the notion of rendezvous nodes whichensure that events and subscriptions meet in the system

[15]. Some approaches have also considered the coupling of topic-based and content-based systems [31] where events/subscri-

ptions are automatically classified in topics. However, none of these works supports string attributes with prefix, suffix, and

containment predicates.

Finally, some techniques found in the literature for stringindexing may also be relevant to our goals. The most promising

is the technique relying on n-grams [11] which can be appliedfor substring matching. However, deciding on the right value

of n of n−grams is difficult. Thus, typically, several values ofn are used, which has a multiplicative effect on the overheads

associated withn − grams. A relevant toPastryStringswork is presented in [27] where pub/sub functionality is offered on

top of the Chord DHT using an attribute-value model, calledAWPS. In [13] a balanced tree structure on top of a p2p network

is presented, which can handle equality and range queries.

Prior research aiming to address relevant issues of processing ‘rich’ queries as typified by those in a pub/sub environment

and which is closest to this work includes our previous work to support numerical-attributes in a DHT-based pub/sub environ-

ment [24]. In this work we showed how to exploit DHTs and order-preserving hashing to process range subscriptions (with

rangeR of size |R|), with worst-case message complexityO(|R| + log(N)) and events inO(log(N)), in an N-node net-

work. Our more recent work in [2] presented an approach able to support string-attribute predicates with message complexity

O(l × log(N)) (wherel is the average length of string values) for events andO(log(N)) for subscriptions. Both of these

works were DHT-independent, relying on the underlying DHT’s lookup functionality for routing events and subscriptions.

In the same spirit, the work in [17] proposed a distributed trie structure calledPrefix Hash Tree(PHT) which is built on

top of a DHT p2p network and can support range queries and prefix string queries. PHT, like [2] and [24] enjoy universal

applicability (as they are based solely on the DHT’s lookup function). However, it too suffers from a number of drawbacks

regarding its performance and particularly the message complexity of processing range and string queries. Adapting PHT to

the pub/sub paradigm we would observe that range query (subscription) processing would requireO(log(N)+ |R|× log(N))

messages. This is similar to the performance of [24], only because of the use of order-preserving hashing the latter work

hasO(|R| + log(N)) complexity (since peer nodes storing neighbouring values are network neighbours due to the order-

preserving data placement). With respect to processing events matching prefix-string subscriptions (in general) PHT would

exhibit a message complexity ofO(l × log(N)), similar to [2], since one DHT lookup is needed per characterof the string.

The reader should note that the value of|R| can be large and thatl is typically in the order oflog(N).
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2.3 Contribution

What is very much lacking in the literature is a single unified, comprehensive DHT-based, pub/sub architecture that can

support with the same structures both string and numerical-attribute events and subscriptions effectively. This implies that it is

highly desirable to offer logarithmic event and subscription processing performance for both string and numerical attributes.

3 PastryStrings architecture and rationale

The two primary design choices that best describePastryStringsare (i) a tuned Pastry (or any other Plaxton-like DHT)

network with an alphabet base1 β appropriately defined so as to map string values (every possible spoken word) to nodes

and (ii) a tree structure (known asstring trees) on top of Pastry dedicated for storing subscriptions and matching events to

subscriptions using prefix-based routing a la Pastry.

Each tree in thestring tree forest is dedicated to one of theβ characters of our alphabet. For string queries starting

with a specific character we will first locate the appropriatetree dedicated to that character and follow a path towards the

“rendezvous node” inside that tree where events and subscriptions will meet. Each node in astring treeuses the Pastry nodes’

local routing tables as a hint for the tree construction.

The architecture ofPastryStringsconsists of clients that are producers/consumers, issuingevents/subscriptions, respec-

tively. Each client is “attached” to a Pastry network node using any appropriate mechanism. Each Pastry node hosts one or

morestring treenodes responsible for holding and processing events and subscriptions.

Consumers publish their interests with subscriptions thatare stored in specificstring treenodes, the “rendezvous nodes”.

Producers generate events that are delivered only to interested consumers by collecting and ‘activating’ the already stored

subscriptions in the “rendezvous nodes”. For simplicity ofpresentation, we will concentrate in this section on a single-

attribute event/subscription schema.

3.1 String trees

There are two types of nodes inPastryStrings. Network (Pastry) nodes (referred to as simply “nodes”) andstring treenodes

(referred to asTnodes). A node in general hosts severalTnodes. Nodes have ids (assigned by Pastry) whileTnodes have

labels for identifying them. ATnode’s label is in general a prefix-string that is meant to identify a specificTnode that is

responsible for storing subscriptions matching the stringlabel. In this case, theTnode with label ‘lbl’ is denoted asTnodelbl.

Eachstring treeis denoted byTi wherei ∈ S = {a | a is one of the β characters of the alphabet} is the character

for which Ti is responsible for. This means that every label in theTi tree starts with the same characteri. EachTi has a

maximum depth (root’s depth is zero) equal to the maximum allowable string-length.

A first attempt regarding thestring treeconstruction is to take advantage of the routing table of each node in the Pastry

1The digit base is equal to64 as a result of the2 × 26 = 52 characters of the English alphabet (uppercase and lower case), the10 numerical characters
and two special symbols: space and period.
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network (e.g. with id digit baseβ = 64)2 and use those routing tables for (prefix-based) routing the queries to rendezvous

Tnodes. However, this turns out not to be a good idea due to the complications introduced by the maintenance functionality

in the presence of churn. Consider, for example, the case where a Pastry nodeA changes the entry in its routing table

which was pointing toB, to point now toC because ofB′s departure. Then, the entire subtree rooted atB would become

unreachable. In this case, either this subtree should be moved to hang fromC, (which implies that everyTnode in the

subtree would have to be replaced and be hosted by a Pastry node reachable fromC) or C′s routing table should be updated,

which implies that we would interfere with the way the Pastrynetwork is constructed.

Thus, a better idea is to maintain an additional routing table for eachTnode of our Ti trees of constant length equal to

β with entries pointing to theTnode’s children. The construction of this routing table for aTnode is done based on the

routing table of the Pastry node hosting theTnode. The routing table at each Pastry node holdsβ × logβ(N), entries. Each

Tnode uses as a hint one of thelogβ(N) levels in the routing table of the Pastry node, where theTnode is hosted, in order

to build its own routing table. More precisely, if aTnode lays in depthd then it is going to use the(d + 1) mod logβ(N)

level of the host’s routing table. Since the alphabet for Pastry node ids andTnode’s labels is the same, the aim is to do

prefix-based routing overTnode’s labels utilising the Pastry infrastructure for doing prefix-based routing over node ids, so

as (i) to leverage the Pastry self-organisation logic and (ii) achieve short RTT where possible.

String treesare created dynamically as new requests for storing subscriptions with string-valued predicates, arrive. Since

there are manystring treeswe locate the root of a specificTi by hashing the first character of the given string with a

uniformly-distributed hash function like SHA-1. Then, thenode with that id will host (or already hosts) the root ofTi . The

following example illustrates howstring treesare created.

Example 1 Simple subscription storing. In Figure 1 a simplified snapshot of the PastryStrings infrastructure is presented.

In this example, we use 3-character long ids with alphabet ofbaseβ = 2. Suppose now that a user expresses her interests

with two subscriptions (with identifiersSubID1 andSubID2 ) on the same attribute, setting the attribute’s value to ‘010’

and ‘00’ respectively.

In general, the string tree forest consists of two trees: theT0 andT1 . Both subscriptions in this example concernT0 .

To process the storage request for value ‘010’ we should firstlocate the Pastry node responsible for hosting the root of the

T0 tree (say node with id ‘000) by hashing the character ‘0’ and locating the Pastry node with id equal (or close) to the

hashing result. We construct there the root,Tnode0 and since its routing table is empty we use the host’s routingtable at

level 1 as a hint (recall that the root lays in depthd = 0 and thus we look at level(d + 1) mod 3 = 1). The routing table of

the host ofTnode0 at level 1 has two entries (since we have a binary alphabet) which are copied toTnode0’s routing table.

The first one is pointing to node ‘001’ which will hostTnode00, while the second entry points to ‘011’ which is going to host

Tnode01. Now that we have filledTnode0’s routing table we further process the request by checking the second character

of the string, ‘1’. We look at the root’s routing table, at column ‘1’, and select the record that matches the next digit, sending

the request to the node ‘011’. Since initially node ‘011’ does not host anyTnode, we construct thereTnode01 and fill its

2If, for instanceβ = 64 andstrLength, the maximum string length, is20, then the namespace size is6420 ∼= 2120 . If β = 64 andstrLength = 30
then the namespace size is6430 ∼= 2180 . Please note, that typical DHTs are reported to have a namespace size in the range of2128... 2164 .
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Figure 1. String tree construction over a Pas-
try network with β = 2 and 3-characters long
ids. The tree is constructed on demand as
there is a store request for values ‘010’ and
‘00’.

Figure 2. Simple matching. An event arrives
with value equal to ‘010’. Two subscriptions
with values ‘00’ and ‘010’ are already stored
in PastryStrings.

routing table with the level 2 of its host’s routing table. Then we process the storage request, by examining the final character

of the string, ‘0’. We again askTnode01 for its pointer in column ‘0’ of its routing table and we forward the request to node

‘100’. We construct thereTnode010 and storeSubID1 . The second storage request is handled similarly, as you cansee in

Figure 1. ♦

3.2 Event and subscription rendezvous

When an event arrives defining a value in our simple single-attribute event/subscription schema, we locate the root of the

appropriateTi and forward the event towards theTnode that has the same label as the string value in the event, by resolving

one character at a time. All subscriptions found there, are considered to match the event since they have declared the same

value as the event.

Example 2 Simple event-subscription rendezvous. Figure 2 shows a snapshot of PastryStrings with two subscriptions

already stored from the previous example. Suppose that an event defining the value ‘010’ arrives at the system. We first

locate the root node,Tnode0, of the string tree responsible for the character ‘0’ and send there the event.Tnode0 will

look-up its routing table in column ‘1’ for the pointer to thenearbyTnode01 and will send there the event.Tnode01 will

look-up its own routing table in column ‘0’, for theTnode010 where the subscriptionSubID1 is stored. ♦

Having introduced the notion ofstring trees, Ti , and how event routing is performed, we see that two different routing

schemes coexist inPastryStrings. Specifically:

• Pastry Routing: is done based on Pastry’s routing tables and offers the common API functions described in [20]. Pastry

Routing is necessary for locating theTi trees, and for creatingstring treepaths.
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• String Tree Routing: is performed within aTi tree and exploits theTnodes’ routing tables in order to forward the

requests towards the leaves. A typical API function isTc forward(msg, key), performed locally at eachTnode,

forwarding a message (msg) to theTnode that is responsible for the valuekey.

We stress that Pastry routing is unaffected byPastryStrings. String treerouting uses theTnodes’s routing tables. A

Tnode’s routing table in essence constitutes another routing level, having one entry for each possible string character value.

3.3 Supporting complex string and numerical predicates

In this section we will show how to support prefix (e.g. ‘abc*’) and suffix (e.g. ‘*abc’) predicates on string attributes as

well as range (and comparison≤,≥, 6=) queries on numerical attributes over thePastryStringsinfrastructure.

3.3.1 Storing subscriptions and processing incoming events: string-typed attributes

First note that a suffix operation can be easily transformed into a prefix operation if we simply proceed to examine the string

from its last to its first character. Thus, without loss of generality, we shall only present how a prefix operation on string

values can be applied inPastryStrings.

Suppose that we have a subscription with a prefix predicate. In order to appropriately store the subscription we follow the

same methodology as if we had an equality predicate. Now whenan event arrives, we locate the appropriateTi tree which is

responsible for the first character of the event’s string value (e.g.Ta for predicate abc*) , and we then traverse a specific path

of the tree (from the rootTnode towards the leaves) until we find theTnode whose label is that value. During this traversal

and since we perform prefix-based routing, allTnodes belonging to this path may be storing subscriptions matching a prefix

of the event’s value.

Example 3 Storing subscriptions.

Suppose that a subscription arrives with the string predicate ‘00∗’. We first locate the appropriate tree for character ‘0’,

T0 , (in Figure 3, node ‘0111’ hosts the root ofT0 , Tnode0). Then the subscription’s id is forwarded and stored in the

Tnode whose label equals ‘00’ (Tnode00).

Now suppose that an event arrives at the system with value ‘001’. The root ofT0 , Tnode0 will be located. Then the event

will be forwarded to the node hostingTnode001. At eachTnode in the path from the root to theTnode001, the incoming

event ‘activates’ the stored subscriptions if any. As you can see, there is a stored subscription inTnode00 and thus it is

collected by our algorithm as a matched subscription. ♦

In addition to prefix and suffix predicates, our scheme can also support a “containment” predicate (e.g. ‘a*c’). This contain-

ment operator can be easily decomposed to prefix/suffix operations. The main idea is that, for example, ‘a*c’ can be viewed

both as prefix (i.e. ‘a*’) and suffix (i.e. ‘*c’) predicates and with appropriate post-processing we can conclude on possible

matching. Due to space limitations we omit the detailed methodology for this, which is straightforward extension giventhe

support for prefix/suffix predicates.
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Figure 3. Storing subscriptions and perform-
ing the prefix-based matching with incoming
events.

Figure 4. T0 tree with stored SubIDs for range
[2,5). Event arrives with value 3 and follows the
path from root to leaf, matching subscription.

3.3.2 Storing subscriptions and processing incoming events: numerical-typed attributes

PastryStrings also supports numerical attributes with range,≤, ≥, 6=, and= predicates. The key idea here is that every

possible range of integer values may be appropriately mapped to a number ofTnodes based on their labels and their

location in theTi tree. There are several ways to do so. Here we adapt the Range Search Tree (RST) approach presented in

[9], and encapsulate its functionality withinPastryStrings.

The required functionality consists of: (i) assign subranges of numerical values toTnodes and (ii) partitioning a given

range into appropriate subranges. Given this functionality, when a subscription arrives declaring a range of values, we first

decompose the range to proper sub-ranges. Then we locate theappropriate for each subrangeTnode in Ti and store there

theSubID . When an event arrives declaring a specific value, we transform the value toβ-ary string representation, locate

the appropriateTi tree and follow the path from the root to the leaf with the samelabel as the givenβ-ary string. Each

Tnode in this path may have storedSubIDs declaring ranges including the value of the event.

Recall that eachTi tree has a depthD (D equals the maximum string length).d denotes the depth ofTnodelbl. We also

denote withnum(lbl) the numerical representation of the label stringlbl. For instance, givenβ = 2 andlbl = 0010 then

num(‘0010′) = 2.

With the proposed scheme, domains of size up toβD may be easily mapped toTnodes in thePastryStringsinfrastructure.

EachTnodelbl (in depthd in a Ti tree) responsible for the prefixlbl is assigned by RST to hold a specific range of values

belonging to the following set:

[ num(lbl)× βD−d−1 , (num(lbl) + 1) × βD−d−1 )

In Figure 4 we present a simplified version of thePastryStringsinfrastructure for explaining the main functionality. In this

exampleβ = 2 and string length equal to 4 (D = 4). As you can see,Tnode001, is going to store ranges belonging to the
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interval [2,4). Using the node to interval mapping above, weget: num(“001”) = 1, β = 2, D = 4 andd = 2 resulting

in: [1 × 24−2−1, (1 + 1) × 24−2−1) = [2, 4). Each leafTnode holds the smallest possible sub-range while any non-leaf

Tnode holds the union of its children sub-ranges. The union of sub-ranges of all rootTnodes of our schema, covers the

maximum possible domain for integer values (with sizeβD).

Up to now we set ourTi trees so as to easily discover the sub-range aTnode is responsible for, based on theTnodelbl la-

bel. For storing a subscription with a range predicate, we should actually break the range into subranges, find the appropriate

Tnodes responsible for each subrange, and then store there theSubID of the subscription with the range predicate. In [9],

a specific algorithm for this purpose is developed withO(logβ(|R|)) complexity for a rangeR with length|R|. Using this

algorithm (with small modifications) we can decompose for example the range[2, 5) into [2, 4) and[4, 5) (in our example,

Figure 4). In this case, we store theSubID in Tnode001 andTnode0100.

Given theTnodes labels, we showed above that we can identify the sub-range for which the node is responsible for.

However, the inverse operation (i.e., given the range find the node label,lbl), is done with the following method. Based on

the way sub-ranges are mapped toTnodes, we can notice that for a given decomposed subranger, theTnode responsible

for that subrange lays in depthd = D − logβ|r| − 1. Since we know theTnodelbl’s depth, its label is thed + 1 prefix of the

string representation in theβ− base alphabet of the lower bound of the subrange. That is:lbl = prefix(d+1, β−ary(Bl))

, whereβ − ary(int x) is the string representation of integerx andBl is the lower bound of the subrange. For example, as

you can see in Figure 4, the decomposed subrange [3,4) is mapped to aTnode in depth4 − 0 − 1 = 3, and since the binary

representation of the lower bound,3 in D = 4 characters long string is ‘0011’,Tnode’s label is the 4 (3+1) character long

prefix of string ‘0011’, resulting in ‘0011’.

When an event arrives declaring a value, we first compute the smallest possible subrange that includes the value. If, for

example, the value is 3, the smallest possible subrange including 3, is[3, 4). Then, we compute the label of theTnode re-

sponsible for that range, ‘0011’, and route the event towardsTnode0011. All storedSubIDs from root to leafTnode0011 are

considered to match the event.

Given that we know in advance every attribute’s domain bounds (low and high bounds,BL, BH) we can easily transform

the predicates≤, ≥, and 6= into range predicates. For example, the predicate≤ V can be thought as the range[BL, V ], the

predicate≥ V as[V, BH ] and the predicate6= V as[BL, V ) and(V, BH ].

3.4 Load balancing issues

A possible limitation of the approach already described is that a very small fraction of the nodes may become bottlenecks

as they are expected to absorb the access load of incoming subscriptions and events. Nodes belonging to this category are

all Tnodes close to the root of each one of theTi trees. InPastryStringswe adopt two widely used and complementary

techniques for distributing the load: (i) replicating the forest structure among the network nodes and (ii) partitioning the

stored subscriptions for a popular value. Further, we can achieve even more load distribution by applyingdomain relocation.

Replicating the Forest
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Replicating the forest results in balancing the access load(for storing subscriptions or locating them when events arrive)

across the network. We define the replication factor (RF ), as the number of replicas for each one of theβ string trees. For

this to be done we could use a hash function returning randomly RF values for each specific input. Thus, during theTi root

look-up phase (when an event or subscription is looking for theTi tree) we could use this special function so as to reach one

of theRF different replica roots (and eventually trees) and then follow a path inside that replica tree.

During the subscription storing phase, we could either repeat the sameSubID storing processRF times (for each replica

tree) or let the node which was chosen to hold the subscription to inform the corresponding replica nodes for storing the

subscription. Both approaches are easy to implement and details are omitted for space reasons.

Partitioning the Storage Load

In real applications it is likely that someTnodes may become overloaded because of storing subscription ids defining

a popular value. This kind of storage load hot spots may be avoided by defining a threshold for the number of stored

SubIDs which when it is exceeded theTnode chooses randomly anotherTnode for further storingSubIDs . Each

Tnode under this scheme maintains pointers to otherTnodes holdingSubIDs for the same value, so as to be possible to

collect all matched subscriptions for an incoming event.

Numerical Attribute’s Domain Relocation

A typical PastryStringsconfiguration can support extremely large domains of integer values,Dm. However, each numerical-

typed attribute,ai , is expected to have a much smaller domain,Dmi. Given that some ranges are expected to be very

popular, a small set ofTnodes are expected to absorb a great load of requests for storing and retrievingSubIDs . With this

observation in mind, we propose to distribute eachDmi in our domainDm adding an attribute-specific base value,bi, to

each attribute’si value. This kind of relocation will result in spreading the attributes’ values across a large number ofstring

treesandTnodes and will then ameliorate load balancing problems.

3.5 Self-organisation

The self organisation of thestring treeforest is required in highly dynamic p2p networks with frequent node arrivals/depart-

ures and failure/recoveries. In order to treat failures successfully we must ensurestring treeconnectivity, so we need extra

routing state perTnode. This extra state, consists of pointers to a descendant node(that is a child of aTnode’s child) and

two pointers to the left and right siblings in theTi tree structure.

3.5.1 Node Arrival

The Pastry protocol facilitating new arrivals is briefly as follows: the new node with id X sends a ‘join’ message to an already

known node A, which then routes the join message to node Z withid numerically closest to X. Then all nodes in the path

from A to Z send their state tables to X, which then builds its own routing table and informs other nodes, if necessary, for its

arrival.

In general, p2p networks are very sparse. Thus, a node may be responsible for processing messages that are sent to an
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Figure 5. Node X arrives in PastryStrings with
T0 and T1 trees already deployed. T0 recon-
struction on arrival of X.

Figure 6. Node X leaves PastryStringsnetwork.
T0 reconstruction on X’s departure.

absent node. InPastryStringsthis results in nodes hosting more than oneTnodes. For example, in Figure 5 node C hosts

Tnode000 andTnode001. However,Tnode001 belongs to an absent Pastry node. Upon the arrival of a new node, our

system should reconstruct appropriately the string tree structure and supply the new node with the data (SubID lists) that it

is responsible for handling.

Suppose now, that a Pastry node B, (Figure 5), detects the arrival of node X and updates its routing table at levell in order

to point to the new node. If there is any hostedTnode laying in depth(l − 1) mod logβ(N) in its ownTi tree (in Figure 5

Tnode00), then node X will host a new child for thatTnode (if the appropriate entry inTnode’s routing table is not empty,

as in this example, then the incoming node, X, should host thechild hosted by the node pointed in the routing table). What

we do in this case, is to update father’s (Tnode00) routing table to point to X. Then we should inform the child (in Figure

5 Tnode001) that it should be hosted in X and thus to change host node. Changing host node, means that we create a new

Tnode in X, we transfer the routing table and the storedSubIDs there and we update descendant and sibling pointers for

eachTnode that points to C so as to now point to X.

3.5.2 Node Departure

A node in Pastry may depart without warning due to a network failure or leave the network at its own will. In both cases

the way the string tree structure is self-organised is almost as above. The only difference is in the waySubID lists stored

in the failing node, are recovered. Pastry provides mechanisms for perceiving if a node has failed. More precisely, whenthe

immediate neighbours of a node in the node id space fail to communicate, then the node is considered failed. In this case, the

routing state of nodes having a pointer to the failed node is repaired by finding a new node appropriate for handling messages

designated for the failed one.
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Suppose now that the failed node is X (Figure 6) and node B thathosts the father of one of theTnodes in X (Tnode00 in

Figure 6), notices its absence. Pastry-specific protocols will take control and update the routing table of B pointing toa new

node, Z. This action will force the fatherTnode (Tnode00 in Figure 6) to update his own routing table pointing to Z. The

real challenge in coping with node failures is how to retrieve and deliver to Z theSubID lists stored in the failed node as

well as to reconstruct the routing table ofTnode001 in Z. If node X leaves the network at its own will, then X may easily

communicate with Z in order to deliver its stored lists. If X’s departure is unexpected then the only solution for recovering the

storedSubID lists is to have at least one replica forest in order to contact the replica nodes and retrieve the lists. Regarding

the routing table ofTnode001, when node X leaves at its own will, it may inform node Z about theTnode001’s children by

copying the routing table to Z. When X suddenly fails then we need one (or more depending on the fault tolerance level)

extra routing pointer pointing to one of their descendants and two more pointers to their left and right siblings, perTnode.

Then when the fatherTnode00 in B is triggered upon the failure of X, will inform one ofTnode001’s children (using the

descendant pointer) about the new node (Z) hostingTnode001. Then that child will inform its siblings about the existence of

Z which in turn will send a special message to Z in order to helpZ reconstruct the missing routing table.

4 Multi-dimensional events and subscriptions

So far, we have presentedPastryStringsunder a single-attribute event/subscription schema. In real world pub/sub systems

events and subscriptions are defined over a schema that supports A attributes. Each attributeai consists of a name, type,

and a valuev(ai) . A k − attribute (k ≤ A) event is defined to be a set ofk values, one for each attribute. Similarly, a

subscription is defined through an appropriate set of predicates over a subset of theA attributes of the schema.

The allowed operators are: (i) prefix (e.g.abc*), (ii) suffix (e.g. *abc), (iii) equality, and (iv) numerical range. An event

matches a subscriptionif and only if all the attribute predicates of the subscription are satisfied.

The subscription identifier in our approach,SubID is the concatenation of three parts:c1, c2, andc3. c1 represents the

id of the node where the subscription arrived from a connected to that node client and keeps metadata information about the

subscription,c2 refers to the key of the subscription for identifying it among the stored ones atc1, andc3 is the number of

declared attributes in the subscription.

4.1 Processing incoming subscriptions

We maintain four lists (initially empty) in everyTnode for every attributeai of our schema. These are theLai−pref and

Lai−suff lists, where we store theSubIDs of the subscriptions that contain prefix or suffix predicateson attributeai ,

respectively, theLai−eq list dedicated to equality predicates, and theLai−num dedicated to numerical predicates.

Storing subscriptions is done by appropriately storing theSubID in at leastc3 nodes3 using the methodology presented

earlier. Briefly, we process each attributeai of the subscription and (i) when dealing with prefix predicate we storeSubID at

3If all attributes in the subscription involve predicates onstrings thenc3 Tnodes must be reached. However, if ranges are defined, then each rangeR,
may be translated intoO(logβ(|R|)) string values and thus the number increases.
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Storing Subscriptions
Notation
SubID : subscription identifier,ai : attributei, v(ai) : value of attributeai , prefix(x,j) : j-characters-long prefix of string x

Lai−num , Lai−eq , Lai−pref , Lai−suff : List of SubIDs for attributeai with numerical, equality, prefix, or suffix constraint

inv(x) : inverts the string x, (inv(abc) = cba), h(): DHT’s hash function (e.g. SHA-1),Tnodelbl : Tnode in theTi tree with labellbl

Function: LocateAndStore(v(a) , SubID )
01. Create a node id with value h( prefix(v(a) , 1 ) )

02. Go there (the root of the tree) and follow the path towardsTnodev(a)

03. If attributea has anequality(or prefix, or suffix, or numerical) constraint

04. storeSubID in that node in theLai−eq (or Lai−pref , or Lai−suff , or Lai−num ) list.

04. endif

Main Procedure
01. For every attributeai in subscriptionSubIDj loop

02. If ai has a numerical constraint

03. decomposev(ai) and translate subranges tolabels

04. for everylabel in the decomposed set loop

05. LocateAndStore( label,SubIDj )

06. end loop

07. else ifai has a suffix constraint

08. LocateAndStore( inv(v(a) ),SubIDj )

09. else ifai has a prefix constraint

10. LocateAndStore( v(a) ,SubIDj )

11. end if

12. end Loop

Table 1. The procedure of storing subscription identifiers i n PastryStrings.

Lai−pref of Tnodev(ai) (v(ai) is the attribute’s value), (ii) when dealing with suffix predicate we invertv(ai) and store

SubID atLai−suff of Tnodeinv(v(ai)), (iii) when dealing with equality predicate we storeSubID atLa−eq of Tnodev(ai),

and finally (iv) when dealing with numerical values we decompose the range into subranges and following the methodology

presented earlier we storeSubID at theLai−num of all appropriateTnodes. The procedure of storing subscriptions can be

seen in Table 1.

4.2 Event processing and matching

Suppose now, that an event arrives at the system withNa−event attributes defined. TheSubID Lists Collection Phase

(Table 2), starts by processing each attribute separately.It first locates the rootTnode of the appropriate tree and then the

event is forwarded towards theTnodev(ai). In eachTnode in the path towardsTnodev(ai), we collect all stored lists for the

given attribute and send them to the nextTnode in the path. At each step of this process, we merge the previously collected

lists of each kind resulting in four major lists which are finally returned back to the node where the event arrived where the

matching is performed. Those lists are theLai−NUMERICAL , Lai−EQUALITY , Lai−PREFIX , andLai−SUFFIX lists4.

The next step, termedMatching Phase(Table 3), is actually the event-subscriptions matching process. Suppose, now, that a

subscriptionSubIDk is found to be in at least one of the collected lists. Assume that this subscription consists ofNa−sub−k

4In fact in order to collect theLa −SUF F IX list we should repeat the same procedure with the inverted string value of the event.
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Event Processing and Matching
Notation
SubID : subscription identifier,ai : attributei, v(ai) : value of attributeai , inv(x) : inverts the string x, (inv(abc) = cba)

Na−sub−i : the number of attributes defined in a subscriptioni, Nlist−sub−i : the number of collected lists thatSubIDi is stored

Lai−num , Lai−eq , Lai−pref , Lai−suff : List of SubIDs for attributeai with numerical, equality, prefix, or suffix operation

Lai−{NUMERICAL,EQUALITY,P REF IX,SUF F IX} : Delivery List with candidateSubIDs for numerical, equality, prefix, and suffix
matching

Tnodestr : Tnode in theTi tree with labelstr

SubID Lists Collection Phase
01. for everyeventj arriving at the system, loop

02. for every attributeai in theeventj , loop

03. if v(ai) is numerical value

04. translate it to the appropriateTnode label: lbl

05. locate the rightTi tree and for each node in the path towardsTnodelbl

06. retrieve theLai−num found there and merge it with the previously collected toLai−NUMERICAL

07. end if

08. if v(ai) is a string value

09. locate the rightTi tree and for each node in the path towardsTnodev(ai)

10. retrieve theLai−eq found there and merge it with the previously collected toLai−EQUALITY

11. retrieve theLai−pref found there and merge it with the previously collected toLai−PREF IX

12. locate the rightTi tree and for each node in the path towardsTnodeinv(v(ai))

13. retrieve theLai−suff found there and merge it with the previously collected toLai−SUFF IX

14. end if

15. end loop

16. end loop

Table 2. Collecting the SubIDs of subscriptions that are can didate for matching the event.

attributes (Na−sub−k is obtained from the fieldc3 of the subscription identifier). Then, this subscription isconsidered to

match the event if it appears in exactlyNa−sub−k lists collected from the network, since an event matches a subscription if

and only if all of the subscription’s predicates are satisfied. ThoseSubIDs are then transferred to the Matching listLmatching

where they are processed further in order to inform the subscribers that are interested for the incoming event utilisingfield

c1.

A number of distributed algorithms for event matching can beused to avoid performance problems stemming from the

use of a per-event coordinator for event matching. These areorthogonal issues and outside the scope of this paper. We refer

the interested reader to [2].

4.3 Message complexity analysis

The Pastry infrastructure ensures that at mostO(logβ(N)) messages are needed to reach any node in a system with

namespace sizeN and node identifiers of baseβ.

During the subscription storage procedure, the average number of messages needed to store aSubID is equal for all

allowable operations on strings. Thus, for string-typed attributes we needO(logβ(N)) messages in order to reach the root

of the appropriateTi string tree(i.e. one DHT lookup) and then at mostO(logβ(N)) messages in order to locate the

Tnode inside thestring treethat will accommodate the subscription id (i.e. one messageper string character), yielding a
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Event Processing and Matching
Matching Phase
01. for everySubIDk found in the Delivery Lists, loop

02. retrieve the number of attributes defined from thec3 field: Na−sub−k

03. count the number of Delivery lists whereSubIDk is stored:Nlist−sub−k

04. if Na−sub−k equalsNlist−sub−k we have a match

05. removeSubIDk from all lists

06. storeSubIDk in the Matching listLmatching

07. end if

08. end loop

Table 3. Matching collected SubIDs to event.

total of O(logβ(N)) messages. For numerical-typed attributes, if the mean sizeof ranges is|R|, the range decomposition

and string translations used in RST results inO(logβ |R|) string values. ThusO(logβ |R| × logβ(N)) messages are required

for storing a numerical range.O(logβ |R|) is expected to be small compared toO(logβ(N)) in real-life pub/sub applications

with range sizes (|R|) very small compared toN . Thus, we could viewO(logβ |R|) as a relatively small constant.

Regarding the matching process and more precisely theSubID Lists Collection Phase, for every attribute in the event,

we should first locate the appropriatestring tree, which requiresO(logβ(N)) messages (i.e. one DHT lookup). Then we

locate the rightTnode and then collect theSubID lists stored in allTnodes in the path from the root toTnode. This step

requires at mostO(logβ(N)) messages. Thus, in general, for each attribute of the event,O(logβ(N)) messages are required

in order to collect the storedSubID lists.

5 Experimentation and performance evaluation

We performed a number of experiments in a 1000-brokerPastryStringssimulated network with up to 140,000SubIDs stor-

ed and 160,000 generated requests for collectingSubID lists (the exact number depends on the skewness of relevant dis-

tributions). We used a Zipfian5 popularity distribution for attributes, which determinesthe actual number of attributes in an

event or subscription, varying from 1 to 10. The popularity of values for each attribute also follows a Zipfian distribution. As

the skewness of the values’ distribution plays a key role here, we variedϑ from 0.0 to 1.6 (to test for load imbalances). Re-

garding the distribution of numerical and string typed attributes in the subscriptions, half of the attributes are numerical (and

the rest strings). Unless stated otherwise, half of the numerical attributes are declaring equalities while the other half ranges

on integer numbers. The domain of each numerical attribute is [0, 70000] and the size of each range defined in subscriptions,

unless stated otherwise, was varied from1 (equality) to20 (following a uniform distribution). Theβ base of our alphabet

was set to 15 and the maximum string length to 5.

5the frequency of occurrence of thenth ranked item is defined to be1
nϑ . Typical values of the parameterϑ are:0.0 ≤ ϑ ≤ 1.6, where large values of

ϑ denote very skewed distributions andϑ = 0.0 yields a uniform distribution
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Figure 7. The effect of ranges in subscription processing an d access/storage load balancing for
different attributes’ popularity skewness.

5.1 The effect of ranges on subscription processing performance

In the first set of experiments (Figure 7(a)) we varied the percentage of attributes defining a numerical value (equality or

range) in each subscription from 0% (no ranges at all) to 100%. Our performance metric here is the number of messages

needed to store a subscription. You can see that as the percentage of range predicates per subscription increases, so does the

number of messages for subscription processing. In fact themessage count for the only-ranges case is four times larger than

the no-ranges case. This is as expected from our analysis since numerical attributes need to be decomposed into subranges

for each of which a differentTnode is responsible.

To have a clear picture with respect to the number of subranges a range is decomposed into, we varied the size of the range

and counted the subranges produced. Then for each particular range size,|R| we created100, 000 ranges with size ranging

from 0 to |R| following a uniform distribution and counted the average and maximum number of subranges. As you can see

in figure 7(b) as the range size increases so does the average number of subranges, but the increase is logarithmic. In the

same figure you can also observe that the maximum number of subranges into which an 1000-size range is decomposed is42

which is the trend of the expected number of subranges (and eventually the number ofSubID storing requests) in the case

of an inequality (6=) predicate under the existence of an attribute’s domain size of up to 1000 integer values.

5.2 Load balancing

Our main objective with this set of experiments, is to observe how load balancing is affected by changing the skewness of

the attributes’ and values’ popularity distribution.

5.2.1 The data distribution effect on access and storage load

Our specific performance metric here is the coefficient of variation (CV) of access and storage load. CV for storage load

is defined as the ratio of the standard deviation of the numberof storedSubIDs in a network node acrossPastryStrings,
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Figure 8. Access/storage load balancing and messages neede d for event/subscription processing.

to the mean value of storedSubIDs in a node. CV for access load involves both the number of requests for retrieving

SubIDs and routing requests to nodes. As you can see in Figure 7(c) the coefficient of variation of storage and access

load slightly increases as the attributes’ skewness increases because the number of attributes per event/subscription decreases

(fewer popular attributes are defined per event/subscription). Having fewer attributes results in more workload for fewer

nodes. However, the difference between skewed and uniform workloads seems to be small.

Figure 8(a) shows how access and storage CV increases as values become more popular. This can be explained by the

fact that asϑ increases fewer and popular values are defined in each subscription/event. This results in overloading a few

Tnodes in thePastryStringsinfrastructure while others remain lightly-loaded. To study how storage load balancing can be

improved by applying the attributes’ domain relocation (recall the discussion in section 3.4) we made a number of experiments

varying the attributes’ values popularity distribution skewness and observed that the CV for storage is not affected bymore

skewed values’ popularity distributions. This comes from the fact that range processing dominates string processing during

the subscription storage phase (since ranges involve the contacting of many moreTnodes) and the domain relocation further

distributes hot values and ranges to differentTnodes.

5.2.2 Effect of replication on access and storage load

In this set of experiments we tried to measure how the replication of the string tree forest helps distributing evenly the

storage and the access load during theSubID storage phase and theSubID collection phase, respectively, by varying the

replication factor RF (the number of replicastring treeforests).

As you can see in Figure 8(b) the coefficient of variation (CV)of the number ofSubIDs stored in network nodes (storage

load) as well as the number of retrieval and routing requestsfor SubIDs (access load) decreases and approaches 0 (fully

balanced), as the replication factor increases. Another important observation is that the network is more imbalanced when

dealing with access load compared to the storage load. This is due to the fact that subscriptions involving range predicates

may generate a greater number of storage requests (recall that the range decomposition may result in storing theSubID in

logβ|R| nodes). This number ofSubIDs stored is greater and have a more evenly distribution among brokers, compared to
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the distribution of event requests.

5.3 Event processing and matching

5.3.1 Number of messages

We also conducted a number of experiments in order to measurethe number of messages per event needed to collect all

SubID lists and the number of messages per subscription in order tostoreSubIDs as a function of the attributes’ and

values’ popularity distribution skewness.

We observed that as the the skewness of the attributes’ popularity distribution increases, fewer attributes are involved

per event/subscription and thus the mean number of messagesper event/subscription decreases (Figure 8(c)). Again, our

main observation here is that subscription processing needs more communication overhead, compared to event processing.

This is the right design choice. In real pub/sub systems events are expected to arrive in the system in rates much greater

than subscriptions rates. Thus, it is deemed necessary to perform a fast and efficient event matching. We also increased the

skewness of the values’ popularity distribution and we havenoticed that the number of messages per event/subscriptions is

not affected by the value popularity.

5.3.2 Network traffic

Our specific performance metric here is the total number ofSubIDs sent for the processing of each incoming event.

We varied the skewness of the attribute values’ distribution while ϑ for the attributes’ popularity equals 0.8. Detailed

results are omitted for space reasons. Briefly, we observed that as the values’ popularity distribution becomes more skewed

(varyingϑ of Zipfian popularity distribution from0.0 to 1.6) the traffic increases by a factor of 5 since most of the incoming

events, contact a small number of nodes that hold the majority of stored subscription identifiers. We also varied the attributes’

popularity distribution (varyingϑ from 0.0 to 1.6) and we observed that when the distribution is skewed (ϑ approaches 1.6)

the network traffic is decreased by a factor of 2.5, since fewer and popular attributes are chosen in every incoming event.

6 Conclusions

In this work we have contributed an architecture for building scalable, self-organising, well-performing systems that

support queries with a rich set of predicates on string and numerical typed attributes. We specifically focused on and presented

how our algorithms can be applied in a pub/sub environment with a broker network implemented using a DHT network. The

distinguishing feature of our work is that is shows how to leverage specific DHT infrastructures to ensure logarithmic message

complexity for both event and subscription processing, andfor both rich string and numerical predicates.PastryStrings is

DHT-specific, but does not interfere with the DHT internals;it simply leverages its key information.

Our experimentation results show thatPastryStringscan handle subscriptions with rich string and numerical predicates

efficiently and scalably, i.e., with small number of messages, good load distribution to network nodes, and small network
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bandwidth requirements.
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