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Abstract 
 
In this paper, we present and study solutions for the 

efficient processing of queries over string attributes in a 
large P2P data network implemented with DHTs. The 
proposed solutions support queries with equality, prefix, 
suffix, and containment predicates over string attributes. 
Currently, no known solution to this problem exists. 

We propose and study algorithms for processing such 
queries and their optimizations. As event-based, 
Publish/Subscribe information systems are a champion 
application class where string attribute (continuous) 
queries are very common, we pay particular attention to 
this type of data networks, formulating our solution in 
terms of this environment. A major design decision behind 
the proposed solution is our intention to provide a solution 
that is general (DHT-independent), capable of being 
implemented on top of any particular DHT.  
 
 
1. Introduction 
 

The peer-to-peer (P2P) paradigm is appropriate for 
building large-scale distributed systems/applications. P2P 
systems are completely decentralized, scalable, and self-
organizing. All nodes participating in those systems have 
equal opportunities and are providing services where 
information is exchanged directly with each other. A 
popular class of them is the “structured” P2P systems 
where the data placement and the topology within the 
network are tightly controlled.  

A large body of research is currently targeting the 
extension and employment of DHTs for efficient data 
query processing. The nature and functionality of the 
DHT-based P2P can guarantee the efficient managing of 
queries with equality predicates. However, it is difficult to 
perform queries with range predicates over numeric 
attributes and/or prefix, suffix, and containment predicates 
over string attributes. As far as we know, there is currently 

no applicable solution for processing string attribute 
queries over DHTs. This kind of functionality can be used 
by data management systems built using the 
Publish/Subscribe (Pub/Sub) paradigm.  

With our work in this paper we propose a solution that 
supports rich queries with string attributes (and string 
operations like prefix, suffix and containment) over a 
DHT-based P2P infrastructure. Given the popularity of the 
pub/sub technology, we primarily focus on it and 
formulate our solution in terms of a pub/sub infrastructure.  

 
2. Background and contribution 
 
2.1.  Distributed Hash Tables (DHTs) 
 

Distributed Hash Tables (DHTs [8], [9], [10], [12], 
[20]) are becoming increasingly popular for structuring 
overlay topologies of large-scale data networks. In a DHT 
each node has a unique identifier (nodeID) selected from a 
very large address space. Each data item can be associated 
with a key which is a unique identifier of the same type as 
nodeID. DHTs can efficiently locate and route a         
<data item, key> pair based on the key identifier. 

As an example of a popular DHT we outline how 
Chord operates. Chord [10] is a fairly simple, structured 
peer-to-peer network based on a DHT. Compared to 
unstructured peer-to-peer networks like Gnutella and 
MojoNation where neighbors of peers are defined in rather 
ad hoc ways, Chord is “structured” because of the way 
peers define their neighbors, forming a ring topology. 
Chord provides an exact mapping between node identifiers 
(nodeID) and keys associated with data items using 
consistent hashing [13]. NodeIDs and keys are mapped to 
a large circular identifier space, e.g. [0, 2160) for 160-bit 
IDs. Values in this space can be viewed as positions in the 
ring defining the name/identifier space. Thus, given a key, 
Chord maps it to the (ring position) node whose nodeID is 
equal to the key. If this node does not exist, the key is 
mapped to the first successor of this node on the ring.  

Similarly to all DHT-based networks, Chord has a 
bounded performance in terms of hop count. It efficiently 
determines the successor of an identifier (key) in ½log(N) 
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hops on average (and in O(log(N) hops in the worst case), 
in the steady state (where N is the maximum number of 
nodes in the network). Each node maintains routing 
information for up to O(log(N)) other nodes. Adding or 
removing a node from the network can be achieved at a 
cost of O(log2(N)) messages.  Chord has become very 
popular and has been used as a building block for several 
large-scale distributed systems, as it’s simple and its 
performance is guaranteed. 

2.2. The publish/subscribe paradigm 
 

There are two popular types of publish/subscribe 
systems: topic-based and content-based. Topic based 
systems are much like newsgroups. Content-based systems 
are preferable as they give users the ability to express their 
interest by issuing continuous queries, termed 
subscriptions, specifying predicates over the values of a 
number of well defined attributes. The matching of 
publications (events) to subscriptions (interests) is done 
based on the content (values of attributes).  

Building a centralized publish/subscribe may result in 
scalability problems as the number of publications and 
subscriptions increases. Thus, a decentralized approach is 
deemed necessary. The main challenge in a distributed 
environment is the development of an efficient distributed 
matching algorithm. Distributed solutions have been 
provided for topic-based publish/subscribe systems [1], 
[2], [3]. More recently, some attempts on distributed 
content-based publish/subscribe systems use routing trees 
to disseminate the events to interested users based on 
multicast techniques [4], [5], [15], [16].  Some other 
attempts use the notion of rendezvous nodes which ensure 
that events and subscriptions meet in the system [14].  

Some approaches have also considered the coupling of 
topic-based and content-based systems. In [6] the 
publications and the subscriptions are automatically 
classified in topics, using an appropriate application-
specific schema. The main drawbacks of this attempt are 
the design of the domain schema and the false positives 
that may occur. Our previous work reported in [17] 
proposes a solution for numeric attributes with equality 
and range predicates in a DHT-dependent (Chord) way. 

Recently there have been algorithms for filtering and 
matching queries on continuous queries databases, based 
on the AWP data model [18]. In [19] keyword searching is 
supported by applying a multi-level partitioning scheme 
on top of the SkipNet P2P infrastructure [21].  However 
both works do not support string attributes with prefix, 
suffix, and containment constraints. As far as we know, 
this is the first work that leverages DHT research to build 
large scale content-based pub/sub systems while 
supporting subscriptions with a rich set of constraints on 
string attributes. 

2.3. Contribution: String processing over DHTs 
The publish/subscribe case 

 
Until now, it still remains a challenge to leverage DHTs 

as a dominating technology for constructing efficient 
scalable overlay networks in creating a content-based 
pub/sub infrastructure. In particular, an efficient solution 
to string attribute support over DHTs is very much 
lacking. 

Our solution on string attribute processing over DHTs 
is independent of the type of DHT. It is easily applicable 
to every DHT that can efficiently locate an object based on 
its key identifier. However, for simplicity of presentation 
of algorithms and to study their performance impact we 
will on occasion use Chord because of its simplicity, 
guaranteed performance, and popularity within the peer-
to-peer community. By leveraging DHTs we allow 
ourselves the luxury of not having to be concerned with 
the development of an infrastructure for topology 
establishment that provides dynamic topology 
maintenance, fault tolerance, scalability, and efficient 
routing.  

In the rest of the paper we will show how to build 
content-based pub/sub systems, able to support string-
valued objects and their related operations. 
   
3. Publish/Subscribe with string attributes 
over DHTs 

 
Events and subscriptions are defined over an event 

schema that supports a number A of attributes. An event is 
defined to be a set of k values ( k  ≤  A ), one for each 
attribute, while a subscription is defined through an 
appropriate set of constraints over a subset of the A  
attributes of the schema. 

3.1. The Event/Subscription Schema 
 
The event schema is a set of typed attributes. Each 

attribute ai consists of a name, type, and a value v(ai).  
Generally, the type of an attribute belongs to a predefined 
set of primitive data types commonly found in most 
programming languages. In this work we will focus on 
string attributes. Thus, from now on whenever we refer to 
an attribute of our schema, we assume that it is a string 
attribute. An event can be thought of as set of <attribute 
name, value> pairs. An example event with two attributes 
defined is: 

Event1= { Exchange :  “NYSE”, Symbol : “OTE” } 
The subscription schema is more general, allowing a 

rich set of subscriptions with all common string operators. 
An example of two subscriptions is: 

Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”} 
Sub2=SubID2|Exchange: “N*E” , Symbol : “OTA*”} 



The allowed operators are: suffix (e.g. in Sub1, the 
Symbol attribute), prefix operator (e.g. in Sub1, the 
Exchange attribute), and the containment operator (e.g. in 
Sub2 the Exchange attribute). 

An event matches a subscription if and only if all the 
subscription’s attribute predicates/constraints are satisfied. 
A subscription can have two or more constraints for the 
same attribute which can be thought as if we had two or 
more different subscriptions with unique constraints over 
their attributes. Finally, an event can have more attributes 
than those mentioned in the subscription schema. Note that 
if an event has more attributes than a subscription and all 
subscription predicates are satisfied then the subscription 
is considered to be matched.  

3.2. The Subscription Identifier 
 

A subscription identifier (SubID) is the concatenation 
of three parts: 

1. c1: The id of the node receiving the subscription (i.e., 
where the subscription “belongs”).  

2. c2: The key of the subscription needed to identify it 
among the subscriptions belonging to the same node.  

3. c3: The number of attributes on which constraints are 
declared by this subscription.  

1 0 0 0 1 1 1 0 1 

   c1=4      c2=3       c3=5    

Figure 1. An example subscription id (SubID). 
 
The subscription id depicted in Figure 1 identifies 

subscription 3 (c2=3), belonging to a DHT node 4 (c1=4), 
comprised of constraints on 5 attributes (c3=5). 

 
Figure 2. Network of nodes forming a DHT 

network. 

3.3. System Architecture 
 
Figure 2 depicts the intended pub/sub architecture. 

Client nodes are producers/consumers, issuing 
events/subscriptions, respectively. Each client is ‘attached’ 

to a broker node using any appropriate such mechanism 
(e.g., hashing the client’s port and IP address with the 
DHTs hashing scheme). A broker node is a DHT node and 
is added/deleted from the DHT following the specific 
DHT related algorithms. 

Moreover, we should note that for every subscription 
there is a node in the DHT network storing metadata 
information for it. That node is identified by the c1 field of 
the subscription id and it keeps metadata information 
about the subscription (for example the IP address of the 
user that generated the subscription etc.). 

4. Processing subscriptions 
 
Consider an example pub/sub system supporting A 

string attributes (ai, Ai ≤≤1 ). Subscriptions specify a 
single value (equality) or string operators on values 
(prefix, suffix, containment) for each attribute ai. The main 
idea behind our approach is to store the subscription ids 
(SubIDs) at those nodes of the DHT network that were 
selected by appropriately hashing the values of the 
attributes in the subscriptions. The matching of an 
incoming event can then be performed simply by asking 
those nodes for stored subscription ids.  

4.1. Storing subscriptions  
 
Storing subscriptions is done using the DHT hash 

function ( DHT.h() ). For example in Chord, this hash 
function h() (i.e., SHA-1) returns an identifier quasi-
uniformly distributed in the address space used for the 
node identifiers. Thus, the result (say n) of this hash 
function for the value v(ai) of the attribute ai is quasi-
uniformly distributed in the nodes’ identifier address space 
(where n = h(v(ai)) ).  

The main idea behind the storing procedure, is to place 
the subscription id at the node whose id is the least id 
equal or greater to n=h(v(ai)) (that is successor(n) from the 
Chord API). Therefore, in Chord, the SubID will be placed 
at the node: successor(h(v(ai))).  

We maintain three lists (initially empty) in every node 
for every string attribute ai of our schema.  The first two 
are the Lai-pref and Lai-suff where we store the SubIDs of the 
subscriptions that contain prefix or suffix operations, 
respectively, over the attribute ai whose value hashed to 
this node.  

The containment operation can be easily transformed 
into prefix and suffix operations and thus there is no need 
for a third list. More precisely, we break the containment 
string into prefix and suffix parts and we deal with the 
containment operation as a prefix and a suffix operation 
over the same attribute. Finally, there is a need for a list 
where the SubID is going to be stored in the case of an 
equality operation on a string attribute ai. This is the Lai 



list. The procedure of storing subscriptions can be seen in 
. Figure 3

Figure 3. The procedure of storing subscriptions. 
 

 
Example 1: Storing subscriptions 

Suppose that a user expresses her interests with the 
following subscriptions over a Chord DHT network: 
Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”} 
Sub2={SubID2|Exchange: “N*E” , Symbol : “OTA*”} 

As we can see the Symbol attribute (a2) is defined as a 
suffix with value OT* (that is v(a2)= “OT*”).  The storing 
procedure for this subscription involves the storage of 
SubID1 in the list Lai-suff of the node with 
nodeID=successor(h(v(a2)))=successor(h(“OT”)).  

Similarly, for the Exchange attribute (a1) with prefix 
value *SE (that is v(a1)= “*SE”) we store the SubID1 at 
the Lai-pref list of the successor(h(v(a1)))= 
successor(h(“SE”)) node. In Sub2 the Exchange attribute 
is declared as a containment operation with value N*E. 
The procedure for storing this type of subscription requires 
the transformation of containment into prefix and suffix 
operations. Thus the prefix operation of containment v(a1) 
is v(a1).prefix()=“*E” while the suffix operation is 
v(a1).suffix()=“N*”. Then we store the SubID2 in the     
Lai-suff list of node with nodeID=successor(h(“N”)) and in 

the Lai-pref list of node with nodeID=successor(h(“E”)). By 
processing accordingly the a2 attribute of the second 
subscription we are done with the storing procedure and 
we are ready to proceed to the matching process on every 
incoming event.                                                                  

Notation 

SubID : subscription identifier 
nodeID : node identifier 
ai : attribute i 
Lai : List of SubIDs for attribute ai with equality operation 
Lai-pref : List of SubIDs for attribute ai with prefix operation 
Lai-suff : List of SubIDs for attribute ai with suffix operation 
v(ai) : value of attribute ai  
DHT.h() : DHT’s function returning a key (SHA-1 in Chord)
v(ai).prefix() : prefix operation of a containment on v(ai) 
v(ai).suffix() : suffix operation of a containment on v(ai) 
 
Storing Subscriptions 
1.  For every string attribute ai in subscription 
2.  If ai has an equality constraint 
3.   store SubID in node with  
   nodeID =DHT.h(v(ai)) in the Lai list. 
 
4.  If ai has a prefix constraint 
5.   store SubID in node with nodeID=DHT.h(v(ai)) 

in the Lai-pref list. 
 
6.  If ai has a suffix constraint 
7.   store SubID in node with nodeID=DHT.h(v(ai)) 

in the Lai-suff list. 
 
8.   If ai has a containment constraint 
9.   break ai into v(ai).prefix() and v(ai).suffix() 
10.   store SubID in node with 

nodeID=DHT.h(v(ai).prefix()) in the Lai-pref list. 
11.   store SubID in node with 

nodeID=DHT.h(v(ai).suffix()) in the Lai-suff list.

4.2. Updating subscriptions  
 
Updating a subscription involves a procedure during 

which the values of all attributes contained in the 
subscription are updated using the standard API of the 
DHT. In the case of equality, prefix, and suffix operation 
only two nodes are affected. On the one hand, the node 
that is mapped to the old, stale value is forced to delete the 
SubID for the attribute that belongs to the subscription 
with identifier SubID. On the other hand, a new node is 
going to store the SubID, depending on the id returned 
from the DHT’s hash function passing the new updated 
value. In the case of the containment operation there is the 
need to contact twice as many nodes compared to the other 
operations, since as we said before, we break the 
containment operation into suffix and prefix operations. 

Deleting subscriptions is done as explained above since 
the updating procedure includes a deleting step. 

5. Event processing and matching 
 
We define the functions prefix(string x, integer j) and 

suffix(string x, integer j) that return the j-characters-long 
prefix and suffix of the string x, respectively. For example, 
prefix(“OTE”, 2) = “OT” and suffix(“OTE”, 1) = “E”. 

Suppose now, that an event arrives at the system with 
Na-event attributes defined.  The SubID Lists Collection 
Phase ( ) starts by processing each attribute 
separately. It first tries to find the node which stores 
SubIDs for the value v(ai) of the attribute ai (e.g., in Chord 
n=successor(h(v(ai))). Those subscriptions have defined 
an equality operation over the attribute ai. The algorithm, 
then, retrieves the list of unique SubIDs found to be stored 
in node n in the list Lai designated for the attribute ai and 
stores it in the Lai-EQUALITY-DELIVERY list in order to inform 
the interested users for possible matching2. 

Figure 4

Apart from the equality operation, the algorithm must 
also check for any possible matches with subscriptions that 
have defined prefix, suffix and containment predicates. In  
order to find the subscriptions that may have declared a 

                                                      
2 It should be noted that in the Lai-* lists we store the ( SubID, v(ai) ) pairs 
so as to collect only those SubIDs that are stored there because of the 
value v(ai). Consider for example the case where the SubIDs of two 
different subscriptions SubID1 and SubID2 that have defined different 
values for the attribute ai (v1(ai) ≠ v2(ai)), are both stored in the same 
node (that is successor(h(v1(ai))) = successor(h(v2(ai))) ). In the case 
where an event arrives with a value equal to v1(ai) for the attribute ai , we 
should collect only SubID1 and not SubID2.  For the sake of simplicity 
and easy reading of the described algorithms we omit this detail. 



 
Figure 4. Collecting the SubIDs of subscriptions 

that are candidate for matching the event. 
 
prefix operation on the attribute ai we should ask the nodes 
in the DHT in a similar to equality constraint way. For 
example, in the Chord ring we ask those nodes that have 
nodeID=successor(  suffix( v(ai),j ) ) for j ranging from 1 
to l ( where l is the length of string v(ai) ). From those 

nodes we retrieve the Lai-pref lists. Thus we collect l lists 
with SubIDs of subscriptions that may have declared a 
prefix operation.  

Event Processing and Matching [1/2] 

Notation 

SubID : subscription identifier 
nodeID : node identifier 
ai : attribute i 
Na-sub-i : number of attributes defined in a subscription i 
Nlist-sub-i : number of collected lists that SubIDi is stored 
Lai : List of SubIDs for attribute ai with equality operation 
Lai-pref : List of SubIDs for attribute ai with prefix operation 
Lai-suff : List of SubIDs for attribute ai with suffix operation 
v(ai) : value of attribute ai  
DHT.h():DHT’s function returning a key (in Chord SHA-1) 
prefix(x,j) : j-characters-long prefix of string x 
suffix(x,j) : j-characters-long suffix of string x 
Lai-PREFIX : the union of all Lai-pref lists 
Lai-SUFFIX : the union of all Lai-suff lists 
Delivery Lists: 

Lai-EQUALITY-DELIVERY : list with candidate SubIDs for 
equality matching    
Lai-PREFIX-DELIVERY : list with candidate SubIDs for prefix 
matching    
Lai-SUFFIX-DELIVERY : list with candidate SubIDs for suffix 
matching    
Lai-CONTAINMENT-DELIVERY : list with candidate SubIDs for 
containment  matching    

Matching List: 
Lmatching : list with SubIDs that generated a match to 
the incoming event 

SubID lists collection phase 
1. for every eventj arriving at the system 
2.  for every attribute ai in the eventj  
3.      go to node DHT.h( v(ai) )  
4.      retrieve the list Lai of SubIDs found there  
      and store it to Lai-EQUALITY-DELIVERY 
5.      for j=1 to character length of v(ai)  
6.   go to node DHT.h( suffix(v(ai),j) )  
7.   retrieve the list Lai-pref of SubIDs found there  
   and store it to Lai-PREFIX 
8.   go to node DHT.h( prefix(v(ai),j) )  
9.   retrieve the list Lai-suff of SubIDs found there  
   and store it to Lai-SUFFIX 
10.  for every attribute ai in eventj 
11.      for every SubIDj in the  
      Lai-PREFIX and Lai-SUFFIX lists 
12.   if SubIDj is found ONLY in prefix lists 
13.    move SubIDj to Lai-PREFIX-DELIVERY list  
14.   if SubIDj is found ONLY in suffix lists 
15.    move SubIDj to Lai-SUFFIX-DELIVERY list  
16.   if SubIDj found in BOTH prefix and suffix lists
17.    move SubIDj to Lai-CONTAINMENT-DELIVERY 

A similar procedure is followed for the suffix operation 
and we finally collect the l Lai-suff lists from the  DHT. 
After finishing with this step we have collected l lists in 
order to check prefix matching, l lists for suffix matching 
and one list for equality matching, for every string 
attribute. We then merge all the Lai-suff and Lai-pref into the 
Lai-SUFFIX and Lai-PREFIX lists respectively.  

 
Figure 5. The matching algorithm after collecting 

the SubIDs for potential evnent matching. 

Figure 5

Event Processing and Matching [2/2] 
Matching phase 
1.   for every SubIDk found in the Delivery Lists 
2.      retrieve the number of attributes defined from the 
              c3 field: Na-sub-k 
3.      count the number of Delivery lists where SubIDk 
              is stored: Nlist-sub-k 
4.      if Na-sub-k equals Nlist-sub-k we have a match 
5.     remove SubIDk from all lists 
6.     store SubIDk in the Matching list Lmatching 
Delivery phase 

7.  for every SubIDi in the Lmatching list  
8.     contact the node that keeps the subscription.  
     (Its nodeID is the c1 field of the SubIDi ) in order  

 to inform (deliver the event to) the interested client

 
The next step (Matching Phase, ) is actually 

the event-subscriptions matching process. In order to 
discover a prefix, suffix or containment match on attribute 
ai we check the Lai-PREFIX list along with the Lai-SUFFIX list. 
The SubIDs that are found to be in the prefix list but not in 
the suffix list are considered to produce a prefix matching 
and thus they are transferred in the Lai-PREFIX-DELIVERY list. 
On the other hand, the SubIDs that are found to be in the 
suffix list but not in the prefix list are considered to 
produce a suffix matching and are stored in the               
Lai-SUFFIX-DELIVERY list. Finally, those SubIDs that are found 
to be in both suffix and prefix lists are considered to 
produce a containment match and are stored in the                       
Lai-CONTAINMENT-DELIVERY list. 

Until now, we have collected four delivery lists with 
subscription identifiers for the ai attribute. These are: 
Lai-EQUALITY-DELIVERY, Lai-PREFIX-DELIVERY, Lai-SUFFIX-DELIVERY, 
and Lai-CONTAINMENT-DELIVERY. 

It should be noted that among the above four lists for 
the attribute ai there are no duplicate SubIDs. Suppose, 
now, that a subscription SubIDk is found to be in at least 
one of the Na-event × 4 lists that were collected when the 
event arrived at the system. Assume that this subscription 
consists of Nk-sub attributes (Nk-sub is obtained from the 
field c3 of the SubID defined in section 3.2). Then, the 
subscription with identifier SubIDk is considered to match 
the event if it appears in exactly Nk-sub lists collected from 



the network.  Those SubIDs are then transferred to the 
Matching list Lmatching where they are processed further in 
order to inform the subscribers that are interested for the 
incoming event (Delivery Phase, ). More 
precisely, for every SubID in the Lmatching list, we contact 
the node that actually holds the subscription. This nodeID 
can be easily retrieved from the c1 field of the SubID.  

Figure 5

Then the metadata information about the specific 
subscription stored in that node can be used in order to 
deliver the event to the interested subscriber.  
 
Example 2: Matching events with subscriptions 

Suppose that we have the following subscriptions 
Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”} 
Sub2={SubID2|Exchange: “N*E” , Symbol : “OTA*”} 
generated by two clients connected to brokers in a Chord 
DHT network and an event arrives with the following 
values: 

Event1 = { Exchange : ”NYSE”, Symbol : ”OTE” } 
We start with the attribute Exchange and we try to 

locate the subscriptions that declared an equality 
constraint. Thus, we retrieve the list LExchange from node 
successor(h(“NYSE”)). This list is empty since none of the 
two subscriptions declared an equality constraint. Hence, 
the list  LExchange-EQUALITY is empty.  

We continue by collecting the prefix and suffix lists 
(LExchange-PREFIX and LExchange-SUFFIX). We ask the nodes 
successor( h(“N”) ), successor( h(“NY”) ), 
successor(h(“NYS”) ) and successor( h(“NYSE”) ) for 
their stored suffix lists and we get only SubID2 from the 
successor(h(“N”)) node as a result of the containment 
constraint of Sub2. We then ask the corresponding nodes 
for their stored prefix lists and we get SubID1 from node 
successor(h(“SE”)) as a result of the prefix constraint of 
Sub1 and SubID2 from node successor(h(“E”)) as a result 
of the containment constraint of Sub2. Thus after 
examining the attribute Exchange we get the lists: 

LExchange-EQUALITY………….… {empty} 
LExchange-PREFIX……………… SubID2 , SubID1 
LExchange-SUFFIX……………… SubID2 

In order to fill the Delivery lists (that contain SubIDs 
for possible matching) we check the lists already collected. 
Recall that those SubIDs that are found to be in both lists 
are candidates for containment matching. SubID2 belongs 
to this category. Those SubIDs that are found only in the 
suffix list are candidate for suffix matching and as we can 
see there is no SubID belonging to this category. Finally, 
those SubIDs that are found only in the prefix list (SubID1) 
are candidate for prefix matching. After this phase, we 
have collected the following Delivery lists for the 
Exchange attribute: 

LExchange-EQUALITY-DELIVERY……... {empty} 
LExchange-PREFIX-DELIVERY……….. SubID1 

LExchange-SUFFIX-DELIVERY ………  {empty} 
LExchange-CONTAINMENT-DELIVERY ... SubID2 

Repeating the above process for the Symbol attribute, 
we get the following Delivery lists: 

LSymbol-EQUALITY-DELIVERY……….. {empty} 
LSymbol-PREFIX-DELIVERY…………. {empty} 
LSymbol-SUFFIX-DELIVERY ……….... SubID1 
LSymbol-CONTAINMENT-DELIVERY ....... {empty} 

Now we continue to the matching phase determining 
which one of the collected subscriptions are indeed 
matching the incoming event. From the c3 part of the 
SubIDs of subscriptions 1 and 2 we can find out that both 
subscriptions have constraints over two attributes. Since 
SubID1 is found in two lists, a match is implied and so we 
keep the SubID1 in order to inform the node which 
generated the subscription about the matched event. On 
the other hand, subscription 2 is found to be in one list and 
thus we do not have a match. The next step is to inform the 
interested user. This is done by consulting the node storing 
the subscription (with nodeID equal to the c1 field of the 
SubID1) and holding metadata information for SubID1, in 
order to locate the IP address of the client that generated 
the subscription. Then, the matched event is delivered to 
the interested client.                                                            

 
5.1. Expected performance analysis 
 

All DHTs have bounded performance of O(log(N)) 3 
hops in order to contact a node. In this section we present 
a performance analysis of our algorithms 

During the subscription storage procedure, the average 
number of hops needed to store a SubID is equal for all 
allowable operations on strings except the containment 
operation that requires more hops. This is so, since the 
SubID is stored in a single node in the case of an equality 
constraint. Thus, for a subscription, i, O(log(N)) hops are 
required in the worst case in order to store the SubIDi for 
every attribute. Note that for the case of the containment 
operation the number of hops is twice as many, but 
obviously O(log(N)). Thus, the scalability of the 
processing/managing algorithm is guaranteed. 

The matching process and more precisely the SubID 
Lists Collection Phase, requires contacting more nodes. 
More precisely, for every attribute in the event, we should 
contact one node in order to retrieve the lists of SubIDs 
that have declared equality for the given attribute. Now, 
suppose that the character length of the attribute ai is li. 
Then in order to collect the prefix and suffix lists we 
should contact 2×li nodes which results in 2×li×O(log(N)) 

                                                      
3 N is the number of nodes participating in the DHT. N can be 
approximately computed in the case of the Chord DHT, by observing the 
distance between successors in the finger table. 



hops for every attribute. In general, for an event with        
Na-event attributes  hops are required in 

the worst case which in fact results in bounded 
performance of O(l×log(N)) where c is a constant.  
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Coordinated Matching 
The algorithm presented in section 5 starts by 

processing each attribute of the event separately, 
contacting a subset of nodes and retrieving the SubID lists 
as we can see in Figure 6. It is clear that the matching 
process is performed at the origin node where all lists have 
been collected.  

)]

During the event delivery phase suppose that we have 
to contact k nodes, (k=| Lmatching |). The event can be 
delivered to the brokers storing the matched SubIDs by 
choosing between two different delivery policies. The first 
one involves the contacting of k nodes separately which 
results in k×O(log(N)) hops. With the second one we 
inform all nodes in the network, which results in O(N) 
hops (this can be achieved by following a full circle path 
in the case of the Chord ring). Our choice on what police 
to use is based on the relation between the number of hops 
on average needed to contact separately k nodes, 
(k×½×log(N) for Chord) and the number of hops needed to 
contact all nodes in the network (N). If k×½×log(N)<N we 
use the first policy which results in an overall hop count 
(Collection and Delivery phase) of O((l+k)log(N)). 
Following the second policy requires O(N) hops which is 
the worst case.  

Distributed Matching 
A first idea trying to ameliorate the above process, is to 

perform the matching process in a distributed, step-by-step 
way, as can be seen in . The key idea is to order 
the events’ attribute-values based on their expected 
selectivity. This selectivity (i.e., the size of the SubID lists 
with subIDs matching the event’s attribute value) depends 
on the popularity of the attribute (i.e., how many 
subscriptions are involving this attribute) as well as on the 
attribute values’ popularity. This kind of ordering will lead 
in processing first the attributes that are likely to return a 
small result set and pass those relatively small lists to 
subsequent nodes in order to perform the matching. The 
problem of identifying the selectivity of an event’s 
attribute value is a formidable one in general (since both 
popularity distributions mentioned above need to be 
estimated).  However, fortunately, there exist applications 
where such information on event-attribute selectivities is 
readily deducible. For example, in a stock market 
application it is likely that attributes such as “stock 
exchange name” are associated with large results sets and 
thus should be processed as lately as possible. 

Figure 7

Figure 7. Distributed matching.  

Now, compared to existing systems like Siena [6] 
where the subscription propagation as well as the event 
matching phase requires O(N) hops, we can definitely say 
that our approach is overall preferable. More precisely, in 
our approach the subscription storing phase requires 
O(l×log(N)) hops while in the Siena system O(N) hops are 
required. During the event delivery phase, compared to 
Siena’s O(N) hop count, our approach requires O(klog(N)) 
hops when k is relative small and O(N) in the worst case. 

 

 
Another indication of how selective an event attribute 

is, could be the size of its value domain. Thus, we can 
order the k attributes of the event from largest domains 
(attribute a1) to smallest ones (attribute ak). Small domains 
indicate that the SubID lists stored at each node are going 
to grow in size as new subscriptions arrive at the system 
with values picked from this small set of values. Thus, 
attributes with small domains is preferred to be processed 
later during the SubID collecting phase.  

Figure 6. Coordinated matching. 
 

6. Event processing optimizations 
  

The optimizations that follow aim to reduce mainly the 
processing cost and study the related trade-offs with 
respect to the overall network traffic as a result of 
collecting, sending back to the origin node (the broker 
node where the incoming event arrived) the SubID lists, 
and finally processing them in order to compute and 
deliver the matched events to interested users. Our 
motivation is to distribute when possible/profitable the 
matching phase to a number of involved DHT nodes. 

Suppose now that an event arrives. We start by 
processing the attribute, a1, with the estimated smallest 
selectivity and send a request for collecting SubIDs to all 
appropriate nodes, as illustrated before. Among those 
nodes we pick one that is responsible for collecting and 
merging all such lists, in a GlobalSubIDList(1) list. Then, 



Hop count the current node sends this list to the next set of nodes that 
will process the event for the attribute that has the next 
smaller selectivity, a2.  

By straightforward analysis one can easily find that the 
Distributed Matching algorithm is the best algorithm in 
terms of hop count, compared to the other two that have 
similar performance.  

At this step, the second node has to process two lists of 
SubIDs. The list that was collected from the nodes that it is 
responsible for, LocalList2, and the previously retrieved 
list, GlobalSubIDList(1). From the LocalList2 we drop 
those SubIDs that have declared4 one or more attributes 
that we have already checked (in this case attribute a1), 
and are not present in the GlobalSubIDList(1). From the 
GlobalSubIDList(1) we drop those SubIDs that have 
declared the current attribute a2 and are not present in the 
LocalList2. The remaining SubIDs are merged to the 
GlobalSubIDList(2) list and are propagated to the node 
responsible for the third attribute, a3. This process 
continues until we reach the last node (responsible for the 
last attribute of the event ak) where the already matched 
list of SubIDs GlobalSubIDList(k) is sent  to the origin 
node.  

Suppose an event arrives at the system that involves the 
communication of k broker nodes in order to collect the 
SubIDs that are candidates for matching. In general, under 
the Coordinated Matching algorithm, the origin broker 
node (where the event arrives) has to send one DHT 
message to each of the k nodes and each of the k nodes 
have to send the origin node a DHT message with the 
SubID lists they posses. Thus, with Coordinated 
Matching, we have to perform 2k DHT node lookups.  

Under Distributed Matching, k+1 DHT lookups in total 
need be performed. They are fewer compared to 
Coordinated Matching by k-1, because Distributed 
Matching gets rid of the communication of each node with 
the origin node except the last one that sends back the 
SubID lists.  The weakness of Distributing Matching is that it is 

possible that many SubIDs that may already match the 
event, will be sent several times through the DHT network 
until it finally reaches the origin node. This is the case 
where a subscription does not declare any of the attributes 
that are going to be checked in later steps of the distributed 
matching process.  

Finally, with the Hybrid Matching algorithm we have 
to perform 2k lookups, exactly the same as in Coordinated 
Matching. They are k-1 more lookups compared to 
Distributed Matching, as all nodes except the last one have 
to contact the origin node in order to send back the already 
matched subscription identifiers.  
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Figure 8. Hybrid matching.  

Figure 8

Hybrid Matching 
Hybrid Matching takes advantage of this fact. When we 

reach at a point in the distributed matching where all the 
declared attributes of a subscription are already checked, 
the subscription matches the event and it is returned back 
directly to the origin node. As we can see from , it 
is clear that Hybrid Matching borrows and combines the 
benefits of both Coordinated and Distributed Matching. 

 
Figure 9. Varying the skewness of Values’  

Theta of Values’ Popularity Distribution

popularity distribution. 
 
Network Traffic 

DHT hop counts, however, are just one indication. 
Perhaps a more important metric is the network traffic 
generated as a result of the above algorithms. Our specific 
performance metric here is the total number of SubIDs 
sent for the processing of each incoming event (when a 
SubID is sent r times, it is counted as r SubIDs). This 
metric is a clear indication of the bandwidth requirements 
during the event processing phases as they are affected by 
the result sizes being transmitted over the DHT. 

 
7. Performance evaluation 

7.1. Performance of event processing optimization 
algorithms 

                                                      
4 For this algorithm to work we should also know which attributes were 
declared from a subscription and not only the number of them. This can 
be easily done by replacing the c3 field of the subscription identifier with 
an m-bit vector that indicates which attribute is declared.      

In order to find out how the system performs in terms 
of generated network traffic under different skewness 
degrees of the popularity distributions of attributes and 



their values, we have performed a number of experiments; 
we report the results on a series of experiments in a       
128-broker network with 10,000 subscriptions and 30,000 
generated events.  

The value domain size of each attribute is large enough 
compared to the number of nodes. The number of 
attributes that an event or subscription can have, varies 
from 1 to 10 attributes (and depends on the attributes’ 
popularity). The popularities of attributes as well as the 
values of each attribute follow a Zipf distribution with 
parameter θ, varying from 0.1 (more uniform) to 1.0 (more 
skewed).  

In Figure 9 we vary the skewness of attribute values’ 
popularity distribution while θ for attributes’ popularity 
equals 0.6. We can see that the preferred algorithm is the 
Coordinated Matching, which is slightly better that Hybrid 
Matching, and considerably better than Distributed 
Matching.  

Note that, despite that the two best algorithms have 
similar performance, with respect to the total result set 
sizes sent over the DHT, the matching process is 
performed in a distributed environment under Hybrid 
Matching. This is expected to alleviate problems related to 
performing the whole matching process centrally at a 
broker in Coordinated Matching. 

 
Figure 10. Varying Attributes’ popularity 

distribution skewness with constant skewness 
(0.5) of values’ distribution. 

Figure 10

 
Distributed Matching is the worst, in general, because, 

as we said in section 6, SubIDs that may already match the 
event, are sent through the network until the last node 
involved in the SubID Collection phase.  

In the next set of experiments we try to figure out under 
which circumstances the Distributed and Hybrid Matching 
algorithms can improve their performance compared to 
Coordinated Matching. We first change the attributes’ 
popularity distribution with θ varying from 0.1 to 1.0. The 
values’ popularity distribution remains the same for all 
value domains with θ = 0.5. The rest parameters of the 
experiment remain unchanged.  

As you can see in , Coordinated Matching is 

marginally better compared to Hybrid Matching, in all 
cases. Our intuition is that the filtering performed at each 
step of Distributed and Hybrid Matching, becomes more 
efficient as popular attributes that are going to return small 
result sets (their values’ popularity is more uniform) are 
processed as early as possible. Moreover, the distributed 
matching should be performed in many steps which means 
that the attributes’ popularity distribution should not be 
very skewed. In order to verify our thoughts we tuned our 
experimentation, so that popular attributes have uniform 
value distributions and less popular attributes have skewed 
popularity distributions for their possible values. 

As we can see in Figure 11, for small values of θ 
(where many attributes are likely to be defined by 
events/subscriptions), Hybrid Matching performs better 
compared to Coordinated Matching because there are 
many filtering steps and the popular attributes with small 
result sets seem to further help the filtering.  
As the popularity of attributes becomes more skewed the 
mean number of attributes per event/subscription 
decreases and thus there are not enough steps for Hybrid 
Matching to show its worthiness. As we can see in Figure 
11 all three algorithms tend to perform the same as the 
attributes’ popularity becomes very skewed (θ value 
approaches 1.0). 

 
Figure 11. Varying Attributes’ popularity 

distribution skewness. Value distribution is 
skewed for less popular attributes. 

7.2. Load balancing 
 

In our approach we store string values on the DHT 
network. In most real-world environments, attribute value 
and access distributions are not uniform. Such skewness 
may in general create storage and access load imbalances.  

The intuition behind our conjecture that load 
imbalances are not a significant problem with our 
approach is based on the following observation: even 
though a skewed value/access distribution of an attribute 
can create load imbalances, in real world applications 
there will be tens of attributes. Further, each pub/sub 
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infrastructure is expected to support several applications 
(each with many attributes). As the total number of 
supported attributes increases, the load imbalances are 
disappearing. 

By performing a number of experiments in a 128-node 
network we found out that even with a small, say         
7-character long attribute, the domain size of each attribute 
is large enough to achieve 1.07 value for the maximum to 
minimum storage load ratio with only 6 attributes in the 
event/subscription schema. For smaller value domain sizes 
more attributes are needed in order to achieve adequate 
balancing. It should be obvious that the same results will 
be obtained regardless of whether the skewed access 
distributions refer to value-occurrence distributions (i.e., 
storage load) or value-access distribution (i.e. access load). 

    [4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. 
E. Strom, and D. C. Sturman. “An efficient multicast 
protocol for content-based publish-subscribe systems”. 
Proc. 19th ICDCS 1999. 

 
8. Conclusion 

 
In this work we have shown how to leverage DHT-

based P2P systems, towards building scalable, self-
organizing, well-performing systems that support queries 
with a rich set of constraints on string attributes. We 
specifically focused on and presented how our algorithms 
can be applied in a publish/subscribe environment with a 
broker network implemented using a DHT. The proposed 
solution is DHT-independent and can be applied in every 
DHT infrastructure that provides the basic functionality of 
finding and reaching the node that stores an object with a 
specific key value. To our knowledge, this is the first work 
that shows how string attribute queries (with equality, 
prefix, suffix, and containment predicates) can be 
processed over a DHT infrastructure. 

Using it, DHT-based pub/sub systems can be built, 
achieving better or comparable performance to traditional 
systems for both the subscription propagation and the 
event delivery phases (in terms of number of hops required 
for each task). Future work includes further reducing the 
network traffic overhead, and comparing it with that of 
non-DHT-based pub/sub systems.  
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