
String Attribute Query Processing over DHTs: The Publish-Subscribe Case 1

Ioannis Aekaterinidis and Peter Triantafillou
Research Academic Computer Technology Institute and

Department of Computer Engineering and Informatics, University of Patras, Greece
{aikater,peter}@ceid.upatras.gr

Abstract

In this paper, we present and study solutions for the

efficient processing of queries over string attributes in a
large P2P data network implemented with DHTs. The
proposed solutions support queries with equality, prefix,
suffix, and containment predicates over string attributes.
Currently, no known solution to this problem exists.

We propose and study algorithms for processing such
queries and their optimizations. As event-based,
Publish/Subscribe information systems are a champion
application class where string attribute (continuous)
queries are very common, we pay particular attention to
this type of data networks, formulating our solution in
terms of this environment. A major design decision behind
the proposed solution is our intention to provide a solution
that is general (DHT-independent), capable of being
implemented on top of any particular DHT.

1. Introduction

The peer-to-peer (P2P) paradigm is appropriate for
building large-scale distributed systems/applications. P2P
systems are completely decentralized, scalable, and self-
organizing. All nodes participating in those systems have
equal opportunities and are providing services where
information is exchanged directly with each other. A
popular class of them is the “structured” P2P systems
where the data placement and the topology within the
network are tightly controlled.

A large body of research is currently targeting the
extension and employment of DHTs for efficient data
query processing. The nature and functionality of the
DHT-based P2P can guarantee the efficient managing of
queries with equality predicates. However, it is difficult to
perform queries with range predicates over numeric
attributes and/or prefix, suffix, and containment predicates
over string attributes. As far as we know, there is currently

no applicable solution for processing string attribute
queries over DHTs. This kind of functionality can be used
by data management systems built using the
Publish/Subscribe (Pub/Sub) paradigm.

With our work in this paper we propose a solution that
supports rich queries with string attributes (and string
operations like prefix, suffix and containment) over a
DHT-based P2P infrastructure. Given the popularity of the
pub/sub technology, we primarily focus on it and
formulate our solution in terms of a pub/sub infrastructure.

2. Background and contribution

2.1. Distributed Hash Tables (DHTs)

Distributed Hash Tables (DHTs [8], [9], [10], [12],
[20]) are becoming increasingly popular for structuring
overlay topologies of large-scale data networks. In a DHT
each node has a unique identifier (nodeID) selected from a
very large address space. Each data item can be associated
with a key which is a unique identifier of the same type as
nodeID. DHTs can efficiently locate and route a
<data item, key> pair based on the key identifier.

As an example of a popular DHT we outline how
Chord operates. Chord [10] is a fairly simple, structured
peer-to-peer network based on a DHT. Compared to
unstructured peer-to-peer networks like Gnutella and
MojoNation where neighbors of peers are defined in rather
ad hoc ways, Chord is “structured” because of the way
peers define their neighbors, forming a ring topology.
Chord provides an exact mapping between node identifiers
(nodeID) and keys associated with data items using
consistent hashing [13]. NodeIDs and keys are mapped to
a large circular identifier space, e.g. [0, 2160) for 160-bit
IDs. Values in this space can be viewed as positions in the
ring defining the name/identifier space. Thus, given a key,
Chord maps it to the (ring position) node whose nodeID is
equal to the key. If this node does not exist, the key is
mapped to the first successor of this node on the ring.

Similarly to all DHT-based networks, Chord has a
bounded performance in terms of hop count. It efficiently
determines the successor of an identifier (key) in ½log(N)

1This work is partly supported by the 6th Framework Program of EU
through the integrated project DELIS (#001907) on Dynamically
Evolving, Large Scale Information Systems.

hops on average (and in O(log(N) hops in the worst case),
in the steady state (where N is the maximum number of
nodes in the network). Each node maintains routing
information for up to O(log(N)) other nodes. Adding or
removing a node from the network can be achieved at a
cost of O(log2(N)) messages. Chord has become very
popular and has been used as a building block for several
large-scale distributed systems, as it’s simple and its
performance is guaranteed.

2.2. The publish/subscribe paradigm

There are two popular types of publish/subscribe
systems: topic-based and content-based. Topic based
systems are much like newsgroups. Content-based systems
are preferable as they give users the ability to express their
interest by issuing continuous queries, termed
subscriptions, specifying predicates over the values of a
number of well defined attributes. The matching of
publications (events) to subscriptions (interests) is done
based on the content (values of attributes).

Building a centralized publish/subscribe may result in
scalability problems as the number of publications and
subscriptions increases. Thus, a decentralized approach is
deemed necessary. The main challenge in a distributed
environment is the development of an efficient distributed
matching algorithm. Distributed solutions have been
provided for topic-based publish/subscribe systems [1],
[2], [3]. More recently, some attempts on distributed
content-based publish/subscribe systems use routing trees
to disseminate the events to interested users based on
multicast techniques [4], [5], [15], [16]. Some other
attempts use the notion of rendezvous nodes which ensure
that events and subscriptions meet in the system [14].

Some approaches have also considered the coupling of
topic-based and content-based systems. In [6] the
publications and the subscriptions are automatically
classified in topics, using an appropriate application-
specific schema. The main drawbacks of this attempt are
the design of the domain schema and the false positives
that may occur. Our previous work reported in [17]
proposes a solution for numeric attributes with equality
and range predicates in a DHT-dependent (Chord) way.

Recently there have been algorithms for filtering and
matching queries on continuous queries databases, based
on the AWP data model [18]. In [19] keyword searching is
supported by applying a multi-level partitioning scheme
on top of the SkipNet P2P infrastructure [21]. However
both works do not support string attributes with prefix,
suffix, and containment constraints. As far as we know,
this is the first work that leverages DHT research to build
large scale content-based pub/sub systems while
supporting subscriptions with a rich set of constraints on
string attributes.

2.3. Contribution: String processing over DHTs
The publish/subscribe case

Until now, it still remains a challenge to leverage DHTs

as a dominating technology for constructing efficient
scalable overlay networks in creating a content-based
pub/sub infrastructure. In particular, an efficient solution
to string attribute support over DHTs is very much
lacking.

Our solution on string attribute processing over DHTs
is independent of the type of DHT. It is easily applicable
to every DHT that can efficiently locate an object based on
its key identifier. However, for simplicity of presentation
of algorithms and to study their performance impact we
will on occasion use Chord because of its simplicity,
guaranteed performance, and popularity within the peer-
to-peer community. By leveraging DHTs we allow
ourselves the luxury of not having to be concerned with
the development of an infrastructure for topology
establishment that provides dynamic topology
maintenance, fault tolerance, scalability, and efficient
routing.

In the rest of the paper we will show how to build
content-based pub/sub systems, able to support string-
valued objects and their related operations.

3. Publish/Subscribe with string attributes
over DHTs

Events and subscriptions are defined over an event

schema that supports a number A of attributes. An event is
defined to be a set of k values (k ≤ A), one for each
attribute, while a subscription is defined through an
appropriate set of constraints over a subset of the A
attributes of the schema.

3.1. The Event/Subscription Schema

The event schema is a set of typed attributes. Each

attribute ai consists of a name, type, and a value v(ai).
Generally, the type of an attribute belongs to a predefined
set of primitive data types commonly found in most
programming languages. In this work we will focus on
string attributes. Thus, from now on whenever we refer to
an attribute of our schema, we assume that it is a string
attribute. An event can be thought of as set of <attribute
name, value> pairs. An example event with two attributes
defined is:

Event1= { Exchange : “NYSE”, Symbol : “OTE” }
The subscription schema is more general, allowing a

rich set of subscriptions with all common string operators.
An example of two subscriptions is:

Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”}
Sub2=SubID2|Exchange: “N*E” , Symbol : “OTA*”}

The allowed operators are: suffix (e.g. in Sub1, the
Symbol attribute), prefix operator (e.g. in Sub1, the
Exchange attribute), and the containment operator (e.g. in
Sub2 the Exchange attribute).

An event matches a subscription if and only if all the
subscription’s attribute predicates/constraints are satisfied.
A subscription can have two or more constraints for the
same attribute which can be thought as if we had two or
more different subscriptions with unique constraints over
their attributes. Finally, an event can have more attributes
than those mentioned in the subscription schema. Note that
if an event has more attributes than a subscription and all
subscription predicates are satisfied then the subscription
is considered to be matched.

3.2. The Subscription Identifier

A subscription identifier (SubID) is the concatenation
of three parts:

1. c1: The id of the node receiving the subscription (i.e.,
where the subscription “belongs”).

2. c2: The key of the subscription needed to identify it
among the subscriptions belonging to the same node.

3. c3: The number of attributes on which constraints are
declared by this subscription.

1 0 0 0 1 1 1 0 1

 c1=4 c2=3 c3=5

Figure 1. An example subscription id (SubID).

The subscription id depicted in Figure 1 identifies

subscription 3 (c2=3), belonging to a DHT node 4 (c1=4),
comprised of constraints on 5 attributes (c3=5).

Figure 2. Network of nodes forming a DHT

network.

3.3. System Architecture

Figure 2 depicts the intended pub/sub architecture.

Client nodes are producers/consumers, issuing
events/subscriptions, respectively. Each client is ‘attached’

to a broker node using any appropriate such mechanism
(e.g., hashing the client’s port and IP address with the
DHTs hashing scheme). A broker node is a DHT node and
is added/deleted from the DHT following the specific
DHT related algorithms.

Moreover, we should note that for every subscription
there is a node in the DHT network storing metadata
information for it. That node is identified by the c1 field of
the subscription id and it keeps metadata information
about the subscription (for example the IP address of the
user that generated the subscription etc.).

4. Processing subscriptions

Consider an example pub/sub system supporting A

string attributes (ai, Ai ≤≤1). Subscriptions specify a
single value (equality) or string operators on values
(prefix, suffix, containment) for each attribute ai. The main
idea behind our approach is to store the subscription ids
(SubIDs) at those nodes of the DHT network that were
selected by appropriately hashing the values of the
attributes in the subscriptions. The matching of an
incoming event can then be performed simply by asking
those nodes for stored subscription ids.

4.1. Storing subscriptions

Storing subscriptions is done using the DHT hash

function (DHT.h()). For example in Chord, this hash
function h() (i.e., SHA-1) returns an identifier quasi-
uniformly distributed in the address space used for the
node identifiers. Thus, the result (say n) of this hash
function for the value v(ai) of the attribute ai is quasi-
uniformly distributed in the nodes’ identifier address space
(where n = h(v(ai))).

The main idea behind the storing procedure, is to place
the subscription id at the node whose id is the least id
equal or greater to n=h(v(ai)) (that is successor(n) from the
Chord API). Therefore, in Chord, the SubID will be placed
at the node: successor(h(v(ai))).

We maintain three lists (initially empty) in every node
for every string attribute ai of our schema. The first two
are the Lai-pref and Lai-suff where we store the SubIDs of the
subscriptions that contain prefix or suffix operations,
respectively, over the attribute ai whose value hashed to
this node.

The containment operation can be easily transformed
into prefix and suffix operations and thus there is no need
for a third list. More precisely, we break the containment
string into prefix and suffix parts and we deal with the
containment operation as a prefix and a suffix operation
over the same attribute. Finally, there is a need for a list
where the SubID is going to be stored in the case of an
equality operation on a string attribute ai. This is the Lai

list. The procedure of storing subscriptions can be seen in
. Figure 3

Figure 3. The procedure of storing subscriptions.

Example 1: Storing subscriptions

Suppose that a user expresses her interests with the
following subscriptions over a Chord DHT network:
Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”}
Sub2={SubID2|Exchange: “N*E” , Symbol : “OTA*”}

As we can see the Symbol attribute (a2) is defined as a
suffix with value OT* (that is v(a2)= “OT*”). The storing
procedure for this subscription involves the storage of
SubID1 in the list Lai-suff of the node with
nodeID=successor(h(v(a2)))=successor(h(“OT”)).

Similarly, for the Exchange attribute (a1) with prefix
value *SE (that is v(a1)= “*SE”) we store the SubID1 at
the Lai-pref list of the successor(h(v(a1)))=
successor(h(“SE”)) node. In Sub2 the Exchange attribute
is declared as a containment operation with value N*E.
The procedure for storing this type of subscription requires
the transformation of containment into prefix and suffix
operations. Thus the prefix operation of containment v(a1)
is v(a1).prefix()=“*E” while the suffix operation is
v(a1).suffix()=“N*”. Then we store the SubID2 in the
Lai-suff list of node with nodeID=successor(h(“N”)) and in

the Lai-pref list of node with nodeID=successor(h(“E”)). By
processing accordingly the a2 attribute of the second
subscription we are done with the storing procedure and
we are ready to proceed to the matching process on every
incoming event.

Notation

SubID : subscription identifier
nodeID : node identifier
ai : attribute i
Lai : List of SubIDs for attribute ai with equality operation
Lai-pref : List of SubIDs for attribute ai with prefix operation
Lai-suff : List of SubIDs for attribute ai with suffix operation
v(ai) : value of attribute ai
DHT.h() : DHT’s function returning a key (SHA-1 in Chord)
v(ai).prefix() : prefix operation of a containment on v(ai)
v(ai).suffix() : suffix operation of a containment on v(ai)

Storing Subscriptions
1. For every string attribute ai in subscription
2. If ai has an equality constraint
3. store SubID in node with
 nodeID =DHT.h(v(ai)) in the Lai list.

4. If ai has a prefix constraint
5. store SubID in node with nodeID=DHT.h(v(ai))

in the Lai-pref list.

6. If ai has a suffix constraint
7. store SubID in node with nodeID=DHT.h(v(ai))

in the Lai-suff list.

8. If ai has a containment constraint
9. break ai into v(ai).prefix() and v(ai).suffix()
10. store SubID in node with

nodeID=DHT.h(v(ai).prefix()) in the Lai-pref list.
11. store SubID in node with

nodeID=DHT.h(v(ai).suffix()) in the Lai-suff list.

4.2. Updating subscriptions

Updating a subscription involves a procedure during

which the values of all attributes contained in the
subscription are updated using the standard API of the
DHT. In the case of equality, prefix, and suffix operation
only two nodes are affected. On the one hand, the node
that is mapped to the old, stale value is forced to delete the
SubID for the attribute that belongs to the subscription
with identifier SubID. On the other hand, a new node is
going to store the SubID, depending on the id returned
from the DHT’s hash function passing the new updated
value. In the case of the containment operation there is the
need to contact twice as many nodes compared to the other
operations, since as we said before, we break the
containment operation into suffix and prefix operations.

Deleting subscriptions is done as explained above since
the updating procedure includes a deleting step.

5. Event processing and matching

We define the functions prefix(string x, integer j) and

suffix(string x, integer j) that return the j-characters-long
prefix and suffix of the string x, respectively. For example,
prefix(“OTE”, 2) = “OT” and suffix(“OTE”, 1) = “E”.

Suppose now, that an event arrives at the system with
Na-event attributes defined. The SubID Lists Collection
Phase () starts by processing each attribute
separately. It first tries to find the node which stores
SubIDs for the value v(ai) of the attribute ai (e.g., in Chord
n=successor(h(v(ai))). Those subscriptions have defined
an equality operation over the attribute ai. The algorithm,
then, retrieves the list of unique SubIDs found to be stored
in node n in the list Lai designated for the attribute ai and
stores it in the Lai-EQUALITY-DELIVERY list in order to inform
the interested users for possible matching2.

Figure 4

Apart from the equality operation, the algorithm must
also check for any possible matches with subscriptions that
have defined prefix, suffix and containment predicates. In
order to find the subscriptions that may have declared a

2 It should be noted that in the Lai-* lists we store the (SubID, v(ai)) pairs
so as to collect only those SubIDs that are stored there because of the
value v(ai). Consider for example the case where the SubIDs of two
different subscriptions SubID1 and SubID2 that have defined different
values for the attribute ai (v1(ai) ≠ v2(ai)), are both stored in the same
node (that is successor(h(v1(ai))) = successor(h(v2(ai)))). In the case
where an event arrives with a value equal to v1(ai) for the attribute ai , we
should collect only SubID1 and not SubID2. For the sake of simplicity
and easy reading of the described algorithms we omit this detail.

Figure 4. Collecting the SubIDs of subscriptions

that are candidate for matching the event.

prefix operation on the attribute ai we should ask the nodes
in the DHT in a similar to equality constraint way. For
example, in the Chord ring we ask those nodes that have
nodeID=successor(suffix(v(ai),j)) for j ranging from 1
to l (where l is the length of string v(ai)). From those

nodes we retrieve the Lai-pref lists. Thus we collect l lists
with SubIDs of subscriptions that may have declared a
prefix operation.

Event Processing and Matching [1/2]

Notation

SubID : subscription identifier
nodeID : node identifier
ai : attribute i
Na-sub-i : number of attributes defined in a subscription i
Nlist-sub-i : number of collected lists that SubIDi is stored
Lai : List of SubIDs for attribute ai with equality operation
Lai-pref : List of SubIDs for attribute ai with prefix operation
Lai-suff : List of SubIDs for attribute ai with suffix operation
v(ai) : value of attribute ai
DHT.h():DHT’s function returning a key (in Chord SHA-1)
prefix(x,j) : j-characters-long prefix of string x
suffix(x,j) : j-characters-long suffix of string x
Lai-PREFIX : the union of all Lai-pref lists
Lai-SUFFIX : the union of all Lai-suff lists
Delivery Lists:

Lai-EQUALITY-DELIVERY : list with candidate SubIDs for
equality matching
Lai-PREFIX-DELIVERY : list with candidate SubIDs for prefix
matching
Lai-SUFFIX-DELIVERY : list with candidate SubIDs for suffix
matching
Lai-CONTAINMENT-DELIVERY : list with candidate SubIDs for
containment matching

Matching List:
Lmatching : list with SubIDs that generated a match to
the incoming event

SubID lists collection phase
1. for every eventj arriving at the system
2. for every attribute ai in the eventj
3. go to node DHT.h(v(ai))
4. retrieve the list Lai of SubIDs found there
 and store it to Lai-EQUALITY-DELIVERY
5. for j=1 to character length of v(ai)
6. go to node DHT.h(suffix(v(ai),j))
7. retrieve the list Lai-pref of SubIDs found there
 and store it to Lai-PREFIX
8. go to node DHT.h(prefix(v(ai),j))
9. retrieve the list Lai-suff of SubIDs found there
 and store it to Lai-SUFFIX
10. for every attribute ai in eventj
11. for every SubIDj in the
 Lai-PREFIX and Lai-SUFFIX lists
12. if SubIDj is found ONLY in prefix lists
13. move SubIDj to Lai-PREFIX-DELIVERY list
14. if SubIDj is found ONLY in suffix lists
15. move SubIDj to Lai-SUFFIX-DELIVERY list
16. if SubIDj found in BOTH prefix and suffix lists
17. move SubIDj to Lai-CONTAINMENT-DELIVERY

A similar procedure is followed for the suffix operation
and we finally collect the l Lai-suff lists from the DHT.
After finishing with this step we have collected l lists in
order to check prefix matching, l lists for suffix matching
and one list for equality matching, for every string
attribute. We then merge all the Lai-suff and Lai-pref into the
Lai-SUFFIX and Lai-PREFIX lists respectively.

Figure 5. The matching algorithm after collecting

the SubIDs for potential evnent matching.

Figure 5

Event Processing and Matching [2/2]
Matching phase
1. for every SubIDk found in the Delivery Lists
2. retrieve the number of attributes defined from the
 c3 field: Na-sub-k
3. count the number of Delivery lists where SubIDk
 is stored: Nlist-sub-k
4. if Na-sub-k equals Nlist-sub-k we have a match
5. remove SubIDk from all lists
6. store SubIDk in the Matching list Lmatching
Delivery phase

7. for every SubIDi in the Lmatching list
8. contact the node that keeps the subscription.
 (Its nodeID is the c1 field of the SubIDi) in order

 to inform (deliver the event to) the interested client

The next step (Matching Phase,) is actually

the event-subscriptions matching process. In order to
discover a prefix, suffix or containment match on attribute
ai we check the Lai-PREFIX list along with the Lai-SUFFIX list.
The SubIDs that are found to be in the prefix list but not in
the suffix list are considered to produce a prefix matching
and thus they are transferred in the Lai-PREFIX-DELIVERY list.
On the other hand, the SubIDs that are found to be in the
suffix list but not in the prefix list are considered to
produce a suffix matching and are stored in the
Lai-SUFFIX-DELIVERY list. Finally, those SubIDs that are found
to be in both suffix and prefix lists are considered to
produce a containment match and are stored in the
Lai-CONTAINMENT-DELIVERY list.

Until now, we have collected four delivery lists with
subscription identifiers for the ai attribute. These are:
Lai-EQUALITY-DELIVERY, Lai-PREFIX-DELIVERY, Lai-SUFFIX-DELIVERY,
and Lai-CONTAINMENT-DELIVERY.

It should be noted that among the above four lists for
the attribute ai there are no duplicate SubIDs. Suppose,
now, that a subscription SubIDk is found to be in at least
one of the Na-event × 4 lists that were collected when the
event arrived at the system. Assume that this subscription
consists of Nk-sub attributes (Nk-sub is obtained from the
field c3 of the SubID defined in section 3.2). Then, the
subscription with identifier SubIDk is considered to match
the event if it appears in exactly Nk-sub lists collected from

the network. Those SubIDs are then transferred to the
Matching list Lmatching where they are processed further in
order to inform the subscribers that are interested for the
incoming event (Delivery Phase,). More
precisely, for every SubID in the Lmatching list, we contact
the node that actually holds the subscription. This nodeID
can be easily retrieved from the c1 field of the SubID.

Figure 5

Then the metadata information about the specific
subscription stored in that node can be used in order to
deliver the event to the interested subscriber.

Example 2: Matching events with subscriptions

Suppose that we have the following subscriptions
Sub1={SubID1|Exchange: “*SE” , Symbol : “OT*”}
Sub2={SubID2|Exchange: “N*E” , Symbol : “OTA*”}
generated by two clients connected to brokers in a Chord
DHT network and an event arrives with the following
values:

Event1 = { Exchange : ”NYSE”, Symbol : ”OTE” }
We start with the attribute Exchange and we try to

locate the subscriptions that declared an equality
constraint. Thus, we retrieve the list LExchange from node
successor(h(“NYSE”)). This list is empty since none of the
two subscriptions declared an equality constraint. Hence,
the list LExchange-EQUALITY is empty.

We continue by collecting the prefix and suffix lists
(LExchange-PREFIX and LExchange-SUFFIX). We ask the nodes
successor(h(“N”)), successor(h(“NY”)),
successor(h(“NYS”)) and successor(h(“NYSE”)) for
their stored suffix lists and we get only SubID2 from the
successor(h(“N”)) node as a result of the containment
constraint of Sub2. We then ask the corresponding nodes
for their stored prefix lists and we get SubID1 from node
successor(h(“SE”)) as a result of the prefix constraint of
Sub1 and SubID2 from node successor(h(“E”)) as a result
of the containment constraint of Sub2. Thus after
examining the attribute Exchange we get the lists:

LExchange-EQUALITY………….… {empty}
LExchange-PREFIX……………… SubID2 , SubID1
LExchange-SUFFIX……………… SubID2

In order to fill the Delivery lists (that contain SubIDs
for possible matching) we check the lists already collected.
Recall that those SubIDs that are found to be in both lists
are candidates for containment matching. SubID2 belongs
to this category. Those SubIDs that are found only in the
suffix list are candidate for suffix matching and as we can
see there is no SubID belonging to this category. Finally,
those SubIDs that are found only in the prefix list (SubID1)
are candidate for prefix matching. After this phase, we
have collected the following Delivery lists for the
Exchange attribute:

LExchange-EQUALITY-DELIVERY……... {empty}
LExchange-PREFIX-DELIVERY……….. SubID1

LExchange-SUFFIX-DELIVERY ……… {empty}
LExchange-CONTAINMENT-DELIVERY ... SubID2

Repeating the above process for the Symbol attribute,
we get the following Delivery lists:

LSymbol-EQUALITY-DELIVERY……….. {empty}
LSymbol-PREFIX-DELIVERY…………. {empty}
LSymbol-SUFFIX-DELIVERY ……….... SubID1
LSymbol-CONTAINMENT-DELIVERY {empty}

Now we continue to the matching phase determining
which one of the collected subscriptions are indeed
matching the incoming event. From the c3 part of the
SubIDs of subscriptions 1 and 2 we can find out that both
subscriptions have constraints over two attributes. Since
SubID1 is found in two lists, a match is implied and so we
keep the SubID1 in order to inform the node which
generated the subscription about the matched event. On
the other hand, subscription 2 is found to be in one list and
thus we do not have a match. The next step is to inform the
interested user. This is done by consulting the node storing
the subscription (with nodeID equal to the c1 field of the
SubID1) and holding metadata information for SubID1, in
order to locate the IP address of the client that generated
the subscription. Then, the matched event is delivered to
the interested client.

5.1. Expected performance analysis

All DHTs have bounded performance of O(log(N)) 3
hops in order to contact a node. In this section we present
a performance analysis of our algorithms

During the subscription storage procedure, the average
number of hops needed to store a SubID is equal for all
allowable operations on strings except the containment
operation that requires more hops. This is so, since the
SubID is stored in a single node in the case of an equality
constraint. Thus, for a subscription, i, O(log(N)) hops are
required in the worst case in order to store the SubIDi for
every attribute. Note that for the case of the containment
operation the number of hops is twice as many, but
obviously O(log(N)). Thus, the scalability of the
processing/managing algorithm is guaranteed.

The matching process and more precisely the SubID
Lists Collection Phase, requires contacting more nodes.
More precisely, for every attribute in the event, we should
contact one node in order to retrieve the lists of SubIDs
that have declared equality for the given attribute. Now,
suppose that the character length of the attribute ai is li.
Then in order to collect the prefix and suffix lists we
should contact 2×li nodes which results in 2×li×O(log(N))

3 N is the number of nodes participating in the DHT. N can be
approximately computed in the case of the Chord DHT, by observing the
distance between successors in the finger table.

hops for every attribute. In general, for an event with
Na-event attributes hops are required in

the worst case which in fact results in bounded
performance of O(l×log(N)) where c is a constant.

() ([∑
−

=

⋅⋅+
eventaN

1i
i log(N)l2 1 Ο

Coordinated Matching
The algorithm presented in section 5 starts by

processing each attribute of the event separately,
contacting a subset of nodes and retrieving the SubID lists
as we can see in Figure 6. It is clear that the matching
process is performed at the origin node where all lists have
been collected.

)]

During the event delivery phase suppose that we have
to contact k nodes, (k=| Lmatching |). The event can be
delivered to the brokers storing the matched SubIDs by
choosing between two different delivery policies. The first
one involves the contacting of k nodes separately which
results in k×O(log(N)) hops. With the second one we
inform all nodes in the network, which results in O(N)
hops (this can be achieved by following a full circle path
in the case of the Chord ring). Our choice on what police
to use is based on the relation between the number of hops
on average needed to contact separately k nodes,
(k×½×log(N) for Chord) and the number of hops needed to
contact all nodes in the network (N). If k×½×log(N)<N we
use the first policy which results in an overall hop count
(Collection and Delivery phase) of O((l+k)log(N)).
Following the second policy requires O(N) hops which is
the worst case.

Distributed Matching
A first idea trying to ameliorate the above process, is to

perform the matching process in a distributed, step-by-step
way, as can be seen in . The key idea is to order
the events’ attribute-values based on their expected
selectivity. This selectivity (i.e., the size of the SubID lists
with subIDs matching the event’s attribute value) depends
on the popularity of the attribute (i.e., how many
subscriptions are involving this attribute) as well as on the
attribute values’ popularity. This kind of ordering will lead
in processing first the attributes that are likely to return a
small result set and pass those relatively small lists to
subsequent nodes in order to perform the matching. The
problem of identifying the selectivity of an event’s
attribute value is a formidable one in general (since both
popularity distributions mentioned above need to be
estimated). However, fortunately, there exist applications
where such information on event-attribute selectivities is
readily deducible. For example, in a stock market
application it is likely that attributes such as “stock
exchange name” are associated with large results sets and
thus should be processed as lately as possible.

Figure 7

Figure 7. Distributed matching.

Now, compared to existing systems like Siena [6]
where the subscription propagation as well as the event
matching phase requires O(N) hops, we can definitely say
that our approach is overall preferable. More precisely, in
our approach the subscription storing phase requires
O(l×log(N)) hops while in the Siena system O(N) hops are
required. During the event delivery phase, compared to
Siena’s O(N) hop count, our approach requires O(klog(N))
hops when k is relative small and O(N) in the worst case.

Another indication of how selective an event attribute

is, could be the size of its value domain. Thus, we can
order the k attributes of the event from largest domains
(attribute a1) to smallest ones (attribute ak). Small domains
indicate that the SubID lists stored at each node are going
to grow in size as new subscriptions arrive at the system
with values picked from this small set of values. Thus,
attributes with small domains is preferred to be processed
later during the SubID collecting phase.

Figure 6. Coordinated matching.

6. Event processing optimizations

The optimizations that follow aim to reduce mainly the
processing cost and study the related trade-offs with
respect to the overall network traffic as a result of
collecting, sending back to the origin node (the broker
node where the incoming event arrived) the SubID lists,
and finally processing them in order to compute and
deliver the matched events to interested users. Our
motivation is to distribute when possible/profitable the
matching phase to a number of involved DHT nodes.

Suppose now that an event arrives. We start by
processing the attribute, a1, with the estimated smallest
selectivity and send a request for collecting SubIDs to all
appropriate nodes, as illustrated before. Among those
nodes we pick one that is responsible for collecting and
merging all such lists, in a GlobalSubIDList(1) list. Then,

Hop count the current node sends this list to the next set of nodes that
will process the event for the attribute that has the next
smaller selectivity, a2.

By straightforward analysis one can easily find that the
Distributed Matching algorithm is the best algorithm in
terms of hop count, compared to the other two that have
similar performance.

At this step, the second node has to process two lists of
SubIDs. The list that was collected from the nodes that it is
responsible for, LocalList2, and the previously retrieved
list, GlobalSubIDList(1). From the LocalList2 we drop
those SubIDs that have declared4 one or more attributes
that we have already checked (in this case attribute a1),
and are not present in the GlobalSubIDList(1). From the
GlobalSubIDList(1) we drop those SubIDs that have
declared the current attribute a2 and are not present in the
LocalList2. The remaining SubIDs are merged to the
GlobalSubIDList(2) list and are propagated to the node
responsible for the third attribute, a3. This process
continues until we reach the last node (responsible for the
last attribute of the event ak) where the already matched
list of SubIDs GlobalSubIDList(k) is sent to the origin
node.

Suppose an event arrives at the system that involves the
communication of k broker nodes in order to collect the
SubIDs that are candidates for matching. In general, under
the Coordinated Matching algorithm, the origin broker
node (where the event arrives) has to send one DHT
message to each of the k nodes and each of the k nodes
have to send the origin node a DHT message with the
SubID lists they posses. Thus, with Coordinated
Matching, we have to perform 2k DHT node lookups.

Under Distributed Matching, k+1 DHT lookups in total
need be performed. They are fewer compared to
Coordinated Matching by k-1, because Distributed
Matching gets rid of the communication of each node with
the origin node except the last one that sends back the
SubID lists. The weakness of Distributing Matching is that it is

possible that many SubIDs that may already match the
event, will be sent several times through the DHT network
until it finally reaches the origin node. This is the case
where a subscription does not declare any of the attributes
that are going to be checked in later steps of the distributed
matching process.

Finally, with the Hybrid Matching algorithm we have
to perform 2k lookups, exactly the same as in Coordinated
Matching. They are k-1 more lookups compared to
Distributed Matching, as all nodes except the last one have
to contact the origin node in order to send back the already
matched subscription identifiers.

Varying Values’ Popularity Distribution Skewness
(Attributes’ Popularity Distribution Theta=0.6)

Distributed Matching x
Hybrid Matching *

Coordinated Matching +

(in
 n

um
be

r
of

 S
ub

ID
s)

N

et
w

or
k

Tr
af

fic

Figure 8. Hybrid matching.

Figure 8

Hybrid Matching
Hybrid Matching takes advantage of this fact. When we

reach at a point in the distributed matching where all the
declared attributes of a subscription are already checked,
the subscription matches the event and it is returned back
directly to the origin node. As we can see from , it
is clear that Hybrid Matching borrows and combines the
benefits of both Coordinated and Distributed Matching.

Figure 9. Varying the skewness of Values’

Theta of Values’ Popularity Distribution

popularity distribution.

Network Traffic

DHT hop counts, however, are just one indication.
Perhaps a more important metric is the network traffic
generated as a result of the above algorithms. Our specific
performance metric here is the total number of SubIDs
sent for the processing of each incoming event (when a
SubID is sent r times, it is counted as r SubIDs). This
metric is a clear indication of the bandwidth requirements
during the event processing phases as they are affected by
the result sizes being transmitted over the DHT.

7. Performance evaluation

7.1. Performance of event processing optimization
algorithms

4 For this algorithm to work we should also know which attributes were
declared from a subscription and not only the number of them. This can
be easily done by replacing the c3 field of the subscription identifier with
an m-bit vector that indicates which attribute is declared.

In order to find out how the system performs in terms
of generated network traffic under different skewness
degrees of the popularity distributions of attributes and

their values, we have performed a number of experiments;
we report the results on a series of experiments in a
128-broker network with 10,000 subscriptions and 30,000
generated events.

The value domain size of each attribute is large enough
compared to the number of nodes. The number of
attributes that an event or subscription can have, varies
from 1 to 10 attributes (and depends on the attributes’
popularity). The popularities of attributes as well as the
values of each attribute follow a Zipf distribution with
parameter θ, varying from 0.1 (more uniform) to 1.0 (more
skewed).

In Figure 9 we vary the skewness of attribute values’
popularity distribution while θ for attributes’ popularity
equals 0.6. We can see that the preferred algorithm is the
Coordinated Matching, which is slightly better that Hybrid
Matching, and considerably better than Distributed
Matching.

Note that, despite that the two best algorithms have
similar performance, with respect to the total result set
sizes sent over the DHT, the matching process is
performed in a distributed environment under Hybrid
Matching. This is expected to alleviate problems related to
performing the whole matching process centrally at a
broker in Coordinated Matching.

Figure 10. Varying Attributes’ popularity

distribution skewness with constant skewness
(0.5) of values’ distribution.

Figure 10

Distributed Matching is the worst, in general, because,

as we said in section 6, SubIDs that may already match the
event, are sent through the network until the last node
involved in the SubID Collection phase.

In the next set of experiments we try to figure out under
which circumstances the Distributed and Hybrid Matching
algorithms can improve their performance compared to
Coordinated Matching. We first change the attributes’
popularity distribution with θ varying from 0.1 to 1.0. The
values’ popularity distribution remains the same for all
value domains with θ = 0.5. The rest parameters of the
experiment remain unchanged.

As you can see in , Coordinated Matching is

marginally better compared to Hybrid Matching, in all
cases. Our intuition is that the filtering performed at each
step of Distributed and Hybrid Matching, becomes more
efficient as popular attributes that are going to return small
result sets (their values’ popularity is more uniform) are
processed as early as possible. Moreover, the distributed
matching should be performed in many steps which means
that the attributes’ popularity distribution should not be
very skewed. In order to verify our thoughts we tuned our
experimentation, so that popular attributes have uniform
value distributions and less popular attributes have skewed
popularity distributions for their possible values.

As we can see in Figure 11, for small values of θ
(where many attributes are likely to be defined by
events/subscriptions), Hybrid Matching performs better
compared to Coordinated Matching because there are
many filtering steps and the popular attributes with small
result sets seem to further help the filtering.
As the popularity of attributes becomes more skewed the
mean number of attributes per event/subscription
decreases and thus there are not enough steps for Hybrid
Matching to show its worthiness. As we can see in Figure
11 all three algorithms tend to perform the same as the
attributes’ popularity becomes very skewed (θ value
approaches 1.0).

Figure 11. Varying Attributes’ popularity

distribution skewness. Value distribution is
skewed for less popular attributes.

7.2. Load balancing

In our approach we store string values on the DHT
network. In most real-world environments, attribute value
and access distributions are not uniform. Such skewness
may in general create storage and access load imbalances.

The intuition behind our conjecture that load
imbalances are not a significant problem with our
approach is based on the following observation: even
though a skewed value/access distribution of an attribute
can create load imbalances, in real world applications
there will be tens of attributes. Further, each pub/sub

Varying Attributes’ Popularity Distribution
(Theta of Values’ Popularity Distribution is 0.5)

Varying Attributes’ Popularity Distribution
(Theta of Values’ Popularity Distribution is 0.0 for Popular Attributes and 1.0 for Less Popular)

Distributed Matching x Distributed Matching x
Hybrid Matching * Hybrid Matching *

Coordinated Matching + Coordinated Matching +

(in
 n

um
be

r
of

 S
ub

ID
s)

N
et

w
or

k
Tr

af
fic

(in

 n
um

be
r

of
 S

ub
ID

s)

N
et

w
or

k
Tr

af
fic

Theta of Attributes’ Popularity Distribution
Theta of Attributes’ Popularity Distribution

infrastructure is expected to support several applications
(each with many attributes). As the total number of
supported attributes increases, the load imbalances are
disappearing.

By performing a number of experiments in a 128-node
network we found out that even with a small, say
7-character long attribute, the domain size of each attribute
is large enough to achieve 1.07 value for the maximum to
minimum storage load ratio with only 6 attributes in the
event/subscription schema. For smaller value domain sizes
more attributes are needed in order to achieve adequate
balancing. It should be obvious that the same results will
be obtained regardless of whether the skewed access
distributions refer to value-occurrence distributions (i.e.,
storage load) or value-access distribution (i.e. access load).

 [4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.
E. Strom, and D. C. Sturman. “An efficient multicast
protocol for content-based publish-subscribe systems”.
Proc. 19th ICDCS 1999.

8. Conclusion

In this work we have shown how to leverage DHT-

based P2P systems, towards building scalable, self-
organizing, well-performing systems that support queries
with a rich set of constraints on string attributes. We
specifically focused on and presented how our algorithms
can be applied in a publish/subscribe environment with a
broker network implemented using a DHT. The proposed
solution is DHT-independent and can be applied in every
DHT infrastructure that provides the basic functionality of
finding and reaching the node that stores an object with a
specific key value. To our knowledge, this is the first work
that shows how string attribute queries (with equality,
prefix, suffix, and containment predicates) can be
processed over a DHT infrastructure.

Using it, DHT-based pub/sub systems can be built,
achieving better or comparable performance to traditional
systems for both the subscription propagation and the
event delivery phases (in terms of number of hops required
for each task). Future work includes further reducing the
network traffic overhead, and comparing it with that of
non-DHT-based pub/sub systems.

9. Acknowledgment

We thank Ludger Fiege whose questions on a related
work of ours [17] prompted us to develop the event-
processing optimization algorithms of Section 6.

10. References

[1] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.

“Scribe: A large-scale and decentralized application-level
multicast infrastructure”. Journal on Selected Areas in
Communication, vol. 20, Oct. 2002.

[2] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J.
D. Kubiatowicz. “Bayeux: An architecture for scalable and

fault-tolerant wide-area data dissemination”. Proc. ACM
NOSSDAV 2001.

[3] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
“Application-level multicast using content-addressable
networks”. Proc. 3rd International Workshop of NGC, vol.
2233, pages 14–29, LNCS, Springer, 2001.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “Design
and evaluation of a wide-area event notification service”.
ACM Transactions on Computer Systems, 2001.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “Achieving
scalability and expressiveness in an Internet-scale event
notification service”. Proc. ACM PODC 2000.

[7] D. Tam, R. Azimi, and H. Jacobsen. “Building Content-
Based Publish/Subscribe Systems with Distributed Hash
Tables”. Proc. DISP2PC 2003.

[8] A. Rowstron and P. Druschel. “Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems”. In Proc. 18th IFIP/ACM DSP 2001.

[9] S. Ratnasamy,P. Francis, M. Handley, R. Karp, and S.
Shenker. “A scalable content addressable network”. Proc.
ACM SIGCOMM 2001.

[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. “Chord: A scalable peer-to-peer lookup
service for internet applications”. Proc. SIGCOMM 01.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “Achieving
scalability and expressiveness in an Internet-scale event
notification service”. Proc. ACM PODC 2000.

[12] Y. B. Zhao, J. Kubiatowitcz, and A. Joseph. “Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing”. Tech. Rep. UCB/CSD-01-1141, Univ. of
California at Berkley, Computer Science Dept. (2001)

[13] D. Karger, et al. “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web”. Proc. ACM STOC 1997.

[14] P. R. Pietzuch and J. Bacon. “Peer-to-Peer Overlay Broker
Networks in an Event-Based Middleware”. Proc. DEBS’03.

[15] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann, “A Peer-to-Peer Approach to Content-Based
Publish/Subscribe”. Proc. DEBS 2003.

[16] P. Triantafillou and A. Economides. “Subscription
Summarization: A New Paradigm for Efficient
Publish/Subscribe Systems”. Proc. IEEE ICDCS 2004.

[17] P. Triantafillou and I. Aekaterinidis. “Publish-Subscribe
over Structured P2P Networks”. Proc. DEBS 2004.

[18] C. Tryfonopoulos, M. Koubarakis and Y. Drougas.
“Filtering Algorithms for Information Retrieval Models with
Named Attributes and Proximity Operators”. Proc. ACM
SIGIR 2004.

[19] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen
“Making Peer-to-Peer Keyword Searching Feasible Using
Multi-level Partitioning”. Proc. IPTPS 2004.

[20] K. Aberer. “P-Grid: A self-organizing access structure for
P2P information systems”. Proc. CoopIS 2001.

[21] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A.
Wolman. “SkipNet: A Scalable Overlay Network with
Practical Locality Properties”. Proc. USITS 2003.

	Introduction
	Background and contribution
	Distributed Hash Tables (DHTs)
	The publish/subscribe paradigm
	Contribution: String processing over DHTs The publish/subscribe case

	Publish/Subscribe with string attributes over DHTs
	The Event/Subscription Schema
	The Subscription Identifier
	System Architecture

	Processing subscriptions
	Storing subscriptions
	Storing subscriptions is done using the DHT hash function (DHT.h()). For example in Chord, this hash function h() (i.e., SHA-1) returns an identifier quasi-uniformly distributed in the address space used for the node identifiers. Thus, the resu
	Updating subscriptions

	Event processing and matching
	Expected performance analysis

	Event processing optimizations
	Performance evaluation
	Performance of event processing optimization algorithms
	Load balancing

	Conclusion
	Acknowledgment
	References

