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Abstract: Information-filtering systems constitute a critical component of 
modern information-seeking applications. As the number of users grows and 
the amount of information available becomes even bigger, it is imperative to 
employ scalable and efficient representation and filtering techniques. Typically, 
the use of eXtensible Markup Language (XML) representation entails profile 
representation with the use of the XPath query language and the employment of 
efficient heuristic techniques for constraining the complexity of the filtering 
mechanism. In this paper, we propose an efficient technique for matching  
user profiles that is based on the use of holistic twig-matching algorithms  
and is more effective, in terms of time and space complexities, in comparison 
with previous techniques. The proposed algorithm is able to handle order 
matching of user profiles, while its main positive aspect is the envisaging  
of a representation based on Prüfer sequences that permits the effective 
investigation of node relationships. Experimental results showed that the 
proposed algorithm outperforms the previous algorithms in XML filtering both 
in space and time aspects. 
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1 Introduction 

Information-filtering systems (Aguilera et al., 1999; Carzanica et al., 2001; Tian et al., 
2004) are systems that provide two main services: document selection (i.e., determining 
which documents match which users) and document delivery (i.e., routing matching 
documents from data sources to users). In order to implement these services efficiently, 
information-filtering systems rely upon representations of user profiles, which are 
generated either explicitly by asking the users to state their interests, or implicitly by 
mechanisms that track the user behaviour and use it as a guide to construct the user 
profile. Initial attempts to construct such profiles typically used ‘bag of words’ 
representations and keyword similarity techniques (closely related to the well-known 
vector space model representation in the Information Retrieval area) to represent user 
profiles and match them against new data items. These techniques, however, often suffer 
from limited ability to express user interests, being unable to fully capture the semantics 
of the user behaviour and user interests. As an attempt to face this lack of expressiveness, 
a number of systems have appeared lately that use XML representations for both 
documents and user profiling and that employ various filtering techniques for matching 
the XML representations of user documents with the provided profiles (Altinel and 
Franklin, 2000; Chan et al., 2002; Diao et al., 2003; Kwon et al., 2005; Tian et al., 2004).  

eXtensible Markup Language (XML) is becoming the standard for information 
exchange, especially on the internet. XML is a textual representation of data that is 
designed for the description of the content rather than the presentation of data. The 
language permits the description of new structures, the nesting of structures in arbitrary 
depth and the optional description of its grammar. The basic lexical notion used in XML 
is the element, which is the piece of text used bounded by matching tags, where within an 
element we may have text, other elements or a mixture of the two. XML allows us to 
associate attributes with elements, where the term ‘attribute’ denotes a (name, value) pair. 
The structure of an XML document is best modelled as a labelled tree: elements and 
attributes are mapped to nodes in the tree and direct nesting relationships are mapped to 
edges in the tree. 

The basic mechanism used to describe user profiles in XML format is through the 
XPath query language (Berglund et al., 2002). XPath is a query language for addressing 
parts of an XML document, while also providing basic facilities for the manipulation of 
strings, numbers and booleans. XPath models an XML document as a tree of nodes. 
There are different types of nodes, including element nodes, attribute nodes and text 
nodes; and XPath defines a way to compute a string-value for each type of node. Other 
known XML query languages used in various applications are XQuery (Chamberlin, 
2002) and XQL.1 

The process of XML filtering is related to, but different from, the more traditional 
XML data-retrieval problem, where, given a stored collection of XML data objects and a 
query, the system needs to identify those data instances which satisfy the given query. 
XML query-processing approaches concentrate on finding effective mechanisms for 
indexing XML data objects to efficiently retrieve or check structural relationships. In 
contrast, in XML filtering, instead of the data (which is transitionary), the collection of 
filter patterns (user profiles) needs to be indexed. When an XML document arrives, the 
system filters it through the stored profiles to identify with which of them the document 
fits. After the filtering process is finished, the document can be sent to the corresponding  
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users with matching profiles. User profiles are expressed as XML twig patterns and are 
stored in XPath format. In such a system it is vital to filter the XML document towards 
all user profiles in one pass to save time and avoid complexity. Such a system usually 
contains some other subsystems, such as two XPath parsers (one for twigs and one  
for documents) and an Index (for user profiles). However, the main purpose of an  
XML filtering system is to find all the user profiles that have a match with a specific 
XML document. 

1.1 Existing approaches and challenges 

The existing XML filtering systems can be categorised as follows: 

1.1.1 Automata-based systems 

The prominent examples of automata-based systems are XFilter (Altinel and Franklin, 
2000), Yfilter (Diao et al., 2003) and Distributed XML Stream Filtering (Uchiyama et al., 
2005). Systems in this category incorporate Finite State Automata (FSA) to quickly 
match the document with the user profiles. In these systems, each data node causes a state 
transition in the underlying FSA representation of the filters. In XFilter, user profiles are 
represented as queries using the XPath language and the filtering engine employs a 
sophisticated index structure and a modified Finite State Machine (FSM) approach to 
quickly locate and examine relevant profiles. XFilter employs a separate FSM per path 
query and a novel indexing mechanism to allow all of the FSMs to be executed 
simultaneously during the processing of a document. A major drawback of XFilter is its 
lack of twig-pattern support, as it handles only linear path expressions. Building on the 
insights of the XFilter work, a new method was described in Diao et al. (2003) termed 
Yfilter, which combined all of the path queries into a single Nondeterministic Finite 
Automaton (NFA) and exploited commonality among queries by merging common 
prefixes of the query paths, such that they were processed once at the most. The resulting 
shared processing provided tremendous improvements to the performance of structure 
matching but complicated the handling of value-based predicates. Unlike XFilter, YFilter 
handles twig patterns by decomposing them into individual linear paths and then 
performing postprocessing over linear path matches. The novelty of the Distributed XML 
Filtering System is the distribution of the filtering and transferring load among many 
Filtering Servers (FSs). Each FS uses a DFA mechanism to filter the incoming XML 
documents; and the total transferring load, for publishing the filtered XML data to the 
corresponding subscribers, is shared among the FSs. To further improve its scalability, 
the system utilises a technique to forecast the transfer load of each FS, based on the user 
profiles features. 

1.1.2 Sequence-based systems 

Systems in this category represent both the user profiles and the XML documents as 
string sequences and then perform subsequence matching between the document’s 
sequence and profile sequences. FiST (Kwon et al., 2005) employs a novel holistic 
matching approach that, instead of breaking the twig pattern into separate root-to-leaf 
paths, transforms (through the use of the Prüfer (1918) sequence) the matching problem 
into a subsequence matching problem. In order to provide more efficient filtering, user 
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profile sequences are indexed using hash structures. Moreover, FiST is able to handle 
efficient, ordered twig-pattern matching. XTrie (Chan et al., 2002) encodes each node 
with its root path and constructs a sequence for every user profile. Those sequences are 
indexed in a trie-like structure and the index is then used to filter incoming XML 
documents against the stored user profiles.  

1.1.3 Stack-based systems 

The representative system of this category is AFilter (Canadan et al., 2006). AFilter 
utilises a stack structure while filtering the XML document against user profiles. Its  
novel filtering mechanism leverages both prefix and suffix commonalities across  
filter statements, avoids unnecessarily eager result/state enumerations (such as NFA 
enumerations of active states) and decouples the memory management task from result 
enumeration to ensure correct results even when the memory is tight. 

1.1.4 Push-down approaches 

XPush (Gupta and Suciu, 2003) translates the collection of filter statements into a  
single deterministic push-down automaton. The XPush machine uses a SAX parser that 
simulates a bottom-up computation and hence does not require the main memory 
representation of the document. The construction of the XPush machine is done in a lazy 
manner and though there is a high cost associated with computing a state for the first 
time, the cost is recovered later when the state is to be reused. The lazy XPush machine 
has a number of advantages in dealing with the inconsistencies and regularities in the 
Document Type Definitions (DTD) and also in avoiding the construction of states that do 
not occur in the given data set. XSQ (Peng and Chawathe, 2005) utilises a hierarchical 
arrangement of push-down transducers augmented with buffers. A notable feature of 
XSQ is that it buffers data only for as long as it must be buffered by any streaming XPath 
query engine. 

Table 1 summarises the main characteristics of existing XML filtering schemes. 

Table 1 Existing XML filtering systems 

XML filtering 
system Filtering mechanism Twig support Additional characteristics 

XFilter FSM No – 

YFilter NFA/DFA Yes Detection of common prefixes  

FiST Subsequence matching Yes High scalability, ordered 
matching 

AFilter Stack No Exploitation of prefix and suffix 
commonalities, lazy techniques 

XTrie Subsequence matching Yes Substring indexing, substring 
sharing, ordered matching 

XPush Push-down automaton Yes High scalability, lazy techniques 

XSQ Push-down transducers Yes Streaming processing 

Distributed XML 
Stream Filtering 

NFA/DFA Yes High scalability, distributed 
filtering and transfer-load 
balancing, lazy techniques 
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1.2 Motivation and paper’s contribution 

Filtering systems supporting twig-pattern user profiles (e.g., YFilter, FiST) always 
require an additional postprocessing step to finalise the right results. YFilter and XTrie 
handle twig-pattern user profiles by decomposing them into individual linear paths and 
then performing postprocessing over linear path matches. FiST, XPush and Distributed 
XML Stream Filtering, while utilising the holistic process of twig patterns, require a  
final step in order to identify and discard false matches derived from false branch  
node matches.  

Our motivation is to design a filtering system that utilises a holistic matching 
approach in such a way that no extra branching node verification phase is needed. In 
order to provide more efficient filtering, the system should also be able to filter the 
incoming XML documents online. With these in mind, we introduce XFIS (Section 2), 
which encompasses the following advantages: 

• Holistic matching of twig-pattern user profiles. The proposed system utilises a novel 
string encoding of nodes and edges to construct a string sequence for every user 
profile and XML document, transforming the matching problem into a subsequence 
matching problem. 

• Elimination of extra postprocessing step. XFIS, based on the properties of the 
adopted string encoding, utilises an extra conditional check while performing 
subsequence matching in order to smartly discard false branching node matching. 
This eliminates the need for an extra branching node verification phase, which adds 
to the complexity of the previous algorithms. 

• Online filtering of XML documents. Providing support for online filtering, our system 
minimises its memory footprint and increases its throughput, as the filtering of an 
XML document can start at the time the document arrives in our system.  

• Ordered twig matching. XFIS provides ordered twig matching for applications that 
require the nodes in a twig pattern to follow document order in XML. 

The rest of the paper is structured as follows: Section 2 introduces the Tree Structure 
Sequences and presents the main components of the XFIS system; Section 3 discusses the 
experimental results; Section 4 discusses the practical-application aspect of the XFIS 
system; Section 5 presents our conclusions; and, finally, the Appendix presents in detail 
the pseudo codes of our XFIS implementation. 

2 Tree-Structure Sequence and XFIS system architecture 

The architecture of XFIS is depicted in Figure 1. The system consists of four basic 
subsystems: the XPath parser, the XML parser, the Label Creator and the Filtering 
Algorithm. Before continuing with each subsystem separately, we need to introduce the 
notation of Tree-Structure Sequence (TSS), a novel string representation for XML trees, 
utilised by XFIS to encode both user profiles and XML trees. 
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Figure 1 XFIS architecture 

Xpath Parser XML Parser

Label Creator Filtering Algorithm Send document

Matched
profiles

User Profiles XML Document

2.1 Tree-structure sequence 

In order to be able to eliminate the final branch node refinement phase as well as to 
encode both parent-child and ancestor-descendant relationships of a user profile, we 
would like an appropriate string representation that could be applied to both twigs and 
XML documents. Based on postorder traversal and the Prüfer sequences, we introduce a 
new string representation of XML documents that can be applied in any tree-structured 
document, the TSS. Given a tree-structured document T, the TSS of T is a string 
representation of T’s nodes and edges. Each edge is represented by a pair of char labels, 
defining the edge’s attached nodes. Each internal node is represented in TSS(T) by its 
char label. The construction of the TSS begins from the leftmost leaf and follows a 
postorder traversal of the tree. Internal nodes appear in TSS only after all their outgoing 
edges have been represented. The limitation introduced is that all the nodes must have 
one-char labels, hence a preprocessing step is needed to assign one-char labels to each 
distinct tag.  

The algorithm to construct the TSS of a given tree Tn works as follows: Let S denote 
the TSS of the tree. Initially, S is an empty string. Because gaps are important in TSS, 
from now on, we denote them by the underline character: ‘_’. Begin from the leftmost 
leaf of the tree, following postorder traversal, and let t1 and t2 denote the label of this 
node and its parent respectively. If the current node is a leaf, then append t1t2_ to S and 
continue with the next node in the postorder traversal; if the current node is an internal 
node, then append t1_t1t2_ to S; if the current node is the root node, then append t1_# to S, 
where t1 is the root node label. Continue with this process until the root node is reached. 
In the case of twig patterns, where ancestor-descendant relationships exist, the algorithm 
works in the same way; but when a node is reached that is a descendant of its ‘parent’ 
node (e.g., it has a ancestor-descendant relationship with its parent), instead of appending 
t1t2 to S, we append t1*. This technique is very important during the process of twig 
matching using subsequence string matching; its importance will be explained later in 
this paper. 
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Figure 2 depicts an example of a twig’s TSS constructed in the way mentioned above. 
Let us denote with S the TSS of the XML tree in Figure 2. The first leftmost leaf of the 
tree is Node C and its parent is Node B. Thus, we append CB_ to S. Following the  
postorder traversal we reach Node D, which is a descendant of Node B. Thus, we append 
D*_ to S. The next node in the postorder traversal is Node B, which is an internal node. 
As a result, we append B_BA_ to S. By this time, S equals CB_D*_B_BA_. Continuing 
analogously, the final TSS of the XML tree is CB_D*_B_BA_EB_B_BA_A_#. 

Figure 2 TSS example 

TSS : CB _D*_B _BA _EB_B_BA_A_#

A

B

EDC

B

Because of the way the TSS is constructed, it is easy to compute an approximate bound 
of its size. Let us consider a tree T with n nodes and m edges. The size required to 
represent the edges of T is 2m, because each edge of T is represented by a pair of char 
labels in TSS(T). Additionally, each internal node is represented by a single char label,  
so the required space is at most n (depending on the number of leaf nodes). Until now, 
the required size is upper bounded by O(m+n). Because the edges’ and nodes’ 
representations are separated by gaps in TSS, an additional cost of O(m+n) must be 
added in the upper bound. The resulting upper bound of TSS’s size is O(m+n). It is 
obvious that in the case of large documents, the TSS’s size becomes big enough. On the 
other hand, in the case of twig patterns, usually with a small number of nodes and edges, 
the size of the corresponding TSS remains small. In order to avoid storing the whole TSS 
of the XML document, XFIS progressively constructs the document’s TSS while parsing 
the XML document and simultaneously compares it with the user profiles’ TSS. So only 
a small part (usually 3–4 chars) of the document’s TSS is stored each time. 

Because of the method of its computation, the TSS has the following  
important property: 

Property 1 Given two trees P and T, if P is a subtree of T, then TSS(P) is a substring  
of TSS(T).  

The proof of this property is as follows: Let us denote ( ),P PP V E  and ( ),T TT V E  as the 
two given trees. Based on the assumption that P is a subtree of T, then TV ⊆P V  and 

T⊆PE E . Additionally, the nodes in VP during a postorder traversal in P appear in the 
same order as they appear in a postorder traversal in T. This leads to the result that 
TSS(P) is a substring of TSS(T). 
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2.2 Label Creator 

Because of the one-char label limitation introduced by TSS, it is vital for our system to 
assign distinct char labels to every distinct tag. This task is accomplished by the Label 
Creator subsystem, which constructs and keeps track of a one-to-one correspondence 
between distinct tags and char labels. Every distinct tag is assigned a distinct char label, 
derived from an internal char label source. The Label Creator interacts both with XPath 
parser and XML parser in order to compute user profile and document TSSs. 

2.3 XPath parser 

The XPath parser processes user profiles expressed in XPath, and computes and stores 
the TSS of each profile. As mentioned before, user profiles are expressed using XPath 
notations and can be easily represented as XML trees. The XPath parser processes XPath 
expressions and accordingly constructs a memory tree representation for every user 
profile. For every such tree, it computes the respective TSS using the aforementioned 
methodology. The computed user profile TSSs are permanently stored by the system in 
text files. 

2.4 XML parser 

Similarly to the XPath parser, the XML parser is assigned the task of parsing incoming 
XML documents and constructing their corresponding TSSs. Simultaneously, every new 
element appended to the document’s TSS is sent to the filtering algorithm in order to  
be checked online against user profiles, thus providing online filtering of the XML 
document. The XML parser subsystem utilises a SAX parser, its handlers and a stack 
structure, named tagStack, in order to increasingly compute and construct a document’s 
TSS. The startTag handler is invoked whenever the start of an element’s tag is reached, 
while the endTag handler is invoked whenever the end of an element’s tag is reached. 

Figure 3 presents the code for the startTag and endTag SAX parser handlers. When 
the startTag handler is invoked with a tag name, the system first locates the tag’s char 
label using the Label Creator and then pushes this label into tagStack. When the endTag 
handler is invoked with a tag name, the system first finds the corresponding char label 
using Label Creator. 

If the tag is not a leaf node (e.g., it has children), the char label of the node is added 
into the document’s TSS by calling the function addCurrentNode(), and then the top char 
label from the tagStack (which is the current node’s label) is popped. If the tagStack is 
not empty (e.g., the root node has not been reached), the system finds the char label of the 
current node’s parent (which is the top element of tagStack) and appends the pair (label, 
plabel) representing the corresponding edge into the document’s TSS by calling the 
function addEdgeNode(). On the other hand, if tagStack is empty (e.g., the root node has 
been reached), the system appends to the document’s TSS the root node characteristic 
sequence by calling the addRootNode() function. 

Figure 4 depicts an example of the above method. For demonstration purposes, we 
assume that every tag consists of a single char, thus eliminating the need for the Label 
Creator. Figure 4(a) summarises the system’s state after the endTag handler is invoked 
with the tag C. At this time, the tagStack contains A, B and C, while the document’s TSS 
is still empty. Node C is a leaf, so when the endTag is invoked, the top element (C) of 
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tagStack is popped and the system appends CB_ to the document’s TSS. Figure 4(b) 
summarises the system’s state after the endTag handler is invoked with the tag D. At this 
time, the tagStack contains A, B, F and D, while the document’s TSS is CB_. Node D is  
a leaf, thus the top element (D) of tagStack is popped and DF_ is appended to the 
document’s TSS. Finally, Figure 4(c) depicts the case when the endTag handler is 
invoked with the tag F. Before the handler is invoked, the tagStack contains A, B and F. 
Node F is an internal node, so when the handler is invoked, the top element (F) of 
tagStack is popped and F_FB_ is appended to the document’s TSS. 

Figure 3 Pseudo code for SAX parser handlers 

stack tagStack;
handler startTag (tag){

label = assign_label(tag);
tagStack.push(label);

}

handler endTag (tag){
label = assign_label(tag);
if (not leafnode)

addCurrentNode(label);
tagStack.pop();
if (not tagStack.isEmpty() )
{

plabel = tagStack.top();
addEdgeNode(label, plabel);

}
else
                addRootNode();

}

Figure 4 Using tagStack and SAX parser’s handlers to create a document’s TSS 

TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_#

tagStack

A

B

C
B

TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_# TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_#

(a) endTag of C (b) endTag of D (c) endTag of F
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It is important to mention that the SAX parsers interact online with the filtering 
algorithm. Whenever a new element is appended to the document’s TSS, it is 
immediately sent to the filtering algorithm to check it against user profiles’ TSSs. We 
describe the filtering algorithm in the next section. 
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2.5 Filtering algorithm 

While the XML parser computes the TSS of an incoming XML document, the filtering 
algorithm is used to identify those twigs that have a match in the document. The filtering 
is done by identifying those twigs that have their TSS as a subsequence of the 
document’s TSS, according to some branch-based criteria to be described later. The key 
issue in the filtering algorithm is to find all the matching twigs in one pass of the 
document’s TSS. 

A naive approach to this problem is to compare each character of the document’s TSS 
with the current character of all twigs’ TSSs. This approach, although easy to implement, 
has the disadvantage of checking many unnecessary twig TSSs. We instead chose to use 
a more complicated though more efficient approach, which is to index the twig TSSs in 
order to limit the number of comparisons in every step of the filtering algorithm. The 
indexing method we used is a dynamic hash table called twigPositions. This hash table 
keeps track of the current char label of every twig’s TSS, and uses the XML char labels 
as keys. For each label, the value stored in the hash table is a list of all twig IDs whose 
TSS’s current char is the key label. Hence in every step, the filtering algorithm uses the 
document’s TSS current character as a key in the hash table in order to locate those twigs 
that their corresponding TSS’s current character is the same as the used key. In order  
to keep track of the twig TSSs’ current positions, a global table, named twigPointers, is 
used with a size equal to the number of stored twigs. Each table position corresponds to a 
twig and stores the current integer position of the twig’s TSS, starting from 0. Moreover, 
because of the TSS’s particular structure, the subsequence matching is not performed by 
using the characters one by one, but by collecting them in groups. For example, consider 
a part of a twig’s TSS: …GB_ FB_B_BA… Each of the pairs of char labels GB, FB and 
BA should be matched as a pair and not as individual nodes. For this purpose, in every 
step of the matching process, both the current and the next char labels of the twig and 
document TSSs are taken into consideration. Let us denote by TC and TN the twig TSS’s 
current and next char label respectively, and by DC and DN the document TSS’s current 
and next char label respectively.  

A matching occurs in any one of the following three cases: 

Case 1 (DN = ‘_’ and TN=‘_’) and (DC=TC) 

Case 2 (DN != ‘_’ and TN != ‘_’) and (DC=TC) and (DN =TN) 

Case 3 (DN != ‘_’ and TN != ‘_’) and (DC=TC) and (TN=‘*’). 

We distinguish between Cases 1 and 2, because each of these cases results in a different 
update of the twig and document TSSs’ current position.  

In Case 1, both the twig and document TSSs’ current positions must be incremented 
by 2 in order to point to the next pair of char labels. 

In Case 2, the current positions of the twig and the document TSSs must be 
incremented by 3, because after the current matched pair of char labels, there is a space 
character by default. 

In Case 3 the matching refers to an ancestor-descendant relationship in a twig’s  
TSS. The character ‘*’ in the twig’s TSS can be matched with any character in the 
document’s TSS. In this case, the current positions of twig and document TSSs are 
incremented by 3. 
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Because, in every step, the current and the next char label of the document TSS  
are compared with more than one twig TSS, the current position of the document TSS  
is incremented at the end of each step, when all corresponding twig TSSs have  
been compared. 

It is important to realise that in every step, the increment in the document TSS 
position depends only on DN (if the character is a white space, then the position is 
incremented by 2, otherwise by 3) because of the particular structure of the TSS. This 
means that, in every step, even if no twig TSS is matched, the document TSS’s position is 
incremented as mentioned above. The filtering process is finished when the whole 
document’s TSS has been parsed. At this point, the algorithm checks the positions of  
all twig TSSs and reports those twigs whose TSSs have been passed until their final  
char label. 

Figure 5 Filtering algorithm example 
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The algorithm mentioned above may report some false matches because no branch node 
checking has been done and hence we must add some additional checks in order to avoid 
false matches of branching nodes.  

It is important to realise that the second char label of a pair (e.g., the char B in the pair 
EB) denotes the father of the first char label. This father node is called a branch node. 
Hence, when a node has two or more children in the document or the twig, the 
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corresponding TSS has two or more sequential pairs of char labels followed by a single 
char (the char label of the father node), with every pair having the same second char label 
(the father node’s char label). Those pairs of char labels and the following single char 
label need to be matched as a unit in the matching algorithm, either all of them or none of 
them. The described algorithm matches a pair of char labels each time, ignoring the 
following pairs of char labels. This may lead to matching some first edges of a branch 
node (represented by the first pairs of char labels considering this node) but not all of 
them. In this case, the algorithm should identify the situation and backtrack the pointers 
of the document’s and twig’s TSS to point again at the first pair of char labels 
considering this branch node. 

2.6 The branching verification method 

The technique we use to avoid false branch node matchings is to keep track of the branch 
node to be verified for every twig at every step of the algorithm. The structure we use is a 
hash table named twigBranches. This hash table, which is being updated in every step of 
the filtering process, uses char labels as keys, and for each key it returns a list with the 
twigs that need to match a branch node with the specific tag at the current step of the 
process. For each twig to be matched, extra information of the offset in the twig TSS is 
kept, so that in case the branch node does not match, we can adjust the twig TSS’s 
position (decrement it by the current offset) accordingly.  

To demonstrate the branch node verification, let us consider the twig TSS part 
TQ:…EB_CB_B_BA_… and two parts of the document TSS: D1:…EB_DB_B_BA…  
and D2:…EB_CB_B_BA…. When the algorithm matches the pair EB of TQ with the 
corresponding pair of D1, it inserts into twigBranches a record for twig Q with branch 
label B and offset 3. This means that Q must match a branch node B, and if not,  
the position of Q’s TSS must be decremented by 3. Next the algorithm tries to match pair 
CB (of TQ) with the pair DB (of D1) and fails. The next char label of D1’s TSS is char  
label B. The algorithm searches twigBranches for twigs to match branch node B and 
finds twig Q. However, Q’s TSS position does not point to a char label B and so the 
match fails. The algorithm decrements Q’s TSS position by 3 to point to the pair EB.  

The method we use is to maintain the global hash table twigBranches, which keeps 
track of the branch nodes to be matched for every twig. In addition to this, the structure 
kept in this hash table consists not only of the twig ID but additionally of an integer offset 
identifying the offset that the twig TSS’s position must decrement, if the twig does not 
match the corresponding branch node. In this way, when the algorithm identifies that a 
twig failed to match a branch node, it immediately decrements the corresponding TSS’s 
position in order to point to the previous right position.  

Because of the TSS’s structure, a twig enters in a branch-node matching area when it 
matches a pair of char labels. The second char label of the pair is the candidate branch 
node that the twig has to match. While the twig continues to match sequential pairs of 
labels (representing outgoing edges of the branch node to be matched), the current twig’s 
offset is incremented analogously (increases by 3 at a match).  

A special case occurs when the second label of the pair is ‘*’. This represents an 
ancestor-descendant edge and special handling is needed. In this case the label of the 
branch node to be verified is yet unknown and for this reason, twigBranches has the 
special key ‘*’. The entries under this key represent twigs that wait to match a yet 
unknown branch node. Those entries are temporary, which means that in some next step 
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those entries are moved under a new key. There are two conditions for a twig to be 
removed from the key *: Firstly, if it matches a pair of char labels with the second label 
different from *. In this case the offset field is updated accordingly and the twig’s entry 
in twigBranches is moved under the right key, which is the second char label of the 
matched pair. Secondly, if the twig matches a single node, the corresponding entry of  
the twig in twigBranches is totally removed because the twig has left the branch-node 
matching area and has matched the branch node. 

In order for a twig to leave the branch-node matching area, there are two cases:  

Case 1 The document’s TSS reaches a single character label (which is the label of the 
branch node to be matched) while the twig’s TSS points to a pair of character 
labels. This situation means that the corresponding document node does not 
include the edge represented by the twig’s TSS, and so there is no matching.  
The twig TSS’s position must be decremented by the corresponding offset. 
Additionally, the twig’s branch node information is deleted because the twig has 
left the branch-node matching area. It will enter it again, if in some next step it 
matches a pair of character labels. 

Case 2 Both the document’s TSS and the twig’s TSS point to a single character label 
(representing the branch node to be matched). In this situation we have a match, 
and as a result the twig TSS’s position is incremented by 2 to point to the next 
character. Additionally, the branch node information for this twig is deleted 
because the twig has left the branch-node matching area. 

By incorporating this method into our filtering algorithm, we avoid the extra cost of 
finding false matches and then applying a refinement phase to identify those false 
matches. This is a major difference with previous proposed solutions, and results in a 
significant reduction in time complexity of our filtering method.  

The details along with the pseudo codes of filtering algorithm implementation are 
presented in the Appendix. 

In order to better illustrate the above described filtering algorithm, let us consider the 
following example: 

Example 1 Consider the XML Document T and twigs Q1 and Q2 shown in Figure 5. At 
first the twigs are stored in the system and their TSSs are computed. When 
the XML document arrives, the SAX parser starts and its handlers are 
invoked as needed. tagStack contents are shown in Figure 5(a). At this 
time the twigPositions contains two entries, twig Q1 under key C and twig 
Q2 under key D as shown in Figure 5(c), while twigBranches is empty as 
shown in Figure 5(d). Node C is a leaf node and so the top element of 
tagStack (label C) is popped. After this, the function addEdgeNode() is  
called with arguments C, B (the top element of tagStack). The twig list in 
the twigPointers for key C is twig Q1. The current pair of labels of the 
document’s and Q1’s TSS is CB and they match. This match results in 
incrementing by 3 the positions of both T’s TSS and Q1’s TSS. 
Additionally, the twigPositions hash table is updated and Q1 is moved 
under key D (which is the char label in the Q1 TSS’s current position). 
Next, endTag(D) is invoked and the handler calls addEdgeNode(D, F).  
The twig list in twigPointers for key D is Q2 and Q1. At first, Q2 is checked. 
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The Q2 TSS’s current position points to the pair D* while the document 
TSS’s current position points to pair DF. The final action of the function is 
to update the twigBranches because Q1 has matched a pair of char labels 
and has entered a branch-node matching area. Twig Q1 is inserted in 
twigBranches under key B (which is the second label of the matched pair 
of labels) with offset 3. The TSSs match (ancestor-descendant match) and 
the position of Q2’s TSS is incremented by 3. Additionally, twigPointers is 
updated and Q2 is moved under key E. 

Finally, because the match concerns a pair of labels, Q2 has entered a 
branch-node matching area and Q2 is inserted in twigBranches under  
key * (a temporary entry) and offset 2. The next twig in the list is Q1.  

The corresponding TSS’s position points to the pair D* and because 
document TSS’s current pair is DF, we have a match. The Q1 TSS’s 
position is incremented by 3 and twigPointers is updated by moving Q1 
under key B. Additionally, twigBranches is updated as follows: Because  
Q1 is already in twigBranches under key B (which means that it waits to 
match a branch node with label B) and the current pair’s second label 
 is *(ancestor-descendant match), the only action needed is to increase  
the offset of Q1’s entry in twigBranches. The offset is incremented by 3  
and equals 6. 

2.7 Time complexity 

Let us assume that the XML document consists of n nodes and m edges and the number 
of stored user profiles is k. As shown before, the document’s TSS has a length of at most 
O(m+n). XFIS requires only one pass of the document’s TSS in order to filter it against 
the stored user profiles. In every step of the filtering process, the current element of the 
document’s TSS is checked only against respective user profiles whose current TSS 
element equals the document’s current element. In the worst case, each element  
of the document’s TSS is checked against O(k) elements (one for every user profile). 
Additionally, in each step, extra checks for identifying false branch node matches are 
performed, which in the worst case costs O(k). Summing up, the total time complexity of 
XFIS, in a worst-case scenario, is O(k(m+n)). As can be easily seen, the total runtime 
depends on the size of the incoming XML document and the number of stored user 
profiles, but is independent of the size of stored user profiles. However, it should  
be mentioned that in the average case, each element of the document’s TSS is checked 
only against a small portion of user profiles, which radically reduces the total runtime  
of XFIS. 

3 Experiments 

In our experiments, we compared XFIS with the FiST algorithm (Kwon et al., 2005), 
which is the state-of-the-art algorithm for filtering XML documents against twig-pattern 
user profiles. We chose FiST because it supports twig-pattern user profiles, unlike other 
systems (e.g., AFilter, XFilter), which support only linear path expressions. XFIS was 
implemented in Java using the freeware Eclipse IDE and the Xerces XML parser 
(Apache).2 In order to obtain comparable and reliable results, we also implemented a 
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FiST-like algorithm in Java using Eclipse. We ran all our experiments on a Mobile 
Pentium 2.0 GHz machine with 512 MB RAM running Windows XP SP2. XFIS code 
and FiST-like code were run using Eclipse 3.0.1 with Java Virtual Machine 1.4.2. 

3.1 XML data sets and twig patterns 

In our experiments we used data on Shakespeare’s plays, provided in The Plays of 
Shakespeare in XML.3 We used the DTD of Shakespeare’s plays to generate 300 
documents of different sizes and depth. The generated documents were categorised into 
three categories according to the total number of nodes in each document, without taking  
into consideration the document’s depth. The corresponding categories were 0–2000, 
2000–4000 and 4000–6000 nodes, indicated by ‘2000’, ‘4000’ and ‘6000’. 

In order to generate a large number of different twig patterns, we used the XPath 
generator provided in the YFilter package. The number of branches of the generated twig 
patterns was 2, 4 and 6, resulting in a corresponding categorisation. Finally, the number 
of twig patterns stored as user profiles in both the filtering systems varied between 5000 
and 20 000 in steps of 5000. 

The experiments were performed for every combination of the document’s number of 
nodes, number of branches per twig pattern and total number of twig patterns stored. 
Table 2 summarises the parameters of our experiments. 

Table 2 Experimental parameters 

Parameter Values 
Number of twig patterns 2000, 4000, 6000 
Number of branches per twig pattern 2, 4, 6 
Number of XML document’s nodes 2000, 4000, 6000 

3.2 Performance analysis  

We measured the filtering time for a variety of document sizes and twig patterns. 
Additionally, we measured the total disk space required by each algorithm for storing a 
variety of twig patterns. As a general conclusion and concerning filtering time, both 
algorithms behave the same way in all cases, but XFIS is obviously faster (about a 25% 
factor). In both algorithms, the filtering time increases as the sizes of the XML document 
and the number of twig profiles increase, whereas it decreases when the number of 
average branches per twig increases. As far as disk space is concerned, XFIS was 
measured to require less disk space than FiST, independent of the number of branches per 
twig. The results show that XFIS outperforms FiST in all cases due to the elimination of 
the branch node refinement phase and the encoding of all the node relationships and 
document structures in TSS. 

In the succeeding discussion we present in detail the above-mentioned  
experimental results.  

3.2.1 Varying number of twig patterns 

We measured the filtering time required by XFIS and FiST for a varying number of twigs 
between 5000 and 20 000 in steps of 5000. The results are presented in Figure 6 for 
number of branches 2, 4 and 6 per twig, and number of XML document nodes 2000, 
4000 and 6000. 
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Figure 6 Varying number of twig patterns  

(c) Number of branches – 6

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000
Number of XPath twig patterns

Fi
lte

rin
g 

tim
e 

(s
ec

)

Fist - 2000
Fist - 4000
Fist - 6000
XFIS - 2000
XFIS - 4000
XFIS - 6000

(b) Number of branches – 4
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(a) Number of branches – 2
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In Figure 6(b) the number of branches was 4 and each line in the plot corresponds to  
a combination of an algorithm (XFIS or FiST) and the number of XML document’s 
nodes (2000, 4000 or 6000). For example, the line labelled ‘XFIS-4000’ corresponds to 
the XFIS method and 4000 nodes in the XML document. In this figure we observe that 
the filtering time for both methods increases as the number of twig patterns stored 
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increases. Both methods behave in the same way, but XFIS is obviously faster in all 
cases. For data sets with 2000 and 4000 document nodes, XFIS is about 25% faster. In 
the case of 6000 document nodes, we observe that the filtering time increases suddenly 
for both methods. This is due to our system’s limitations in memory and usage of disk 
swap space instead. However, even in this case XFIS performs better, 35% faster than 
FiST. Similar observations can been made in Figures 6(a) and 6(c).  

The above results show that XFIS performs better than FiST as the total number of 
twig patterns increases.  

3.2.2 Varying number of branches per twig pattern 

We measured the filtering time required by XFIS and FiST for a varying number of 
branches per twig – 2, 4 and 6. The results are presented in Figure 7. 

Figure 7 Varying number of branches  
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In Figures 7(a) and 7(d) the number of branches is 4. The results in Figure 7(a) 
correspond to the FiST method and 2000 document nodes, while in Figure 7(c) they 
correspond to the XFIS method and 2000 document nodes. Each line in the plots 
corresponds to a number of stored twig patterns. For example, the line labelled ‘150 000’ 
corresponds to 150 000 stored twig patterns. As can be observed, the total filtering time 
in both methods decreases as the number of branches increases. This may seem strange, 
but it is due to the fact that the number of matching twig patterns decreases as the number 
of branches increases, because of the twig’s complexity. Both methods behave the same 
way, but XFIS performs better in all cases. For example, for 5000 and 10 000 twig 
patterns, XFIS is about 28% faster; while for 15 000 and 20 000 twig patterns it performs 
about 34% better. 

Similar observations can be made in all figures through Figures 7(a) to 7(f) for 
different document sizes. These results demonstrate that XFIS performs better as the 
number of branches per twig pattern increases, due to the elimination of the branch node 
refinement phase used in FiST. 

3.2.3 Varying number of XML document nodes 

We measured the filtering time required by XFIS and FiST for a varying number of XML 
document nodes (2000, 4000 and 6000). The results are shown in Figure 8. 

Each line in the plots corresponds to a combination of method and number of 
branches per twig. For example, the line labelled ‘XFIS 6’ corresponds to the XFIS 
method with six branches per twig. As can be seen, the filtering time in both methods 
increases as the total number of XML document nodes increases. 

This observation is expected, as both TSS and Prüfer sequences of the XML 
document increase in length, requiring more time to be parsed. However, XFIS again 
performs better in all combinations of the total number of XML document nodes and the 
number of twig branches. For example, let us consider Figure 8(b), which presents the 
results for 10 000 twig patterns. As we can observe, for 2 and 4 branches per twig pattern, 
XFIS performs about 23% better than FiST. Additionally, this factor grows as the number 
of XML document nodes increases. In the case of 6 branches per twig, XFIS performs 
about 32% better than FiST, with this factor growing as the number of XML document 
nodes increases. The same trend can be observed in all three plots of Figure 8. These 
results show that, although they have the same behaviour, XFIS performs better than 
FiST as the number of XML document nodes increases.  

3.2.4 Required disk space 

In this section we present the results of measuring the total disk space required by  
each method for storing all the information needed for the corresponding twig patterns. 
We ran our experiments for a varying number of twig patterns between 5000 and 20 000 
in steps of 5000 and a varying number of branches per twig pattern. The results of our 
experiments are presented in Figure 9. Each plot in Figure 9 presents the results for 
different numbers of branches per twig pattern. Let us consider Figure 9(b). As can be 
seen, the required disk space of both XFIS and FiST increases as the total number of twig 
patterns increases, as expected. 
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Figure 8 Varying size of XML document 
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Figure 9 Required disk space for a varying number of twig patterns 
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This trend stands for both methods, XFIS and FiST, independent of the number of  
twig patterns. However, XFIS requires less disk space than FiST in all cases. Another 
observation is that the gap between FiST’s space and XFIS’s space increases as the 
number of branches per twig pattern increases. 

In Figure 9(b), which corresponds to four branches per twig pattern, XFIS requires 
about 20% less space than FiST. In Figure 9(c), which corresponds to six branches per 
twig pattern, XFIS requires about 30% less space than FiST. This is due to the fact that 
FiST uses an additional structure for each twig pattern, called ProfileSequence, to store 
information about the relationships between a twig pattern’s nodes. When a node is a 
branch node, extra information is stored in the ProfileSequence to indicate that this node 
is a branch node. As a result, the total required space by FiST grows faster when the 
number of branches per twig pattern increases. 

4 Practical applications 

With the wide penetration of the internet, XML has become a de facto standard of data 
representation and exchange. The number of applications using XML data representation 
is growing rapidly, thus the process of XML filtering is becoming an essential need of an 
increasing number of different application areas, such as publish/subscribe systems,  
peer-to-peer networks and web services. 

Publish/subscribe systems grow rapidly, targeting many areas such as real estate 
sales, electronic personalised newspapers/advertisements and sensor-driven services. A 
publish/subscribe system is a middleware implementing the event-based communication 
paradigm: A publisher publishes event messages that announce the occurrence of events. 
Subscribers can subscribe to events that are of interest to them, called profiles. The 
system filters the incoming messages according to the profiles and forwards matched 
messages to their subscribers. Recently, XML-based messages or documents have been 
used to encode the event messages. Applications are e-businesses such as online 
catalogues or digital libraries. Such systems require online filtering of the incoming XML 
documents/messages against the user profiles. XFIS fits the above-mentioned needs of 
publish/subscribe systems, providing efficient, online and ordered filtering of incoming 
XML documents.  

Peer-to-Peer (P2P) networks are typically used for connecting nodes via largely  
ad hoc connections. Such networks are useful for many purposes. Sharing content files 
containing audio, video, data or anything in digital format is very common. A pure P2P 
network does not have notion of clients or servers, but only equal peer nodes that 
simultaneously function as both ‘clients’ and ‘servers’ to the other nodes on the network. 
A peer can publish (advertise) its available services and resources as well as its interests 
in the P2P network. The type of peer advertisements vary between the different P2P 
networks, thus making them incompatible with each other. Recently, Sun Microsystems 
has developed JXTA,4 an open-source programming and computing platform to ease the 
development of P2P networking. One of the most interesting characteristics of JXTA is 
that it utilises XML formatting for describing peer advertisements. XML is used to 
describe a peer’s available services and resources, while XPath is used to describe a 
peer’s interests. Thus, the process of filtering available resources against a peer’s interests  
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is reduced to the XML filtering problem. In a P2P network the ability for online filtering 
of incoming documents is vital, thus every adopted filtering algorithm should be able to 
filter XML documents online. Additionally, due to the large number of peers, the filtering 
algorithm should scale well as the number of user profiles increases. XFIS fulfils both of 
the above-mentioned characteristics and can be efficiently used in such a P2P network. 

5 Conclusion 

In this paper, we have presented an innovative filtering system called XFIS. XFIS  
utilises a new string representation for tree structures, based on the Prüfer sequence, 
called Tree-Structure Sequence (TSS). TSS encodes all the nodes and structure of an 
XML document in a single string, without the need for additional structures to store 
information. XML twig patterns, representing user profiles, and XML documents are 
transformed into TSSs, and XFIS involves a progressive subsequence string matching to 
identify those twig patterns that match the XML document. XFIS is able to handle order 
matching of user profiles, a property that is needed in quite a few applications. 

Our experimental results showed that XFIS outperforms the previous algorithms in 
XML filtering both in space and time aspects.  
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Appendix 

In this appendix we present in detail the pseudo codes of the XFIS filtering algorithm 
implementation. The detailed pseudo codes can be seen in Figure 1. 

The function addEdgeNode() tries to match a pair of char labels, representing an 
edge, with the twigs’ TSSs. At first, the function locates those twigs whose position 
points to the first label of the pair. For each of those twigs, it checks whether the  
next label matches the second label of the pair. If so, the twig’s pointer is incremented  
by 3 (to involve the space character), in order to point to the next character of the TSS, 
and the twigPositions is updated accordingly. In addition, because now the branch node is 
plabel, the function updates the branch information of this twig, by invoking the 
updateBranchInfo() function, which we will describe later.  

The function addCurrentNode() tries to match a single char label, representing an 
internal node, with the twig’s TSS. At first, the function finds those twigs whose position 
points to the specific label and for each of those twigs, it checks whether the next label 
matches the space character (‘_’). If so, the twig’s pointer is incremented by 2 (to involve 
the space character), in order to point at the next character of the TSS, and the 
twigPositions is updated accordingly by calling the updateTwigPosition() function. In 
addition, the function removes the branch information of this twig, as it has matched its 
current branch node, by calling the removeBranchInfo() function. After matching all 
corresponding twigs, the function accesses twigBranches to find all those twigs that  
still need to match a branch with the current char label. It is obvious that all the twigs  
that have matched this branch node in the previous step have been removed from the 
twigBranches by the function removeBranchInfo() that was called previously. This  
means that all of the twigs found in the twigBranches with the current label as key, failed 
to match the current branch node; and as a result their TSS’s position must be 
decremented by the corresponding offset. This action is performed by invoking the 
function correctBranchPos(). 

Function addRootNode() is invoked by the SAX parser when the end of the root’s 
node tag is reached. This means that the whole XML document has been parsed and  
it is time to report those twigs that have a match with the document. Matched twigs  
are those twigs that in the current step wait to match the character ‘#’, which means  
that their TSS’s position is at the end. The function accesses twigPositions to find the 
above-mentioned twigs and returns them as matched twigs. The filtering process is  
then finished. 

All the above-mentioned functions invoke the updateTwigPositions() function. This 
function is used to update the hash table twigPositions when a twig TSS’s position is 
changed. It deletes the old entry for the current twig and adds a new entry with the 
current char label as key pointed from the twig’s TSS. This function is invoked whenever 
a twig TSS’s position changes to point to a new char label.  

The function which updates the branch node information of the twigs is 
updateBranchInfo(). This function takes as arguments the twig ID and the char label of 
the branch node to be matched. It checks whether there is an entry in the twigBranches 
for the specific twig and branch node. If not, it inserts into twigBranches a corresponding 
entry with offset 3. If there is already an entry for this twig and branch node (i.e., the  
twig has already entered the branch-node matching area), it increments the offset of this 
entry by 3.  
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The function which deletes the branch node information of a twig (when it leaves the 
branch-node matching area) is the removeBranchInfo(). This function simply finds and 
removes the entry in twigBranches for the corresponding twig and char label.  

The final function for branching node verification is correctBranchPos(). This 
function is invoked for each of the twigs that failed to match a specific branch node. Its 
purpose is to correct the corresponding twigs’ TSS positions by decrementing them by 
the corresponding offset. Its argument is the ID of the twig to be corrected and the char 
label of the corresponding branch node. The function accesses twigBranches using as key 
the branch node’s label to find the entry involving the current twig. It reads the entry’s 
current offset and decrements the twig TSS’s position by this offset. 

Figure 1 Pseudo codes of filtering algorithm implementation 

TSS CONSTRUCTION AND FILTERING
function addEdgeNode (label, plabel)
{
         TwigList  <- twigPositions[label]
         foreach ID in TwigList
        {
              n = twigPointers[ID]
             if  (TSSid[n] = label and TSSid[n+1] = plabel )

  {
                  twigPointers[ID] +=3;
                  updateTwigPosition(ID, TSSid[n], TSSid[n+3])
                  updateBranchInfo(ID, plabel);
              }
        }
}

function addCurrentNode (label)
{
          TwigList  <- twigPositions[label]
          foreach ID in TwigList
          {
                n = twigPointers[ID]
                if  (TSSid[n] = label and TSSid[n+1] = ‘_’)
                {
                      twigPointers[ID] +=2;
                      updateTwigPosition(ID, TSSid[n],TSSid[n+2])
                      removeBranchInfo(ID, label);
                 }
          }
          BranchList <- twigBranches[label]
          foreach ID in BranchList
          {
               correctBranchPos(ID, label)
               removeBranchInfo(ID, label)
          }
}

function addRootNode ( )
{
           TwigList  <- twigPositions[‘#’]
           List filteredTwigs;
           foreach ID in TwigList
           {

add ID into filteredTwigs;
           }
           return   filteredTwigs
}

function  updateBranchInfo(twigID, label)
{
         List twigsList <- twigBranches[label]
         if (twigID exists in twigsList)
         {
             offsettwigID  = offsettwigID +3
        }
        else
        {
              Put into twigBranches[label] -> {twigID,3}
        }
}

function removeBranchInfo(twigID, label)
{
       if (exists twigID in twigBranches[label])
       {
             remove twigID from twigBranches[label]
       }
}

function correctBranchPos(twigID, label)
{
       List twigsList <- twigBranches[label]
       n = twigPointers[twigID]
       for each ID in twigList
       {
          if (ID == twigID)
          {
            twigPointers[ID] -= offset
            updateTwigPositions(ID, TSSID[n], TSSID[n-offset])
         }
      }
}

function updateTwigPositions (ID, oldLab, newLab)
{
        List twigsOldList <- twigPositions[oldLab]
        remove ID from twigsOldList
        add ID into twigPositions[newLab]
}

    
 
 

   

   
 

   

   

 

   

       
 


