

 70 Int. J. Web Engineering and Technology, Vol. 4, No. 1, 2008

XFIS: an XML filtering system based on string
representation and matching

Panagiotis Antonellis* and Christos Makris
Computer Engineering and Informatics Department
Patras University
Rio 26500, Greece
E-mail: adonel@ceid.upatras.gr
E-mail: makri@ceid.upatras.gr
*Corresponding author

Abstract: Information-filtering systems constitute a critical component of
modern information-seeking applications. As the number of users grows and
the amount of information available becomes even bigger, it is imperative to
employ scalable and efficient representation and filtering techniques. Typically,
the use of eXtensible Markup Language (XML) representation entails profile
representation with the use of the XPath query language and the employment of
efficient heuristic techniques for constraining the complexity of the filtering
mechanism. In this paper, we propose an efficient technique for matching
user profiles that is based on the use of holistic twig-matching algorithms
and is more effective, in terms of time and space complexities, in comparison
with previous techniques. The proposed algorithm is able to handle order
matching of user profiles, while its main positive aspect is the envisaging
of a representation based on Prüfer sequences that permits the effective
investigation of node relationships. Experimental results showed that the
proposed algorithm outperforms the previous algorithms in XML filtering both
in space and time aspects.

Keywords: eXtensible Markup Language; XML; filtering; string
representation.

Reference to this paper should be made as follows: Antonellis, P. and
Makris, C. (2008) ‘XFIS: an XML filtering system based on string
representation and matching’, Int. J. Web Engineering and Technology, Vol. 4,
No. 1, pp.70–94.

Biographical notes: Panagiotis Antonellis graduated from the Department of
Computer Engineering and Informatics, School of Engineering, University of
Patras, in July 2005. He is now an MSc student in the Department of Computer
Engineering and Informatics. His research interests include databases,
information retrieval and software quality.

Christos Makris graduated from the Department of Computer Engineering and
Informatics, School of Engineering, University of Patras, in December 1993.
He received his PhD degree from the Department of Computer Engineering
and Informatics in 1997. At present he works as an Assistant Professor in
the Department of Computer Engineering and Informatics, University of
Patras. His research interests include data structures, computational geometry,
databases and information retrieval. He has published over 50 papers in
scientific journals and refereed conferences.

 Copyright © 2008 Inderscience Enterprises Ltd.

 XFIS: an XML filtering system based on string representation and matching 71

1 Introduction

Information-filtering systems (Aguilera et al., 1999; Carzanica et al., 2001; Tian et al.,
2004) are systems that provide two main services: document selection (i.e., determining
which documents match which users) and document delivery (i.e., routing matching
documents from data sources to users). In order to implement these services efficiently,
information-filtering systems rely upon representations of user profiles, which are
generated either explicitly by asking the users to state their interests, or implicitly by
mechanisms that track the user behaviour and use it as a guide to construct the user
profile. Initial attempts to construct such profiles typically used ‘bag of words’
representations and keyword similarity techniques (closely related to the well-known
vector space model representation in the Information Retrieval area) to represent user
profiles and match them against new data items. These techniques, however, often suffer
from limited ability to express user interests, being unable to fully capture the semantics
of the user behaviour and user interests. As an attempt to face this lack of expressiveness,
a number of systems have appeared lately that use XML representations for both
documents and user profiling and that employ various filtering techniques for matching
the XML representations of user documents with the provided profiles (Altinel and
Franklin, 2000; Chan et al., 2002; Diao et al., 2003; Kwon et al., 2005; Tian et al., 2004).

eXtensible Markup Language (XML) is becoming the standard for information
exchange, especially on the internet. XML is a textual representation of data that is
designed for the description of the content rather than the presentation of data. The
language permits the description of new structures, the nesting of structures in arbitrary
depth and the optional description of its grammar. The basic lexical notion used in XML
is the element, which is the piece of text used bounded by matching tags, where within an
element we may have text, other elements or a mixture of the two. XML allows us to
associate attributes with elements, where the term ‘attribute’ denotes a (name, value) pair.
The structure of an XML document is best modelled as a labelled tree: elements and
attributes are mapped to nodes in the tree and direct nesting relationships are mapped to
edges in the tree.

The basic mechanism used to describe user profiles in XML format is through the
XPath query language (Berglund et al., 2002). XPath is a query language for addressing
parts of an XML document, while also providing basic facilities for the manipulation of
strings, numbers and booleans. XPath models an XML document as a tree of nodes.
There are different types of nodes, including element nodes, attribute nodes and text
nodes; and XPath defines a way to compute a string-value for each type of node. Other
known XML query languages used in various applications are XQuery (Chamberlin,
2002) and XQL.1

The process of XML filtering is related to, but different from, the more traditional
XML data-retrieval problem, where, given a stored collection of XML data objects and a
query, the system needs to identify those data instances which satisfy the given query.
XML query-processing approaches concentrate on finding effective mechanisms for
indexing XML data objects to efficiently retrieve or check structural relationships. In
contrast, in XML filtering, instead of the data (which is transitionary), the collection of
filter patterns (user profiles) needs to be indexed. When an XML document arrives, the
system filters it through the stored profiles to identify with which of them the document
fits. After the filtering process is finished, the document can be sent to the corresponding

 72 P. Antonellis and C. Makris

users with matching profiles. User profiles are expressed as XML twig patterns and are
stored in XPath format. In such a system it is vital to filter the XML document towards
all user profiles in one pass to save time and avoid complexity. Such a system usually
contains some other subsystems, such as two XPath parsers (one for twigs and one
for documents) and an Index (for user profiles). However, the main purpose of an
XML filtering system is to find all the user profiles that have a match with a specific
XML document.

1.1 Existing approaches and challenges

The existing XML filtering systems can be categorised as follows:

1.1.1 Automata-based systems

The prominent examples of automata-based systems are XFilter (Altinel and Franklin,
2000), Yfilter (Diao et al., 2003) and Distributed XML Stream Filtering (Uchiyama et al.,
2005). Systems in this category incorporate Finite State Automata (FSA) to quickly
match the document with the user profiles. In these systems, each data node causes a state
transition in the underlying FSA representation of the filters. In XFilter, user profiles are
represented as queries using the XPath language and the filtering engine employs a
sophisticated index structure and a modified Finite State Machine (FSM) approach to
quickly locate and examine relevant profiles. XFilter employs a separate FSM per path
query and a novel indexing mechanism to allow all of the FSMs to be executed
simultaneously during the processing of a document. A major drawback of XFilter is its
lack of twig-pattern support, as it handles only linear path expressions. Building on the
insights of the XFilter work, a new method was described in Diao et al. (2003) termed
Yfilter, which combined all of the path queries into a single Nondeterministic Finite
Automaton (NFA) and exploited commonality among queries by merging common
prefixes of the query paths, such that they were processed once at the most. The resulting
shared processing provided tremendous improvements to the performance of structure
matching but complicated the handling of value-based predicates. Unlike XFilter, YFilter
handles twig patterns by decomposing them into individual linear paths and then
performing postprocessing over linear path matches. The novelty of the Distributed XML
Filtering System is the distribution of the filtering and transferring load among many
Filtering Servers (FSs). Each FS uses a DFA mechanism to filter the incoming XML
documents; and the total transferring load, for publishing the filtered XML data to the
corresponding subscribers, is shared among the FSs. To further improve its scalability,
the system utilises a technique to forecast the transfer load of each FS, based on the user
profiles features.

1.1.2 Sequence-based systems

Systems in this category represent both the user profiles and the XML documents as
string sequences and then perform subsequence matching between the document’s
sequence and profile sequences. FiST (Kwon et al., 2005) employs a novel holistic
matching approach that, instead of breaking the twig pattern into separate root-to-leaf
paths, transforms (through the use of the Prüfer (1918) sequence) the matching problem
into a subsequence matching problem. In order to provide more efficient filtering, user

 XFIS: an XML filtering system based on string representation and matching 73

profile sequences are indexed using hash structures. Moreover, FiST is able to handle
efficient, ordered twig-pattern matching. XTrie (Chan et al., 2002) encodes each node
with its root path and constructs a sequence for every user profile. Those sequences are
indexed in a trie-like structure and the index is then used to filter incoming XML
documents against the stored user profiles.

1.1.3 Stack-based systems

The representative system of this category is AFilter (Canadan et al., 2006). AFilter
utilises a stack structure while filtering the XML document against user profiles. Its
novel filtering mechanism leverages both prefix and suffix commonalities across
filter statements, avoids unnecessarily eager result/state enumerations (such as NFA
enumerations of active states) and decouples the memory management task from result
enumeration to ensure correct results even when the memory is tight.

1.1.4 Push-down approaches

XPush (Gupta and Suciu, 2003) translates the collection of filter statements into a
single deterministic push-down automaton. The XPush machine uses a SAX parser that
simulates a bottom-up computation and hence does not require the main memory
representation of the document. The construction of the XPush machine is done in a lazy
manner and though there is a high cost associated with computing a state for the first
time, the cost is recovered later when the state is to be reused. The lazy XPush machine
has a number of advantages in dealing with the inconsistencies and regularities in the
Document Type Definitions (DTD) and also in avoiding the construction of states that do
not occur in the given data set. XSQ (Peng and Chawathe, 2005) utilises a hierarchical
arrangement of push-down transducers augmented with buffers. A notable feature of
XSQ is that it buffers data only for as long as it must be buffered by any streaming XPath
query engine.

Table 1 summarises the main characteristics of existing XML filtering schemes.

Table 1 Existing XML filtering systems

XML filtering
system Filtering mechanism Twig support Additional characteristics

XFilter FSM No –

YFilter NFA/DFA Yes Detection of common prefixes

FiST Subsequence matching Yes High scalability, ordered
matching

AFilter Stack No Exploitation of prefix and suffix
commonalities, lazy techniques

XTrie Subsequence matching Yes Substring indexing, substring
sharing, ordered matching

XPush Push-down automaton Yes High scalability, lazy techniques

XSQ Push-down transducers Yes Streaming processing

Distributed XML
Stream Filtering

NFA/DFA Yes High scalability, distributed
filtering and transfer-load
balancing, lazy techniques

 74 P. Antonellis and C. Makris

1.2 Motivation and paper’s contribution

Filtering systems supporting twig-pattern user profiles (e.g., YFilter, FiST) always
require an additional postprocessing step to finalise the right results. YFilter and XTrie
handle twig-pattern user profiles by decomposing them into individual linear paths and
then performing postprocessing over linear path matches. FiST, XPush and Distributed
XML Stream Filtering, while utilising the holistic process of twig patterns, require a
final step in order to identify and discard false matches derived from false branch
node matches.

Our motivation is to design a filtering system that utilises a holistic matching
approach in such a way that no extra branching node verification phase is needed. In
order to provide more efficient filtering, the system should also be able to filter the
incoming XML documents online. With these in mind, we introduce XFIS (Section 2),
which encompasses the following advantages:

• Holistic matching of twig-pattern user profiles. The proposed system utilises a novel
string encoding of nodes and edges to construct a string sequence for every user
profile and XML document, transforming the matching problem into a subsequence
matching problem.

• Elimination of extra postprocessing step. XFIS, based on the properties of the
adopted string encoding, utilises an extra conditional check while performing
subsequence matching in order to smartly discard false branching node matching.
This eliminates the need for an extra branching node verification phase, which adds
to the complexity of the previous algorithms.

• Online filtering of XML documents. Providing support for online filtering, our system
minimises its memory footprint and increases its throughput, as the filtering of an
XML document can start at the time the document arrives in our system.

• Ordered twig matching. XFIS provides ordered twig matching for applications that
require the nodes in a twig pattern to follow document order in XML.

The rest of the paper is structured as follows: Section 2 introduces the Tree Structure
Sequences and presents the main components of the XFIS system; Section 3 discusses the
experimental results; Section 4 discusses the practical-application aspect of the XFIS
system; Section 5 presents our conclusions; and, finally, the Appendix presents in detail
the pseudo codes of our XFIS implementation.

2 Tree-Structure Sequence and XFIS system architecture

The architecture of XFIS is depicted in Figure 1. The system consists of four basic
subsystems: the XPath parser, the XML parser, the Label Creator and the Filtering
Algorithm. Before continuing with each subsystem separately, we need to introduce the
notation of Tree-Structure Sequence (TSS), a novel string representation for XML trees,
utilised by XFIS to encode both user profiles and XML trees.

 XFIS: an XML filtering system based on string representation and matching 75

Figure 1 XFIS architecture

Xpath Parser XML Parser

Label Creator Filtering Algorithm Send document

Matched
profiles

User Profiles XML Document

2.1 Tree-structure sequence

In order to be able to eliminate the final branch node refinement phase as well as to
encode both parent-child and ancestor-descendant relationships of a user profile, we
would like an appropriate string representation that could be applied to both twigs and
XML documents. Based on postorder traversal and the Prüfer sequences, we introduce a
new string representation of XML documents that can be applied in any tree-structured
document, the TSS. Given a tree-structured document T, the TSS of T is a string
representation of T’s nodes and edges. Each edge is represented by a pair of char labels,
defining the edge’s attached nodes. Each internal node is represented in TSS(T) by its
char label. The construction of the TSS begins from the leftmost leaf and follows a
postorder traversal of the tree. Internal nodes appear in TSS only after all their outgoing
edges have been represented. The limitation introduced is that all the nodes must have
one-char labels, hence a preprocessing step is needed to assign one-char labels to each
distinct tag.

The algorithm to construct the TSS of a given tree Tn works as follows: Let S denote
the TSS of the tree. Initially, S is an empty string. Because gaps are important in TSS,
from now on, we denote them by the underline character: ‘_’. Begin from the leftmost
leaf of the tree, following postorder traversal, and let t1 and t2 denote the label of this
node and its parent respectively. If the current node is a leaf, then append t1t2_ to S and
continue with the next node in the postorder traversal; if the current node is an internal
node, then append t1_t1t2_ to S; if the current node is the root node, then append t1_# to S,
where t1 is the root node label. Continue with this process until the root node is reached.
In the case of twig patterns, where ancestor-descendant relationships exist, the algorithm
works in the same way; but when a node is reached that is a descendant of its ‘parent’
node (e.g., it has a ancestor-descendant relationship with its parent), instead of appending
t1t2 to S, we append t1*. This technique is very important during the process of twig
matching using subsequence string matching; its importance will be explained later in
this paper.

 76 P. Antonellis and C. Makris

Figure 2 depicts an example of a twig’s TSS constructed in the way mentioned above.
Let us denote with S the TSS of the XML tree in Figure 2. The first leftmost leaf of the
tree is Node C and its parent is Node B. Thus, we append CB_ to S. Following the
postorder traversal we reach Node D, which is a descendant of Node B. Thus, we append
D*_ to S. The next node in the postorder traversal is Node B, which is an internal node.
As a result, we append B_BA_ to S. By this time, S equals CB_D*_B_BA_. Continuing
analogously, the final TSS of the XML tree is CB_D*_B_BA_EB_B_BA_A_#.

Figure 2 TSS example

TSS : CB _D*_B _BA _EB_B_BA_A_#

A

B

EDC

B

Because of the way the TSS is constructed, it is easy to compute an approximate bound
of its size. Let us consider a tree T with n nodes and m edges. The size required to
represent the edges of T is 2m, because each edge of T is represented by a pair of char
labels in TSS(T). Additionally, each internal node is represented by a single char label,
so the required space is at most n (depending on the number of leaf nodes). Until now,
the required size is upper bounded by O(m+n). Because the edges’ and nodes’
representations are separated by gaps in TSS, an additional cost of O(m+n) must be
added in the upper bound. The resulting upper bound of TSS’s size is O(m+n). It is
obvious that in the case of large documents, the TSS’s size becomes big enough. On the
other hand, in the case of twig patterns, usually with a small number of nodes and edges,
the size of the corresponding TSS remains small. In order to avoid storing the whole TSS
of the XML document, XFIS progressively constructs the document’s TSS while parsing
the XML document and simultaneously compares it with the user profiles’ TSS. So only
a small part (usually 3–4 chars) of the document’s TSS is stored each time.

Because of the method of its computation, the TSS has the following
important property:

Property 1 Given two trees P and T, if P is a subtree of T, then TSS(P) is a substring
of TSS(T).

The proof of this property is as follows: Let us denote (),P PP V E and (),T TT V E as the
two given trees. Based on the assumption that P is a subtree of T, then TV ⊆P V and

T⊆PE E . Additionally, the nodes in VP during a postorder traversal in P appear in the
same order as they appear in a postorder traversal in T. This leads to the result that
TSS(P) is a substring of TSS(T).

 XFIS: an XML filtering system based on string representation and matching 77

2.2 Label Creator

Because of the one-char label limitation introduced by TSS, it is vital for our system to
assign distinct char labels to every distinct tag. This task is accomplished by the Label
Creator subsystem, which constructs and keeps track of a one-to-one correspondence
between distinct tags and char labels. Every distinct tag is assigned a distinct char label,
derived from an internal char label source. The Label Creator interacts both with XPath
parser and XML parser in order to compute user profile and document TSSs.

2.3 XPath parser

The XPath parser processes user profiles expressed in XPath, and computes and stores
the TSS of each profile. As mentioned before, user profiles are expressed using XPath
notations and can be easily represented as XML trees. The XPath parser processes XPath
expressions and accordingly constructs a memory tree representation for every user
profile. For every such tree, it computes the respective TSS using the aforementioned
methodology. The computed user profile TSSs are permanently stored by the system in
text files.

2.4 XML parser

Similarly to the XPath parser, the XML parser is assigned the task of parsing incoming
XML documents and constructing their corresponding TSSs. Simultaneously, every new
element appended to the document’s TSS is sent to the filtering algorithm in order to
be checked online against user profiles, thus providing online filtering of the XML
document. The XML parser subsystem utilises a SAX parser, its handlers and a stack
structure, named tagStack, in order to increasingly compute and construct a document’s
TSS. The startTag handler is invoked whenever the start of an element’s tag is reached,
while the endTag handler is invoked whenever the end of an element’s tag is reached.

Figure 3 presents the code for the startTag and endTag SAX parser handlers. When
the startTag handler is invoked with a tag name, the system first locates the tag’s char
label using the Label Creator and then pushes this label into tagStack. When the endTag
handler is invoked with a tag name, the system first finds the corresponding char label
using Label Creator.

If the tag is not a leaf node (e.g., it has children), the char label of the node is added
into the document’s TSS by calling the function addCurrentNode(), and then the top char
label from the tagStack (which is the current node’s label) is popped. If the tagStack is
not empty (e.g., the root node has not been reached), the system finds the char label of the
current node’s parent (which is the top element of tagStack) and appends the pair (label,
plabel) representing the corresponding edge into the document’s TSS by calling the
function addEdgeNode(). On the other hand, if tagStack is empty (e.g., the root node has
been reached), the system appends to the document’s TSS the root node characteristic
sequence by calling the addRootNode() function.

Figure 4 depicts an example of the above method. For demonstration purposes, we
assume that every tag consists of a single char, thus eliminating the need for the Label
Creator. Figure 4(a) summarises the system’s state after the endTag handler is invoked
with the tag C. At this time, the tagStack contains A, B and C, while the document’s TSS
is still empty. Node C is a leaf, so when the endTag is invoked, the top element (C) of

 78 P. Antonellis and C. Makris

tagStack is popped and the system appends CB_ to the document’s TSS. Figure 4(b)
summarises the system’s state after the endTag handler is invoked with the tag D. At this
time, the tagStack contains A, B, F and D, while the document’s TSS is CB_. Node D is
a leaf, thus the top element (D) of tagStack is popped and DF_ is appended to the
document’s TSS. Finally, Figure 4(c) depicts the case when the endTag handler is
invoked with the tag F. Before the handler is invoked, the tagStack contains A, B and F.
Node F is an internal node, so when the handler is invoked, the top element (F) of
tagStack is popped and F_FB_ is appended to the document’s TSS.

Figure 3 Pseudo code for SAX parser handlers

stack tagStack;
handler startTag (tag){

label = assign_label(tag);
tagStack.push(label);

}

handler endTag (tag){
label = assign_label(tag);
if (not leafnode)

addCurrentNode(label);
tagStack.pop();
if (not tagStack.isEmpty())
{

plabel = tagStack.top();
addEdgeNode(label, plabel);

}
else
 addRootNode();

}

Figure 4 Using tagStack and SAX parser’s handlers to create a document’s TSS

TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_#

tagStack

A

B

C
B

TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_# TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_#

(a) endTag of C (b) endTag of D (c) endTag of F

A

B

tagStack

F

D

A

B

tagStack

F

A

BC

E EC F

B

D

B

C F

A

C

E

D

E

B

A

C B

C F

D

E E

It is important to mention that the SAX parsers interact online with the filtering
algorithm. Whenever a new element is appended to the document’s TSS, it is
immediately sent to the filtering algorithm to check it against user profiles’ TSSs. We
describe the filtering algorithm in the next section.

 XFIS: an XML filtering system based on string representation and matching 79

2.5 Filtering algorithm

While the XML parser computes the TSS of an incoming XML document, the filtering
algorithm is used to identify those twigs that have a match in the document. The filtering
is done by identifying those twigs that have their TSS as a subsequence of the
document’s TSS, according to some branch-based criteria to be described later. The key
issue in the filtering algorithm is to find all the matching twigs in one pass of the
document’s TSS.

A naive approach to this problem is to compare each character of the document’s TSS
with the current character of all twigs’ TSSs. This approach, although easy to implement,
has the disadvantage of checking many unnecessary twig TSSs. We instead chose to use
a more complicated though more efficient approach, which is to index the twig TSSs in
order to limit the number of comparisons in every step of the filtering algorithm. The
indexing method we used is a dynamic hash table called twigPositions. This hash table
keeps track of the current char label of every twig’s TSS, and uses the XML char labels
as keys. For each label, the value stored in the hash table is a list of all twig IDs whose
TSS’s current char is the key label. Hence in every step, the filtering algorithm uses the
document’s TSS current character as a key in the hash table in order to locate those twigs
that their corresponding TSS’s current character is the same as the used key. In order
to keep track of the twig TSSs’ current positions, a global table, named twigPointers, is
used with a size equal to the number of stored twigs. Each table position corresponds to a
twig and stores the current integer position of the twig’s TSS, starting from 0. Moreover,
because of the TSS’s particular structure, the subsequence matching is not performed by
using the characters one by one, but by collecting them in groups. For example, consider
a part of a twig’s TSS: …GB_ FB_B_BA… Each of the pairs of char labels GB, FB and
BA should be matched as a pair and not as individual nodes. For this purpose, in every
step of the matching process, both the current and the next char labels of the twig and
document TSSs are taken into consideration. Let us denote by TC and TN the twig TSS’s
current and next char label respectively, and by DC and DN the document TSS’s current
and next char label respectively.

A matching occurs in any one of the following three cases:

Case 1 (DN = ‘_’ and TN=‘_’) and (DC=TC)

Case 2 (DN != ‘_’ and TN != ‘_’) and (DC=TC) and (DN =TN)

Case 3 (DN != ‘_’ and TN != ‘_’) and (DC=TC) and (TN=‘*’).

We distinguish between Cases 1 and 2, because each of these cases results in a different
update of the twig and document TSSs’ current position.

In Case 1, both the twig and document TSSs’ current positions must be incremented
by 2 in order to point to the next pair of char labels.

In Case 2, the current positions of the twig and the document TSSs must be
incremented by 3, because after the current matched pair of char labels, there is a space
character by default.

In Case 3 the matching refers to an ancestor-descendant relationship in a twig’s
TSS. The character ‘*’ in the twig’s TSS can be matched with any character in the
document’s TSS. In this case, the current positions of twig and document TSSs are
incremented by 3.

 80 P. Antonellis and C. Makris

Because, in every step, the current and the next char label of the document TSS
are compared with more than one twig TSS, the current position of the document TSS
is incremented at the end of each step, when all corresponding twig TSSs have
been compared.

It is important to realise that in every step, the increment in the document TSS
position depends only on DN (if the character is a white space, then the position is
incremented by 2, otherwise by 3) because of the particular structure of the TSS. This
means that, in every step, even if no twig TSS is matched, the document TSS’s position is
incremented as mentioned above. The filtering process is finished when the whole
document’s TSS has been parsed. At this point, the algorithm checks the positions of
all twig TSSs and reports those twigs whose TSSs have been passed until their final
char label.

Figure 5 Filtering algorithm example

TSS(Q1): CB_D*_B_BA_EB_B_BA_A_#

TWIG Q1

XML Document (T)

TSS(T): CB_DF_F_FB_B_BA_EC_C_CA_EB_B_BA_A_#

TSS(Q2) : D*_EB_B_BA_CA_A_#

TWIG Q2

Stack

A

B

C

(a) XML Document

(b) Twig Patterns (d) twigBranches during filtering

A
B
C
D
E
F

Q1

Q2

A
B
C
D
E
F

Q2 Q1

A
B
C
D
E
F

Q1

Q2

A
B
C
D
E
F

(c) twigPositions during filtering

A
B
C
D
E
F

Q1, 3
A
B
C
D
E
F

Q1, 6

* * * Q2, 3

A

BB

C D E

A

B c

ED

A

CB B

EEC F

D

The algorithm mentioned above may report some false matches because no branch node
checking has been done and hence we must add some additional checks in order to avoid
false matches of branching nodes.

It is important to realise that the second char label of a pair (e.g., the char B in the pair
EB) denotes the father of the first char label. This father node is called a branch node.
Hence, when a node has two or more children in the document or the twig, the

 XFIS: an XML filtering system based on string representation and matching 81

corresponding TSS has two or more sequential pairs of char labels followed by a single
char (the char label of the father node), with every pair having the same second char label
(the father node’s char label). Those pairs of char labels and the following single char
label need to be matched as a unit in the matching algorithm, either all of them or none of
them. The described algorithm matches a pair of char labels each time, ignoring the
following pairs of char labels. This may lead to matching some first edges of a branch
node (represented by the first pairs of char labels considering this node) but not all of
them. In this case, the algorithm should identify the situation and backtrack the pointers
of the document’s and twig’s TSS to point again at the first pair of char labels
considering this branch node.

2.6 The branching verification method

The technique we use to avoid false branch node matchings is to keep track of the branch
node to be verified for every twig at every step of the algorithm. The structure we use is a
hash table named twigBranches. This hash table, which is being updated in every step of
the filtering process, uses char labels as keys, and for each key it returns a list with the
twigs that need to match a branch node with the specific tag at the current step of the
process. For each twig to be matched, extra information of the offset in the twig TSS is
kept, so that in case the branch node does not match, we can adjust the twig TSS’s
position (decrement it by the current offset) accordingly.

To demonstrate the branch node verification, let us consider the twig TSS part
TQ:…EB_CB_B_BA_… and two parts of the document TSS: D1:…EB_DB_B_BA…
and D2:…EB_CB_B_BA…. When the algorithm matches the pair EB of TQ with the
corresponding pair of D1, it inserts into twigBranches a record for twig Q with branch
label B and offset 3. This means that Q must match a branch node B, and if not,
the position of Q’s TSS must be decremented by 3. Next the algorithm tries to match pair
CB (of TQ) with the pair DB (of D1) and fails. The next char label of D1’s TSS is char
label B. The algorithm searches twigBranches for twigs to match branch node B and
finds twig Q. However, Q’s TSS position does not point to a char label B and so the
match fails. The algorithm decrements Q’s TSS position by 3 to point to the pair EB.

The method we use is to maintain the global hash table twigBranches, which keeps
track of the branch nodes to be matched for every twig. In addition to this, the structure
kept in this hash table consists not only of the twig ID but additionally of an integer offset
identifying the offset that the twig TSS’s position must decrement, if the twig does not
match the corresponding branch node. In this way, when the algorithm identifies that a
twig failed to match a branch node, it immediately decrements the corresponding TSS’s
position in order to point to the previous right position.

Because of the TSS’s structure, a twig enters in a branch-node matching area when it
matches a pair of char labels. The second char label of the pair is the candidate branch
node that the twig has to match. While the twig continues to match sequential pairs of
labels (representing outgoing edges of the branch node to be matched), the current twig’s
offset is incremented analogously (increases by 3 at a match).

A special case occurs when the second label of the pair is ‘*’. This represents an
ancestor-descendant edge and special handling is needed. In this case the label of the
branch node to be verified is yet unknown and for this reason, twigBranches has the
special key ‘*’. The entries under this key represent twigs that wait to match a yet
unknown branch node. Those entries are temporary, which means that in some next step

 82 P. Antonellis and C. Makris

those entries are moved under a new key. There are two conditions for a twig to be
removed from the key *: Firstly, if it matches a pair of char labels with the second label
different from *. In this case the offset field is updated accordingly and the twig’s entry
in twigBranches is moved under the right key, which is the second char label of the
matched pair. Secondly, if the twig matches a single node, the corresponding entry of
the twig in twigBranches is totally removed because the twig has left the branch-node
matching area and has matched the branch node.

In order for a twig to leave the branch-node matching area, there are two cases:

Case 1 The document’s TSS reaches a single character label (which is the label of the
branch node to be matched) while the twig’s TSS points to a pair of character
labels. This situation means that the corresponding document node does not
include the edge represented by the twig’s TSS, and so there is no matching.
The twig TSS’s position must be decremented by the corresponding offset.
Additionally, the twig’s branch node information is deleted because the twig has
left the branch-node matching area. It will enter it again, if in some next step it
matches a pair of character labels.

Case 2 Both the document’s TSS and the twig’s TSS point to a single character label
(representing the branch node to be matched). In this situation we have a match,
and as a result the twig TSS’s position is incremented by 2 to point to the next
character. Additionally, the branch node information for this twig is deleted
because the twig has left the branch-node matching area.

By incorporating this method into our filtering algorithm, we avoid the extra cost of
finding false matches and then applying a refinement phase to identify those false
matches. This is a major difference with previous proposed solutions, and results in a
significant reduction in time complexity of our filtering method.

The details along with the pseudo codes of filtering algorithm implementation are
presented in the Appendix.

In order to better illustrate the above described filtering algorithm, let us consider the
following example:

Example 1 Consider the XML Document T and twigs Q1 and Q2 shown in Figure 5. At
first the twigs are stored in the system and their TSSs are computed. When
the XML document arrives, the SAX parser starts and its handlers are
invoked as needed. tagStack contents are shown in Figure 5(a). At this
time the twigPositions contains two entries, twig Q1 under key C and twig
Q2 under key D as shown in Figure 5(c), while twigBranches is empty as
shown in Figure 5(d). Node C is a leaf node and so the top element of
tagStack (label C) is popped. After this, the function addEdgeNode() is
called with arguments C, B (the top element of tagStack). The twig list in
the twigPointers for key C is twig Q1. The current pair of labels of the
document’s and Q1’s TSS is CB and they match. This match results in
incrementing by 3 the positions of both T’s TSS and Q1’s TSS.
Additionally, the twigPositions hash table is updated and Q1 is moved
under key D (which is the char label in the Q1 TSS’s current position).
Next, endTag(D) is invoked and the handler calls addEdgeNode(D, F).
The twig list in twigPointers for key D is Q2 and Q1. At first, Q2 is checked.

 XFIS: an XML filtering system based on string representation and matching 83

The Q2 TSS’s current position points to the pair D* while the document
TSS’s current position points to pair DF. The final action of the function is
to update the twigBranches because Q1 has matched a pair of char labels
and has entered a branch-node matching area. Twig Q1 is inserted in
twigBranches under key B (which is the second label of the matched pair
of labels) with offset 3. The TSSs match (ancestor-descendant match) and
the position of Q2’s TSS is incremented by 3. Additionally, twigPointers is
updated and Q2 is moved under key E.

Finally, because the match concerns a pair of labels, Q2 has entered a
branch-node matching area and Q2 is inserted in twigBranches under
key * (a temporary entry) and offset 2. The next twig in the list is Q1.

The corresponding TSS’s position points to the pair D* and because
document TSS’s current pair is DF, we have a match. The Q1 TSS’s
position is incremented by 3 and twigPointers is updated by moving Q1
under key B. Additionally, twigBranches is updated as follows: Because
Q1 is already in twigBranches under key B (which means that it waits to
match a branch node with label B) and the current pair’s second label
 is *(ancestor-descendant match), the only action needed is to increase
the offset of Q1’s entry in twigBranches. The offset is incremented by 3
and equals 6.

2.7 Time complexity

Let us assume that the XML document consists of n nodes and m edges and the number
of stored user profiles is k. As shown before, the document’s TSS has a length of at most
O(m+n). XFIS requires only one pass of the document’s TSS in order to filter it against
the stored user profiles. In every step of the filtering process, the current element of the
document’s TSS is checked only against respective user profiles whose current TSS
element equals the document’s current element. In the worst case, each element
of the document’s TSS is checked against O(k) elements (one for every user profile).
Additionally, in each step, extra checks for identifying false branch node matches are
performed, which in the worst case costs O(k). Summing up, the total time complexity of
XFIS, in a worst-case scenario, is O(k(m+n)). As can be easily seen, the total runtime
depends on the size of the incoming XML document and the number of stored user
profiles, but is independent of the size of stored user profiles. However, it should
be mentioned that in the average case, each element of the document’s TSS is checked
only against a small portion of user profiles, which radically reduces the total runtime
of XFIS.

3 Experiments

In our experiments, we compared XFIS with the FiST algorithm (Kwon et al., 2005),
which is the state-of-the-art algorithm for filtering XML documents against twig-pattern
user profiles. We chose FiST because it supports twig-pattern user profiles, unlike other
systems (e.g., AFilter, XFilter), which support only linear path expressions. XFIS was
implemented in Java using the freeware Eclipse IDE and the Xerces XML parser
(Apache).2 In order to obtain comparable and reliable results, we also implemented a

 84 P. Antonellis and C. Makris

FiST-like algorithm in Java using Eclipse. We ran all our experiments on a Mobile
Pentium 2.0 GHz machine with 512 MB RAM running Windows XP SP2. XFIS code
and FiST-like code were run using Eclipse 3.0.1 with Java Virtual Machine 1.4.2.

3.1 XML data sets and twig patterns

In our experiments we used data on Shakespeare’s plays, provided in The Plays of
Shakespeare in XML.3 We used the DTD of Shakespeare’s plays to generate 300
documents of different sizes and depth. The generated documents were categorised into
three categories according to the total number of nodes in each document, without taking
into consideration the document’s depth. The corresponding categories were 0–2000,
2000–4000 and 4000–6000 nodes, indicated by ‘2000’, ‘4000’ and ‘6000’.

In order to generate a large number of different twig patterns, we used the XPath
generator provided in the YFilter package. The number of branches of the generated twig
patterns was 2, 4 and 6, resulting in a corresponding categorisation. Finally, the number
of twig patterns stored as user profiles in both the filtering systems varied between 5000
and 20 000 in steps of 5000.

The experiments were performed for every combination of the document’s number of
nodes, number of branches per twig pattern and total number of twig patterns stored.
Table 2 summarises the parameters of our experiments.

Table 2 Experimental parameters

Parameter Values
Number of twig patterns 2000, 4000, 6000
Number of branches per twig pattern 2, 4, 6
Number of XML document’s nodes 2000, 4000, 6000

3.2 Performance analysis

We measured the filtering time for a variety of document sizes and twig patterns.
Additionally, we measured the total disk space required by each algorithm for storing a
variety of twig patterns. As a general conclusion and concerning filtering time, both
algorithms behave the same way in all cases, but XFIS is obviously faster (about a 25%
factor). In both algorithms, the filtering time increases as the sizes of the XML document
and the number of twig profiles increase, whereas it decreases when the number of
average branches per twig increases. As far as disk space is concerned, XFIS was
measured to require less disk space than FiST, independent of the number of branches per
twig. The results show that XFIS outperforms FiST in all cases due to the elimination of
the branch node refinement phase and the encoding of all the node relationships and
document structures in TSS.

In the succeeding discussion we present in detail the above-mentioned
experimental results.

3.2.1 Varying number of twig patterns

We measured the filtering time required by XFIS and FiST for a varying number of twigs
between 5000 and 20 000 in steps of 5000. The results are presented in Figure 6 for
number of branches 2, 4 and 6 per twig, and number of XML document nodes 2000,
4000 and 6000.

 XFIS: an XML filtering system based on string representation and matching 85

Figure 6 Varying number of twig patterns

(c) Number of branches – 6

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000
Number of XPath twig patterns

Fi
lte

rin
g

tim
e

(s
ec

)

Fist - 2000
Fist - 4000
Fist - 6000
XFIS - 2000
XFIS - 4000
XFIS - 6000

(b) Number of branches – 4

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000
Number of XPath twig patterns

Fi
lte

rin
g

tim
e

(s
ec

)

Fist - 2000
Fist - 4000
Fist - 6000
XFIS - 2000
XFIS - 4000
XFIS - 6000

(a) Number of branches – 2

0

50

100

150

200

250

300

350

400

450

0 5000 10000 15000 20000 25000
Number of XPath twig patterns

Fi
lte

rin
g

tim
e

(s
ec

)

Fist - 2000
Fist - 4000
Fist - 6000
XFIS - 2000
XFIS - 4000
XFIS - 6000

In Figure 6(b) the number of branches was 4 and each line in the plot corresponds to
a combination of an algorithm (XFIS or FiST) and the number of XML document’s
nodes (2000, 4000 or 6000). For example, the line labelled ‘XFIS-4000’ corresponds to
the XFIS method and 4000 nodes in the XML document. In this figure we observe that
the filtering time for both methods increases as the number of twig patterns stored

 86 P. Antonellis and C. Makris

increases. Both methods behave in the same way, but XFIS is obviously faster in all
cases. For data sets with 2000 and 4000 document nodes, XFIS is about 25% faster. In
the case of 6000 document nodes, we observe that the filtering time increases suddenly
for both methods. This is due to our system’s limitations in memory and usage of disk
swap space instead. However, even in this case XFIS performs better, 35% faster than
FiST. Similar observations can been made in Figures 6(a) and 6(c).

The above results show that XFIS performs better than FiST as the total number of
twig patterns increases.

3.2.2 Varying number of branches per twig pattern

We measured the filtering time required by XFIS and FiST for a varying number of
branches per twig – 2, 4 and 6. The results are presented in Figure 7.

Figure 7 Varying number of branches

(a) FiST (2000 Nodes) (d) XFIS (2000 Nodes)

 (e) XFIS (4000 Nodes)

(f) XFIS (6000 Nodes)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

0

50

100

150

200

250

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
Number of branches

Fi
lte

rin
g

tim
e

(s
ec

)

5000
10000
15000
20000

(b) FiST (4000 Nodes)

(c) FiST (6000 Nodes)

 XFIS: an XML filtering system based on string representation and matching 87

In Figures 7(a) and 7(d) the number of branches is 4. The results in Figure 7(a)
correspond to the FiST method and 2000 document nodes, while in Figure 7(c) they
correspond to the XFIS method and 2000 document nodes. Each line in the plots
corresponds to a number of stored twig patterns. For example, the line labelled ‘150 000’
corresponds to 150 000 stored twig patterns. As can be observed, the total filtering time
in both methods decreases as the number of branches increases. This may seem strange,
but it is due to the fact that the number of matching twig patterns decreases as the number
of branches increases, because of the twig’s complexity. Both methods behave the same
way, but XFIS performs better in all cases. For example, for 5000 and 10 000 twig
patterns, XFIS is about 28% faster; while for 15 000 and 20 000 twig patterns it performs
about 34% better.

Similar observations can be made in all figures through Figures 7(a) to 7(f) for
different document sizes. These results demonstrate that XFIS performs better as the
number of branches per twig pattern increases, due to the elimination of the branch node
refinement phase used in FiST.

3.2.3 Varying number of XML document nodes

We measured the filtering time required by XFIS and FiST for a varying number of XML
document nodes (2000, 4000 and 6000). The results are shown in Figure 8.

Each line in the plots corresponds to a combination of method and number of
branches per twig. For example, the line labelled ‘XFIS 6’ corresponds to the XFIS
method with six branches per twig. As can be seen, the filtering time in both methods
increases as the total number of XML document nodes increases.

This observation is expected, as both TSS and Prüfer sequences of the XML
document increase in length, requiring more time to be parsed. However, XFIS again
performs better in all combinations of the total number of XML document nodes and the
number of twig branches. For example, let us consider Figure 8(b), which presents the
results for 10 000 twig patterns. As we can observe, for 2 and 4 branches per twig pattern,
XFIS performs about 23% better than FiST. Additionally, this factor grows as the number
of XML document nodes increases. In the case of 6 branches per twig, XFIS performs
about 32% better than FiST, with this factor growing as the number of XML document
nodes increases. The same trend can be observed in all three plots of Figure 8. These
results show that, although they have the same behaviour, XFIS performs better than
FiST as the number of XML document nodes increases.

3.2.4 Required disk space

In this section we present the results of measuring the total disk space required by
each method for storing all the information needed for the corresponding twig patterns.
We ran our experiments for a varying number of twig patterns between 5000 and 20 000
in steps of 5000 and a varying number of branches per twig pattern. The results of our
experiments are presented in Figure 9. Each plot in Figure 9 presents the results for
different numbers of branches per twig pattern. Let us consider Figure 9(b). As can be
seen, the required disk space of both XFIS and FiST increases as the total number of twig
patterns increases, as expected.

 88 P. Antonellis and C. Makris

Figure 8 Varying size of XML document

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000
Number of document nodes

Fi
lte

rin
g

tim
e

(s
ec

)

FiST 2
FiST 4
FiST 6
XFIS 2
XFIS 4
XFIS 6

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000
Number of document nodes

Fi
lte

rin
g

tim
e

(s
ec

)

FiST 2
FiST 4
FiST 6
XFIS 2
XFIS 4
XFIS 6

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000 7000
Number of document nodes

Fi
lte

rin
g

tim
e

(s
ec

)

FiST 2
FiST 4
FiST 6
XFIS 2
XFIS 4
XFIS 6

(c) 20 000 twig patterns

(a) 5000 twig patterns

(b) 10 000 twig patterns

 XFIS: an XML filtering system based on string representation and matching 89

Figure 9 Required disk space for a varying number of twig patterns

(a) Number of branches – 2

(b) Number of branches – 4

(c) Number of branches – 6

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000
Number of twig patterns

D
is

k
sp

ac
e

(K
B

)
XFIS
Fist

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000
Number of twig patterns

D
is

k
sp

ac
e

(K
B

)

XFIS
Fist

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000
Number of twig patterns

D
is

k
sp

ac
e

(K
B

)

XFIS
Fist

 90 P. Antonellis and C. Makris

This trend stands for both methods, XFIS and FiST, independent of the number of
twig patterns. However, XFIS requires less disk space than FiST in all cases. Another
observation is that the gap between FiST’s space and XFIS’s space increases as the
number of branches per twig pattern increases.

In Figure 9(b), which corresponds to four branches per twig pattern, XFIS requires
about 20% less space than FiST. In Figure 9(c), which corresponds to six branches per
twig pattern, XFIS requires about 30% less space than FiST. This is due to the fact that
FiST uses an additional structure for each twig pattern, called ProfileSequence, to store
information about the relationships between a twig pattern’s nodes. When a node is a
branch node, extra information is stored in the ProfileSequence to indicate that this node
is a branch node. As a result, the total required space by FiST grows faster when the
number of branches per twig pattern increases.

4 Practical applications

With the wide penetration of the internet, XML has become a de facto standard of data
representation and exchange. The number of applications using XML data representation
is growing rapidly, thus the process of XML filtering is becoming an essential need of an
increasing number of different application areas, such as publish/subscribe systems,
peer-to-peer networks and web services.

Publish/subscribe systems grow rapidly, targeting many areas such as real estate
sales, electronic personalised newspapers/advertisements and sensor-driven services. A
publish/subscribe system is a middleware implementing the event-based communication
paradigm: A publisher publishes event messages that announce the occurrence of events.
Subscribers can subscribe to events that are of interest to them, called profiles. The
system filters the incoming messages according to the profiles and forwards matched
messages to their subscribers. Recently, XML-based messages or documents have been
used to encode the event messages. Applications are e-businesses such as online
catalogues or digital libraries. Such systems require online filtering of the incoming XML
documents/messages against the user profiles. XFIS fits the above-mentioned needs of
publish/subscribe systems, providing efficient, online and ordered filtering of incoming
XML documents.

Peer-to-Peer (P2P) networks are typically used for connecting nodes via largely
ad hoc connections. Such networks are useful for many purposes. Sharing content files
containing audio, video, data or anything in digital format is very common. A pure P2P
network does not have notion of clients or servers, but only equal peer nodes that
simultaneously function as both ‘clients’ and ‘servers’ to the other nodes on the network.
A peer can publish (advertise) its available services and resources as well as its interests
in the P2P network. The type of peer advertisements vary between the different P2P
networks, thus making them incompatible with each other. Recently, Sun Microsystems
has developed JXTA,4 an open-source programming and computing platform to ease the
development of P2P networking. One of the most interesting characteristics of JXTA is
that it utilises XML formatting for describing peer advertisements. XML is used to
describe a peer’s available services and resources, while XPath is used to describe a
peer’s interests. Thus, the process of filtering available resources against a peer’s interests

 XFIS: an XML filtering system based on string representation and matching 91

is reduced to the XML filtering problem. In a P2P network the ability for online filtering
of incoming documents is vital, thus every adopted filtering algorithm should be able to
filter XML documents online. Additionally, due to the large number of peers, the filtering
algorithm should scale well as the number of user profiles increases. XFIS fulfils both of
the above-mentioned characteristics and can be efficiently used in such a P2P network.

5 Conclusion

In this paper, we have presented an innovative filtering system called XFIS. XFIS
utilises a new string representation for tree structures, based on the Prüfer sequence,
called Tree-Structure Sequence (TSS). TSS encodes all the nodes and structure of an
XML document in a single string, without the need for additional structures to store
information. XML twig patterns, representing user profiles, and XML documents are
transformed into TSSs, and XFIS involves a progressive subsequence string matching to
identify those twig patterns that match the XML document. XFIS is able to handle order
matching of user profiles, a property that is needed in quite a few applications.

Our experimental results showed that XFIS outperforms the previous algorithms in
XML filtering both in space and time aspects.

Acknowledgement

Panagiotis Antonellis’s work was supported in part by a Bodossaki Foundation
scholarship.

References

Aguilera, M.K., Strom, R.E., Stunnan, D.C., Astley, M. and Chandra, T.D. (1999) ‘Matching
events in a content-based subscription system’, PODC, pp.53–61.

Altinel, M. and Franklin, M.I.J. (2000) ‘Efficient filtering of XML documents for selective
dissemination of information’, VLDB, pp.53–64.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J. and Simon, J.
(2002) ‘XML path language (XPath) 2.0’, W3C working draft 16, Technical Report
WD-xpath20-20020816, World Wide Web Consortium, August.

Canadan, K., Hsiung, W., Chen, S., Tatemura, J. and Agrawal, D. (2006) ‘AFilter: adaptable XML
filtering with prefix-caching and suffix-clustering’, VLDB, pp.579–590.

Carzanica, A., Rosenblum, D. and Wolf, A. (2001) ‘Design and evaluation of a wide-area
event notification service’, ACM Transactions on Computer Systems, August, Vol. 19, No. 3,
pp.332–383.

Chamberlin, D. (2002) ‘XQuery: an XML query language’, IBM Systems Journal, Vol. 41, No. 4,
pp.597–615.

Chan, C.Y., Felber, P.L., Garofalakis, M.N. and Rastogi, R. (2002) ‘Efficient filtering of XML
documents with XPath expressions’, The VLDB Journal, Vol. 11, pp.354–379.

Diao, Y., Altinel, M., Franklin, M.L.J., Zhang, H. and Fischer, P. (2003) ‘Path sharing and
predicate evaluation for high-performance XML filtering’, TODS, Vol. 28, pp.467–516.

 92 P. Antonellis and C. Makris

Gupta, A.K. and Suciu, D. (2003) ‘Stream processing of XPath queries with predicates’, SIGMOD,
pp.419–430.

Kwon, J., Rao, P., Moon, B. and Lee, S. (2005) ‘FiST: scalable XML document filtering by
sequencing twig patterns’, VLDB, pp.217–228.

Peng, F. and Chawathe, S. (2005) ‘XSQ: a streaming XPath engine’, TODS, Vol. 30, June,
pp.577–623.

Prüfer, H. (1918) ‘Neuer Beweis eines Satzes uber Permutationen’, Archiv für Mathematik und
Physik 27, pp.142–144.

Tian, F., Reinwald, B., Pirahesh, H., Mayr, T. and Myllymaki, J. (2004) ‘Implementing a scalable
XML publish/subscribe system using a relational database system’, SIGMOD, pp.479–490.

Uchiyama, H., Onizuka, M. and Honishi, T. (2005) ‘Distributed XML stream filtering with high
scalability’, ICDE, pp.968–977.

Notes

1 XQL, http://www.xml.com/pub/a/SeyboldReport/ipx981101.html.

2 Apache, ‘Apache Xerces Java Parser’, http://xml.apache.-org/xerces-j/.

3 The Plays of Shakespeare in XML, http://xml.coverpages.org/bosakShakespeare200.html.

4 JXTA, ‘JXTA Project Home’, http://www.jxta.org.

 XFIS: an XML filtering system based on string representation and matching 93

Appendix

In this appendix we present in detail the pseudo codes of the XFIS filtering algorithm
implementation. The detailed pseudo codes can be seen in Figure 1.

The function addEdgeNode() tries to match a pair of char labels, representing an
edge, with the twigs’ TSSs. At first, the function locates those twigs whose position
points to the first label of the pair. For each of those twigs, it checks whether the
next label matches the second label of the pair. If so, the twig’s pointer is incremented
by 3 (to involve the space character), in order to point to the next character of the TSS,
and the twigPositions is updated accordingly. In addition, because now the branch node is
plabel, the function updates the branch information of this twig, by invoking the
updateBranchInfo() function, which we will describe later.

The function addCurrentNode() tries to match a single char label, representing an
internal node, with the twig’s TSS. At first, the function finds those twigs whose position
points to the specific label and for each of those twigs, it checks whether the next label
matches the space character (‘_’). If so, the twig’s pointer is incremented by 2 (to involve
the space character), in order to point at the next character of the TSS, and the
twigPositions is updated accordingly by calling the updateTwigPosition() function. In
addition, the function removes the branch information of this twig, as it has matched its
current branch node, by calling the removeBranchInfo() function. After matching all
corresponding twigs, the function accesses twigBranches to find all those twigs that
still need to match a branch with the current char label. It is obvious that all the twigs
that have matched this branch node in the previous step have been removed from the
twigBranches by the function removeBranchInfo() that was called previously. This
means that all of the twigs found in the twigBranches with the current label as key, failed
to match the current branch node; and as a result their TSS’s position must be
decremented by the corresponding offset. This action is performed by invoking the
function correctBranchPos().

Function addRootNode() is invoked by the SAX parser when the end of the root’s
node tag is reached. This means that the whole XML document has been parsed and
it is time to report those twigs that have a match with the document. Matched twigs
are those twigs that in the current step wait to match the character ‘#’, which means
that their TSS’s position is at the end. The function accesses twigPositions to find the
above-mentioned twigs and returns them as matched twigs. The filtering process is
then finished.

All the above-mentioned functions invoke the updateTwigPositions() function. This
function is used to update the hash table twigPositions when a twig TSS’s position is
changed. It deletes the old entry for the current twig and adds a new entry with the
current char label as key pointed from the twig’s TSS. This function is invoked whenever
a twig TSS’s position changes to point to a new char label.

The function which updates the branch node information of the twigs is
updateBranchInfo(). This function takes as arguments the twig ID and the char label of
the branch node to be matched. It checks whether there is an entry in the twigBranches
for the specific twig and branch node. If not, it inserts into twigBranches a corresponding
entry with offset 3. If there is already an entry for this twig and branch node (i.e., the
twig has already entered the branch-node matching area), it increments the offset of this
entry by 3.

 94 P. Antonellis and C. Makris

The function which deletes the branch node information of a twig (when it leaves the
branch-node matching area) is the removeBranchInfo(). This function simply finds and
removes the entry in twigBranches for the corresponding twig and char label.

The final function for branching node verification is correctBranchPos(). This
function is invoked for each of the twigs that failed to match a specific branch node. Its
purpose is to correct the corresponding twigs’ TSS positions by decrementing them by
the corresponding offset. Its argument is the ID of the twig to be corrected and the char
label of the corresponding branch node. The function accesses twigBranches using as key
the branch node’s label to find the entry involving the current twig. It reads the entry’s
current offset and decrements the twig TSS’s position by this offset.

Figure 1 Pseudo codes of filtering algorithm implementation

TSS CONSTRUCTION AND FILTERING
function addEdgeNode (label, plabel)
{
 TwigList <- twigPositions[label]
 foreach ID in TwigList
 {
 n = twigPointers[ID]
 if (TSSid[n] = label and TSSid[n+1] = plabel)

 {
 twigPointers[ID] +=3;
 updateTwigPosition(ID, TSSid[n], TSSid[n+3])
 updateBranchInfo(ID, plabel);
 }
 }
}

function addCurrentNode (label)
{
 TwigList <- twigPositions[label]
 foreach ID in TwigList
 {
 n = twigPointers[ID]
 if (TSSid[n] = label and TSSid[n+1] = ‘_’)
 {
 twigPointers[ID] +=2;
 updateTwigPosition(ID, TSSid[n],TSSid[n+2])
 removeBranchInfo(ID, label);
 }
 }
 BranchList <- twigBranches[label]
 foreach ID in BranchList
 {
 correctBranchPos(ID, label)
 removeBranchInfo(ID, label)
 }
}

function addRootNode ()
{
 TwigList <- twigPositions[‘#’]
 List filteredTwigs;
 foreach ID in TwigList
 {

add ID into filteredTwigs;
 }
 return filteredTwigs
}

function updateBranchInfo(twigID, label)
{
 List twigsList <- twigBranches[label]
 if (twigID exists in twigsList)
 {
 offsettwigID = offsettwigID +3
 }
 else
 {
 Put into twigBranches[label] -> {twigID,3}
 }
}

function removeBranchInfo(twigID, label)
{
 if (exists twigID in twigBranches[label])
 {
 remove twigID from twigBranches[label]
 }
}

function correctBranchPos(twigID, label)
{
 List twigsList <- twigBranches[label]
 n = twigPointers[twigID]
 for each ID in twigList
 {
 if (ID == twigID)
 {
 twigPointers[ID] -= offset
 updateTwigPositions(ID, TSSID[n], TSSID[n-offset])
 }
 }
}

function updateTwigPositions (ID, oldLab, newLab)
{
 List twigsOldList <- twigPositions[oldLab]
 remove ID from twigsOldList
 add ID into twigPositions[newLab]
}

