
XML Filtering Using Dynamic Hierarchical
Clustering of User Profiles

Panagiotis Antonellis and Christos Makris

Computer Engineering and Informatics Department, University of Patras, Rio 26500,
Greece

adonel@ceid.upatras.gr makri@ceid.upatras.gr

Abstract. Information filtering systems constitute a critical component
in modern information seeking applications. As the number of users
grows and the information available becomes even bigger it is crucial
to employ scalable and efficient representation and filtering techniques.
In this paper we propose an innovative XML filtering system that uti-
lizes clustering of user profiles in order to reduce the filtering space and
achieves sub-linear filtering time. The proposed system employs a unique
sequence representation for user profiles and XML documents based on
the depth-first traversal of the XML tree and an appropriate distance
metric in order to compare and cluster the user profiles and filter the
incoming XML documents. Experimental results depict that the pro-
posed system outperforms the previous approaches in XML filtering and
achieves sub-linear filtering time.

1 Introduction

Information filtering systems [1] are systems that provide two main services:
document selection (i.e., determining which documents match which users) and
document delivery (i.e., routing matching documents from data sources to users).
In order to implement efficiently these services, information filtering systems
rely upon representations of user profiles, that are generated either explicitly
by asking the users to state their interests, or implicitly by mechanisms that
track the user behaviour and use it as a guide to construct his/her profile. Initial
attempts to construct such profiles typically used ”bag of words” representations
and keyword similarity techniques to represent user profiles and match them
against new data items. These techniques, however, often suffer from limited
ability to express user interests, being unable to fully capture the semantics
of the user behaviour and user interests. As an attempt to face this lack of
expressibility, there have appeared lately a number of systems that use XML
representations for both documents and user profiles and that employ various
filtering techniques to match the XML representations of user documents with
the provided profiles. The process of filtering XML documents is the reverse of
searching XML documents for specific structural and value information. An XML
document filtering system stores user profiles along with additional information
(e.g. personal information of the user, email address). When an XML document



2

arrives, the system filters it through the stored profiles to identify with which of
them the document fits. After the filtering process has finished, the document
can be sent to the corresponding users with matching profiles.

1.1 Existing approaches

The existing XML filtering systems can be categorized as follows:
Automata-based Systems. The prominent examples of automata-based

systems are XFilter [2] and YFilter[7]. Systems in this category incorporate Fi-
nite State Automata (FSA) to quickly match the document with the user profiles.
In these systems, each data node causes a state transition in the underlying finite
state automata representation of the filters.

Sequence-based Systems. Systems in this category represent both the
user profiles and the XML documents as string sequences and then perform
subsequence matching between the document and profile sequences. FiST [12]
employs a novel holistic matching approach, that instead of breaking the twig
pattern into separate root to leaf paths, transforms (through the use of the Prüfer
sequence representation) the matching problem into a subsequence matching
problem. In order to provide more efficient filtering, user profiles sequences are
indexed using hash structures. XFIS [4] represents XML documents and user
profiles using a novel sequence representation based on post order traversal and
Prüfer sequences. XFIS supports on-line filtering of XML documents in only one
pass, thus it is ideal for on-line applications and filtering systems.

Stack-based Systems. The representative system of this category is AFilter
[5]. AFilter utilizes a stack structure while filtering the XML document against
user profiles. Its novel filtering mechanism leverages both prefix and suffix com-
monalities across filter statements, avoids unnecessarily eager result/state enu-
merations (such as NFA enumerations of active states) and decouples the mem-
ory management task from result enumeration to ensure correct results even
when the memory is tight.

Push Down Approaches. XPush [9] translates the collection of filter state-
ments into a single deterministic pushdown automaton. The XPush machine uses
a SAX parser that simulates a bottom up computation and hence doesn’t re-
quire the main memory representation of the document. XSQ [13] utilizes a
hierarchical arrangement of pushdown transducers augmented with buffers.

Suitable clustering algorithms for semistructured documents were extensively
studied in [11]. XML document clustering was based in modeling the XML doc-
uments as trees, calculating the tree edit distance between them and applying
a modified hierarchical clustering algorithm [8]. The tree edit distance is com-
puted as the minimum-cost sequence of operations required to convert one given
tree to another [10] [14]. In [6] the authors suggest the usage of tree structural
summaries to improve the performance of the distance calculation and at the
same time to maintain or even improve its quality. In [3] the authors introduce a
novel compact representation of XML documents based on edge summaries. The
proposed structure is utilized along with a suitable distance metric to efficiently
cluster homogeneous and heterogeneous XML documents.



3

1.2 Motivation and contribution

Existing XML filtering approaches are not always effective in filtering XML doc-
uments against a rapidly growing number of stored user profiles for the following
reasons:

– Usually, filtering systems cover a wide range of user interests and topics,
thus each incoming XML document is relevant to a small portion of stored
user profiles. However this fact is ignored by most filtering systems and the
XML documents are checked against all user profiles.

– Systems considering similarities between stored user profiles, e.g. AFilter,
utilize those similarities only to reduce extra checks, thus they keep checking
every XML document against all user profiles.

In this research work we propose a filtering system that:

– Utilizes a unique sequence representation for both user profiles and XML
documents based on the preorder traversal of XML tree.

– Measures similarity between two given user profiles or between an XML
document and a user profile based on an innovative metric that utilizes a
modification of the Levenshtein distance between the corresponding string
representations.

– Creates an hierarchical structure of clusters using a hybrid hierarchical clus-
tering algorithm based on the above mentioned metric.

– Applies a dynamic hierarchical filtering approach for each incoming XML
document, based on the formed structure of clusters. The number of different
levels of filtering depends on the number of previous matches in each level
of clusters

The rest of the paper is structured as follows. Section 2 introduces the utilized
sequence representation and describes the distance metrics adopted; section 3
discusses analytically the clustering and filtering processes; section 4 discusses
the experimental results and section 5 presents our conclusions.

2 Sequence Representation and Distance Metrics

2.1 Sequence Representation of XML trees

In this work, we use a unique sequence representation of XML documents and
user profiles, based on the preorder traversal of XML trees.

Every XML document can be easily modeled as an XML tree, where every
enclosed element or attribute is modeled as a child in the XML tree. On the other
hand, tree modeling of user profiles (expressed in XPath[19]) is not straightfor-
ward, as they may contain special relations (such as //, etc). In this paper we
consider only parent/child (/) and ancestor/ descendant relations (//), which is
the most used relation in user profiles. In order to model such a relation, we add
an extra node in the XML tree, labeled with *. Figure 1 depicts an example of
modeling a user profile (expressed in XPath) as an XML tree.



4

Fig. 1. Modeling a user profile as XML
tree

Fig. 2. Modified edit distance between
two user profiles

In order to construct the sequence representation of an XML tree, we need
to replace each distinct tag label with a single unique char. For this reason, we
utilize a dictionary structure that assigns each distinct tag with a single char
label and keeps track of the correspondence between tag labels and char labels.
In the rest of this paper, for simplicity reasons, we will refer to the XML nodes
directly with their char labels.

Based on the above observations, we introduce a novel tree sequence represen-
tation (TSR) of XML trees, based on preorder traversal, with the property that
every XML tree is represented by a unique sequence representation. Each node of
the XML tree is encoded by the pair <Parent><Node><Depth>, where <Parent>
represents the parent’s char label, <Node> represents the current node’s char la-
bel and <Depth> represents the current’s node depth. If the current node is the
root node, we replace <Parent> with &. For example, let us consider the XML
tree in Figure 1. The encoding of the C node is BC2, where B is the char label
of node’s parent, C is the node’s char label and 2 is its depth in the XML tree.
The TSR of an XML tree is calculated by preorder traversing the XML tree and
appending in each step the string encoding of every node reached. For example,
the TSR of the XML tree presented in Figure 1 is &A0 AB1 BB2 BC2 A*1 *D2.
The depth information is stored in order to avoid ambiguity in cases of nested
nodes with the same label. For example, in Figure 1, if the TSR didn’t store the
depth for every node, the node D could be child of either the two B nodes.

2.2 Distance between user profiles

In order to construct clusters of similar user profiles, we need to define a measure
of the distance between two given user profiles. Previous works in this area
propose the tree edit distance as a measure of the distance between any two
labeled trees. The tree edit distance counts the cost of the total number of simple
edit operations required to transform one tree to another. Initially, each edit
operation costs 1, but someone can assign different costs in every edit operation.

The following simple edit operations are allowed:

– Delete. Deletion of a single node.
– Insert. Insertion of a single node.
– Replace. Replacement of an existing node with another one.



5

The semantics of user profiles require some modification to the above mea-
sure. For this reason, we make the following assumptions:

– Delete operations are allowed only in leaf nodes or in ancestor/descendant
cases and cost 1.

– Insert operations are allowed only in leaf nodes or in ancestor/descendant
cases and cost 1.

– Replace operations are allowed everywhere, but cost as much as the minimum
weight of the two corresponding nodes (replaced and replacement node). The
intuition behind this is that the more descendants a tree node has, the more
important is for the corresponding user profile semantics. However, if the
replaced node has a * label, then the replacement cost is 0.

– The weight of a node v, denoted as w(v) is the total number of nodes in the
subtree rooted at v.

Ancestor/descendant cases correspond to the presence of a *-label. In those
cases, it is allowed to delete/insert a parent/child node of a *-labeled node.
Figure 2 depicts an example of the modified edit distance between two user
profiles. In this case, in order to transform User Profile 1 into User Profile 2, the
following edit operations are required:

– Insertion of the E-labeled node under the *-labeled node.
– Insertion of the E-labeled node under the C-labeled node.
– Replacement of the *-labeled node with the B-labeled node.

Following the previously mentioned assumptions, each of the first two edit
operations cost 1, while the third edit operation costs 0. Hence the modified edit
distance between the two user profiles is 2.

In order to calculate our modified tree edit distance between two user pro-
files, we need a distance metric that reduces the problem of calculating tree
edit operations into that of calculating the sequence edit distance between user
profiles TSRs. For this reason we employ a modification of the Levenshtein dis-
tance between the TSRs of user profiles. The original Levenshtein algorithm [16]
(also called Edit-Distance) calculates the least number of edit operations that
are necessary to modify one string to obtain another string. The most common
way of calculating this is by the dynamic programming approach. A tableau is
initialized measuring in the (m, n)-cell the Levenshtein distance between the m-
character prefix of one with the n-prefix of the other word [20]. The tableau can
be filled from the upper left to the lower right corner. Each jump horizontally or
vertically corresponds to an insert or a delete, respectively. The cost is normally
set to 1 for each of the operations. The diagonal jump can cost either one, if the
two characters in the row and column do not match, or 0, if they do. Each cell
always minimizes the cost locally. This way the number in the lower right corner
is the Levenshtein distance between the words.

However, in TSR, every node is represented as a pair of char labels and
an integer representing its depth, thus we modify the Levenshtein distance to
consider pair of chars instead of single chars. The depth information is used



6

Fig. 3. Modified edit distance between a user profile and an XML document

only in the case of nested nodes with the same tag, in order to distinguish
between them. Moreover, in order for the user profiles semantics to be fulfilled,
we apply the previously mentioned assumptions to the modified Levenshtein
distance algorithm. Table 1 presents the modified Levenshtein algorithm applied
for the two user profiles in Figure 2.

Table 1. Modified Levenshtein Algorithm

&A0 AB1 BD2 BE2 AC1 CE2

0 1 2 3 4 5 6

&A0 1 0 1 2 3 4 5
A*1 2 1 0 1 2 3 4
*D2 3 2 1 0 1 2 3
AC1 4 3 2 1 2 1 2

2.3 Distance between an XML document and a user profile

The distance between an XML document and a user profile is measured in a
similar manner with the distance between two user profiles. This fact is critical,
as the filtering algorithm should be able to compare the distance between two
user profiles and the distance between an XML document and a user profile. The
only differences are the following:

– Delete operations in the side of the XML document cost 0.
– Replace operations cost as much as the weight of the user profile’s corre-

sponding node.

The above rules ensure that a user profile’s distance from an XML document is
0 iff its tree representation is a subtree of the XML document’s representation.



7

Figure 3 depicts an example of the modified edit distance between a user profile
and an XML document. In this case, in order to transform the XML document
into the user profile, the following edit operations are required:

– Deletion of the R-labeled node.
– Deletion of the B-labeled node (under the R-labeled node).
– Deletion of the L-labeled node.
– Replacement of the E-labeled node with the C-labeled node.
– Replacement of the B-labeled node and the F-labeled node with the *-labeled

node.

Following the assumptions made before, the first three edit operations cost
0. The fourth edit operation costs as much as the weight of the C-labeled node,
e.g. 1. Finally the last edit operation costs 0. Hence the modified edit distance
between the user profile and the XML document is 1.

The distance is calculated again utilizing a modified Levenshtein distance
algorithm based on the previously presented assumptions.

One crucial property of the use of the two previously described metrics is
expressed in the following lemma:

Lemma 1. Given two user profiles P1, P2 and an XML document D, suppose
that distance(D,P2) = 0. Then distance(D,P1) ≤ distance(P2, P1)

Proof. Since distance(D,P2) = 0, then a segment of the XML document matches
exactly with P2. Let us denote by S that segment and S′ the rest of the XML
document (excluding S). Let us consider distance(S′, P1). There are two cases:

– distance(S′, P1) ≤ distance(P2, P1)
– distance(S′, P1) > distance(P2, P1)

In the first case, we can delete S from D (deletion costs 0), and thus:
distance(D,P1) = distance(S′, P1)⇔ distance(D,P1) ≤ distance(P2, P1)
In the second case, we can delete S′ from D (deletion costs 0). Thus,
distance(D,P1) = distance(S, P1).
However, because S matches with P2, we have:
distance(S, P1) = distance(P2, P1)⇔ distance(D,P1) = distance(P2, P1).
Thus in every case we have proved that: distance(D,P1) ≤ distance(P2, P1).�

The above lemma allows us to apply a clustering technique in order to reduce
the filtering space and thus create an hierarchical filtering scheme as explained
in the next sections. In particular, consider a cluster of user profiles, C, and
its centroid profile P . The centroid profile is the profile that has the minimum
average distance from the rest of the user profiles. In addition, consider that the
most distant profile from the centroid is the profile O and its distance from P is
d. Finally, consider an XML document D whose distance from P is r. If r ≥ d,
then based on Lemma 1, we can assume that there is no profile in the cluster
C whose distance from D is 0. If there was such a profile Z, then its distance
from P should be greater than r, based on Lemma 1. However, the most distant
profile’s distance from P is d ≤ r, thus there is no such a profile as Z in the
cluster C.



8

Fig. 4. Example of a cluster hierarchy forest

3 Filtering System

Our filtering system consists of two subcomponents: User profile clustering and
Filtering algorithm. The user profile clustering process is activated once, when
the system is initialized. When an XML document arrives, the filtering algo-
rithm is invoked to find those user profiles that match with the XML document.
The filtering algorithm utilizes the hierarchical structure of clusters formed at
the clustering phase in order to find those user profiles that match with each
incoming XML document.

3.1 User Profile Clustering

Our XML filtering system utilizes a modified hierarchical clustering algorithm, in
order to form a cluster hierarchy. The proposed clustering algorithm is a classical
hierarchical clustering algorithm which utilizes the previous described distance
metric between two user profiles. Our clustering algorithm works as follows:

At first, every user profile is considered as a single cluster. In every step,
the algorithm finds the two closest clusters and merges them in one cluster. For
every newly formed cluster, the algorithm calculates the cluster centroid, which
is that user profile which minimizes the average distance with the rest user
profiles in that cluster. In addition, the algorithm calculates the max distance,
which is the distance between the cluster’s centroid and the most distant user
profile inside the cluster. The max distance will be utilized during the filtering
process, described in Section 3.3. Finally, the clustering algorithm keeps track
of the cluster hierarchy, thus every formed cluster points to the two clusters it
was formed by. The clustering algorithm stops until only two top-level clusters
have remained. The result of our clustering algorithm is a cluster hierarchy forest
(with two root nodes) in which every node has exactly two children nodes (expect
of the leaf nodes). Every node u of that tree stores pointers to every-leaf node
(e.g. user profile) contained in the subtree rooted at node u, a pointer to its
centroid profile and its max distance.

Figure 4 shows an example of a such a cluster hierarchy forest. The clusters
C6 and C7 are the two root nodes of the forest. As it can be seen, every cluster in



9

the forest has exaclty two children, except of the low-level clusters (P1 through
P9) which represent the stored user profiles. Every cluster in the forest stores
pointers to its low-level user profiles, thus, for example, cluster C5 has pointers
to user profiles P1, P2, and P3. Due to space limitations, the max distance and
centroid profile for every cluster are not shown into the figure.

3.2 Filtering Algorithm

The filtering algorithm is used in order to filter an incoming XML document
through the previously described cluster hierarchy forest. The result of the fil-
tering process is a list of user profiles that match with the incoming XML docu-
ment. The incoming XML document is then forwared to the corresponding users
of the matched profiles.

Before describing the filtering algorithm, we give two important definitions
which will be used through out the filtering algorithm.

Definition 1. A user profile p matches with an incoming XML document D
iff distance(p, D) = 0.

The distance between a user profile and an XML document is measured as
described in Section 2.3, thus the above definition ensures that a user profile
matches an XML document iff its corresponding tree representation is a subtree
of the XML document’s tree representation.

Definition 2. An XML document D matches with a cluster of user profiles
C iff distance(D, c) ≤ m, where c is the cluster’s centroid and m is the cluster’s
max distance.

The above definition is based on Lemma 1. So, if distance(D, c) ≤ m, then it
is possible that the cluster C contains a user profile that matches with D. On the
other hand, if distance(D, c) > m, it is not possible that the cluster C contains
a user profile that matches with D. Thus, if an XML document D matches with
a cluster C, then it should be filtered through all the user profiles contained in
C. Otherwise, we can ignone the unmatched cluster and all its user profiles. This
notion is exploited by our filtering algorithm in order to dramatically decrease
the filtering space, thus achieving much better filtering time than the other
filtering algorithms.

The proposed algorithm utilizes a list of active clusters, called activeList,
which at any moment contains all the clusters that should be checked against
the next incoming XML document. This list is updated after an XML document
has been filtered as described later. In addition, the filtering algorithm adds a
counter called matchCnt in every cluster of the hiearchy tree. This counter counts
how many XML documents have been matched with the corresponding cluster.
Finally, the filtering algorithm initializes an extra global counter, called totCnt,
that counts the total number of XML documents that have been filtered.The
filtering process is as follows:

When first initialized, the activeList contains only the two top clusters
in the hierarchy forest. As a result, the first incoming XML document will be
checked against the two clusters in the activeList. At any step of the filtering
process, every incoming XML document is checked only against the clusters of



10

the activeList. For every matched cluster, the filtering algorithm increases
its matchCnt and then filters the XML document against all the user profiles
contained in that cluster, by simply calculating the distance between the XML
document and every user profile as described in Section 2.3. Every profile that
matches with the XML document is added to the output resultset of profiles.
However, the process of filtering an XML document with all the user profiles
within a cluster is the bottleneck of the filtering algorithm because it requires
checking the XML document with all the user profiles. Based on this notion, we
propose a dynamic filtering process which takes into consideration the number
of matchings per cluster and updates accordingly the activeList. The intuition
is that if a cluster has a lot of matchings, then the matched XML documents
are always checked against all its user profiles, thus if we want to reduce that
cost, we should split that cluster. In the same manner, if a cluster has very
few matchings, then we can eliminate the cost of checking every incoming XML
document with its centroid by merging that cluster with its sibling cluster. Thus,
after an XML document has been filtered, the filtering algorithm checks the value
of matchCnttotCnt of all the clusters contained in the activeList and compares them

with two thresholds: topThr and bottomThr. If the matchCnt
totCnt for a cluster C is

greater than topThr, then we remove C from the activeList and insert into
the activeList the two children of C. On the other hand, if the matchCnt

totCnt
for a cluster C is less than bottomThr, we remove C and its sibling from the
activeList and insert into the activeList the parent cluster of C. Thus, in
every step of the filtering process, we try to eliminate the cost of checking an
XML document with the centroids of the clusters in the activeList and the
cost of filtering an XML document with all the user profiles within a matched
cluster.

For example, consider the cluster hierarchy tree presented in Figure 4. Ini-
tially, the activeList contains the clusters C6 and C7. Thus every incoming
XML document is checked against those clusters and if it matches with one
or both of them, it is filtered through the user profiles of the matched clus-
ter(s). After a few XML documents have been filtered, suppose that the value of
matchCnt
totCnt for the cluster C6 has exceeded the topThr. In such a case, the filter-

ing algorithm removes C6 from the activeList and inserts the clusters C5 and
C2 into the activeList. Thus, every incoming XML document is now checked
against clusters C5, C2 and C7.

The values of topThr and bottomThr vary between 0 and 1 and are not
strictly defined and can be adjusted accordingly to the needs of every system.
We propose the following indicative values: topThr = 0.3 and bottomThr = 0.05.

4 Experiments

We tested our filtering system against FiST[12], which is one of the state-of-the-
art algorithms for filtering XML documents against twig pattern user profiles.
We chose FiST because it supports twig pattern user profiles, unlike other sys-
tems (e.g. AFilter, XFilter) which support only linear path expressions. Our



11

Fig. 5. Filtering time in relation with topThr threshold

filtering system was implemented in Java using the freeware Eclipse IDE[18]. In
order to obtain comparable and reliable results, we also implemented a FiST-like
algorithm in Java using Eclipse.

In our experiments we used three different datasets: the DBLP dataset[15],
the Shakespeare’s plays dataset[17] and the Sigmod Record dataset[21]. For each
of those datasets, we also generated a random number of user profiles with
arbitrary depth and fan-out.

Our first experiment was to investigate the influence of the topThr threshold
in the performance of our algorithm. For that purpose, we disabled the checking
for the bottomThr threshold and we used our algorithm to filter 100 documents
through 1000 user profiles. Both utilized documents and user profiles were arbi-
trarly selected from the 3 aforementioned datasets. The initial value of topThr
was 0.1 and in each step of this experiment we increased topThr by 0.1 until
it became 0.9. We measured the total filtering time of 100 documents required
by our algorithm in each step and we present the results in Figure 5. As we
can see, the total filtering time for the 100 XML documents decreases as the
value of topThr increases, until topThr reaches 0.4. At that point, the filtering
time has its global minimum value (approximately 115000ms). After that point,
the filtering time starts to increase again as the value of topThr increases. This
trend of the filtering time can be explained as follows: at first, when topThr
has a low value (e.g 0.1, 0.2), the filtering algorithm acts aggressively and splits
very often the clusters belonging to activeList, thus it moves deep in the clus-
ter hieararchy. As a result, the size of the activeList becomes very large and
each incoming document is always cheched against a large number of low-level
clusters. However, as the value of topThr increases (e.g 0.3, 0.4), the filtering
algorithm becomes less aggressive and splits fewer clusters, resulting in a smaller
activeList. Every incoming XML document is now checked against a moderate
number of top-level clusters, thus the total filtering time is reduced and reaches
its minimum value when topThr becomes 0.4. However, after that point and
as the value of topThr continues to increase, the filtering algorithm acts more
conservatively and rarely splits the clusters contained in activeList. Although,



12

Fig. 6. Filtering time in relation with bottomThr threshold

the size of activeList remains very small, the clusters contained in activeList
are very large (as they are not splitted easily) and whenever an incoming XML
document matches with a cluster in activeList it is filtered out through all the
profiles belonging to the corresponding cluster, thus requiring more time to be
filtered.

Our second experiment was to investigate the influence of the bottomThr
threshold in the performance of our algorithm. For that purpose, we standarized
topThr to 0.4, while in each step of that experiment we incremented bottomThr
by 0.02 (starting from 0.02) until it reached 0.2 (half value of topThr). We mea-
sured the total filtering time of 100 documents required by our algorithm in
each step and we present the results in Figure 6. As we can see, the filtering
time behaves in a similar manner with the first experiment: it decreases until
bottomThr becomes 0.1 and increases after that point. The explanation behind
this is that low values of bottomThr result in a very conservative filtering al-
gorithm which rarely merges two clusters of the activeList, thus the size of
activeList never decreases even if some of its clusters are rarely matched with
an incoming XML documents. However, as the value of bottomThr increases,
the filtering algorithm starts to merge more easily rarely matched clusters, thus
the activeList contains less but more popular clusters, thus the filtering time
decreases. Further increase of bottomThr (> 0.1) results in an aggresive merging
of clusters contained in activeList, thus the activeList contains only some
few top-level clusters, which in turn results in a lot of cluster matchings for every
incoming XML document. Those matchings increase the filtering time, as the
XML document has to be filtered out through all the user profiles contained in
every matched top-level cluster.

Our third experiment was to compare our proposed algorithm with Fist,
one of the state-of-the-art XML filtering algorithms. During this experiment we
measured the total time required by the two algorithms for filtering a set of 200
XML documents. We varied the number of stored user profiles between 200 and
1000 in order to investigate the relation between the number of user profiles



13

Fig. 7. Filtering time required for 200 documents by FiST and our algorithm (HCF)

and the required filtering time. The results of this experiment are presented in
Figure 7.

According to Figure 7, our algorithm (referred as HCF) outperforms FiST in
every step of that experiment and the difference in filtering time increases dra-
matically as the number of user profiles grows. In particular, in the case of 200
user profiles, our algorithm is 41% faster while in the case of 1000 user profiles,
our algorithm is 72% faster. Another important notion is that FiST requires lin-
ear filtering time, while our algorithm requires sub-linear time. The effectiveness
of our algorithm is due to the reduction of the filtering space achieved by employ-
ing the cluster hierarchy forest. As a result, the number of user profiles needed
to be checked against every incoming XML document is very small related to
the total number of stored user profiles.

5 Conclusions and Future Work

In this paper we have presented a new XML filtering system that uses cluster-
ing of user profiles in order to scale well as the number of user profiles grows.
The proposed system utilizes a unique sequence representation for user profiles
and XML documents, based on the preorder traversal. Based on this sequence
representation, we proposed a modification of the Levenshtein distance metric
in order to calculate the distance between two user profiles or between an XML
document and a user profile. The proposed metric reduces the problem of cal-
culating the tree edit distance into that of calculating the modified Levenshtein
distance between the sequence representations. Our system applies hierarchical
user profile clustering in order to succeed sub-linear filtering time, based on the
number of matchings per cluster. Our experimental results showed that the pro-
posed system outperforms the previous algorithms in XML filtering and requires
sub-linear time to filter the incoming XML documents.

As future work, we intend to compare our filtering algorithm with more ap-
proaches (such as AFilter, YFilter etc) as well as to utilize alternative clustering



14

techiques such as k-Means; moreover, we aim to extend our filtering algorithm
in order to additionally support value-predicate user profiles instead of only
structural user profiles.

6 Acknowledgements

Panagiotis Antonellis’ work was supported in part by the Hellenic State Schol-
arships Foundation (IKY).

References

1. Aguilera, M. K., Strom, R. E., Stunnan, D. C., AsHey, M. and Chandra, T. D:
Matching Events in a Content-based Subscription System. PODC 1999, 53–61

2. Altinel, M. and Franklin, M.l J.: Efficient Filtering of XML Documents for Selective
Dissemination of Information. VLDB 2000, 53–64

3. Antonellis, P., Makris, C. and Tsirakis, N.: XEdge: Clustering Homogeneous and
Heterogeneous XML Documents Using Edge Summaries. ACM SAC 2008 (to ap-
pear)

4. Antonellis P. and Makris, C. ”XFIS: An XML Filtering System based on String
Representation and Matching”, International Journal on Web Engineering and
Technology (IJWET) 4(1), 70–94,2008

5. Canadan, K., Hsiung, W., Chen, S., Tatemura, J. and Agrrawal, D.: AFilter: Adapt-
able XML Filtering with Prefix-Caching and Suffix-Clustering. VLDB 2006, 559–
570

6. Dalamagas, T., Cheng, T., Winkel, K. and Sellis, T.: Clustering XML documents
using Structural Summaries. EDBT Workshop 2004, 547–556

7. Diao, Y., Altinel, M., Franklin, M.l J., Zhang, H. and Fischer, P. Path sharing
and predicate evaluation for high-performance XML filtering. TODS 2003, 28(4)
467–516.

8. Francesca, F., Gordano, G., Ortale, R.and Tagarelli, A.: Distance-based Clustering
of XML Documents. MGTS 2003, 75–78

9. Gupta, A.K and Suciu, D Stream processing of XPath queries with predicates.
SIGMOD 2003, 419–430

10. Isert, C.: The editing distance between trees. Technical Report, Ferienakademie, for
course 2: Bume: Algorithmik Und Kombinatorik, Italy, 1999

11. Jain, A.K. and Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, 1988.
12. Kwon, J., Rao, P., Moon, B. and Lee, S.: FiST: Scalable XML Document Filtering

by Sequencing Twig Patterns. VLDB 2005, 217–228
13. Peng, F. and Chawathe, S.: XSQ: A streaming XPath Queries. TODS 2005, 577–

623
14. Zhang, K. and Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM Journal on Computing, 1989, 1245–1262.
15. http://kdl.cs.umass.edu/data/dblp/dblp-info.html
16. http://www.levenshtein.net/
17. http://xml.coverpages.org/bosakShakespeare200.html
18. http://www.eclipse.org
19. http://www.w3.org/TR/xpath
20. http://www.levenshtein.net
21. http://www.dia.uniroma3.it/Araneus/Sigmod/Record/DTD/index.html


