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Abstract. In this work, we study the fundamental naming and count-
ing problems (and some variations) in networks that are anonymous,
unknown, and possibly dynamic. In counting, nodes must determine the
size of the network n and in naming they must end up with unique iden-
tities. By anonymous we mean that all nodes begin from identical states
apart possibly from a unique leader node and by unknown that nodes
have no a priori knowledge of the network (apart from some minimal
knowledge when necessary) including ignorance of n. Network dynamic-
ity is modeled by the 1-interval connectivity model [KLO10], in which
communication is synchronous and a (worst-case) adversary chooses the
edges of every round subject to the condition that each instance is con-
nected. We first focus on static networks with broadcast where we prove
that, without a leader, counting is impossible to solve and that naming is
impossible to solve even with a leader and even if nodes know n. These
impossibilities carry over to dynamic networks as well. We also show
that a unique leader suffices in order to solve counting in linear time.
Then we focus on dynamic networks with broadcast. We conjecture that
dynamicity renders nontrivial computation impossible. In view of this,
we let the nodes know an upper bound on the maximum degree that will
ever appear and show that in this case the nodes can obtain an upper
bound on n. Finally, we replace broadcast with one-to-each, in which a
node may send a different message to each of its neighbors. Interestingly,
this natural variation is proved to be computationally equivalent to a
full-knowledge model, in which unique names exist and the size of the
network is known.

1 Introduction

Distributed computing systems are more and more becoming dynamic. The
static and relatively stable models of computation can no longer represent the
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plethora of recently established and rapidly emerging information and commu-
nication technologies. In recent years, we have seen a tremendous increase in the
number of new mobile computing devices. Most of these devices are equipped
with some sort of communication, sensing, and mobility capabilities. Even the
Internet has become mobile. The design is now focused on complex collections of
heterogeneous devices that should be robust, adaptive, and self-organizing, possi-
bly moving around and serving requests that vary with time. Delay-tolerant net-
works are highly-dynamic, infrastructure-less networks whose essential charac-
teristic is a possible absence of end-to-end communication routes at any instant.
Mobility can vary from being completely predictable to being completely un-
predictable. Gossip-based communication mechanisms, e-mail exchanges, peer-
to-peer networks, and many other contemporary communication networks all
assume or induce some sort of highly-dynamic communication network.

The formal study of dynamic communication networks is hardly a new area
of research. There is a huge amount of work in distributed computing that deals
with causes of dynamicity such as failures and changes in the topology that are
rather slow and usually eventually stabilize (like, for example, in self-stabilizing
systems [Dol00]). However the low rate of topological changes that is usually
assumed there is unsuitable for reasoning about truly dynamic networks. Even
graph-theoretic techniques need to be revisited: the suitable graph model is
now that of a dynamic graph (a.k.a. temporal graph or time-varying graph) (see
e.g. [MMCS13,KKK00,CFQS11]), in which each edge has an associated set of
time-labels indicating availability times. Even fundamental properties of classi-
cal graphs do not carry over to their temporal counterparts. See, for example,
[KKK00] for a violation of Menger’s theorem, [MMCS13] for a valid reformula-
tion of Menger’s theorem and the definition of several cost optimization metrics
for temporal networks, and [AKL08] for the unsuitability of the standard net-
work diameter metric.

In this work, we adopt as our dynamic network model the 1-interval connec-
tivity model of Kuhn et al. [KLO10] building upon previous work of O’Dell and
Wattenhofer [OW05]. In this model, nodes proceed in synchronous rounds and
communicate by interchanging messages. Message transmission is broadcast in
which, in every round, each node issues a single message to be delivered to all
its neighbors. In this model, the network may change arbitrarily from round to
round subject to the condition that in each round the network is connected. We
only consider deterministic algorithms.

We focus on networks in which nodes are initially identical and, unless nec-
essary, do not have any information about the network. In any case, nodes do
not know the size n of the network. By identical we mean that they do not have
unique identities (ids) and execute identical programs. So, this is some sort of
minimal reliable distributed system, like, for example, a collection of particu-
larly cheap and bulk-produced wireless sensor nodes. Nodes may execute the
same program, because it is too costly to program them individually and their
lack of ids may be due to the fact that ids require customization beyond the ca-
pabilities of mass production [AFR06]. Our only assumption is the existence of



a unique leader that introduces some symmetry breaking. To further break the
symmetry introduced by broadcast message transmission and in order to solve
naming in dynamic networks, we allow to the nodes to send a different message
to each one of their neighbors.

2 Related Work

Distributed systems with worst-case dynamicity were first studied in [OW05].
Their novelty was to assume a communication network that may change ar-
bitrarily from time to time subject to the condition that each instance of the
network is connected. They studied asynchronous communication and allowed
nodes detect local neighborhood changes. They studied the flooding and routing
problems in this setting and among others provided a uniform protocol for flood-
ing that terminates in O(Tn2) rounds using O(log n) bit storage and message
overhead, where T is the maximum time it takes to transmit a message.

Computation under worst-case dynamicity was further and extensively stud-
ied in a series of works by Kuhn et al. in the synchronous case. In [KLO10],
among others, counting (in which nodes must determine the size of the network)
and all-to-all token dissemination (in which n different pieces of information,
called tokens, are handed out to the n nodes of the network, each node being
assigned one token, and all nodes must collect all n tokens) were solved in O(n2)
rounds using O(log n) bits per message. The requirement for continuous connec-
tivity was first dropped in [MCS12b]. That work proposed a set of metrics for
capturing the speed of information spreading in a dynamic network that may be
disconnected at every instance and efficient algorithms were developed. Some re-
cent works, e.g. [Hae11], present information spreading algorithms in worst-case
dynamic networks based on network coding.

The question concerning which problems can be solved by a distributed sys-
tem when all processors use the same algorithm and start from the same state
has a long story with its roots dating back to the seminal work of Angluin
[Ang80], who investigated the problem of establishing a “center”. Further inves-
tigation led to the classification of computable functions [YK96,ASW88]. [BV99]
removed the, until then, standard assumption of knowing the network size n
and provided characterizations of the relations that can be computed with ar-
bitrary knowledge. Other well-known studies on unknown networks have dealt
with the problems of robot-exploration and map-drawing of an unknown graph
[DP90,AH00] and on information dissemination [AGVP90]. Fraigniaud et al.
[FPPP00] assumed a unique leader in order to break symmetry and assign short
labels as fast as possible. To circumvent the further symmetry introduced by
broadcast message transmission they also studied other natural message trans-
mission models as sending only one message to a single neighbor. Recently, and
independently of our work, Chalopin et al. [CMM12] have studied the problem
of naming anonymous networks in the context of snapshot computation. Finally,
Aspnes et al. [AFR06] studied the relative powers of reliable anonymous dis-
tributed systems with different communication mechanisms: anonymous broad-



cast, read-write registers, or read-write registers plus additional shared-memory
objects.

3 Contribution

We begin, in Section 4, by formally describing our distributed models. In Section
5, we formally define the problems under consideration, that is, naming, counting
and some variations of these. Our study begins, in Section 6, from static networks
with broadcast. The reason for considering static networks is to arrive at some
impossibility results that also carry over to dynamic networks, as a static network
is a special case of a dynamic network. In particular, we prove that naming is
impossible to solve under these assumptions even if a unique leader exists and
even if all nodes know n. Then we prove that without a leader also counting
is impossible to solve and naturally, in the sequel, we assume the existence
of a unique leader. We provide an algorithm based on the eccentricity of the
leader (greatest distance of a node from the leader) that solves counting in linear
time (inspired by the findings in [FPPP00]). Then, in Section 7, we move on to
dynamic networks with broadcast. We begin with a conjecture essentially stating
that dynamicity renders nontrivial computations impossible even in the presence
of a unique leader. 3 In view of this, we allow the nodes some minimal initial
knowledge, which is an upper bound on the maximum degree that any instance
will ever have. This could for example be some natural constraint on the capacity
of the network. We provide a protocol that exploits this information to compute
an upper bound on the size of the network. However, w.r.t. naming, the strong
impossibility from Section 6 still persists (after all, knowledge of n does not help
in labeling the nodes). To circumvent this, in Section 8, we relax our message
transmission model to one-to-each that allows each node to send a different
message to each one of its neighbors. This is an alternative communication model
that has been considered in several important works, like [Hae11], however in
different contexts than ours. This further symmetry breaking, though minimal,
allows us, by exploiting a leader, to uniquely label the nodes. By this, we establish
that this model is equivalent to a full-knowledge model in which unique names
exist and the size of the network is known. To arrive at this result, we provide four
distinct naming protocols each with its own incremental value. The first presents
how to assign ids in a fair context in which the leader will eventually meet every
other node. The second improves on the first by allowing all nodes to assign
ids in a context where no one is guaranteed to meet everybody else, but where
connectivity guarantees progress. Both these are correct stabilizing solutions
that do not guarantee termination. Then we provide a third protocol that builds
upon the first two and manages to assign unique ids in 1-interval connected
graphs while terminating in linear time. As its drawback is that messages may

3 By nontrivial computation we mean the ability to decide any language L on input
assignments s.t. L 6= Σ∗ and L 6= ∅, where input symbols are chosen from some
alphabet Σ. For example, deciding the existence of any symbol in the input is con-
sidered nontrivial.



be Ω(n2) bit long, we refine it to a more involved fourth protocol that reduces
the bits per message to Θ(log n) by only paying a small increase in termination
time.

4 Preliminaries

4.1 The models

A dynamic network is modeled by a dynamic graph G = (V,E), where V is a set
of n nodes (or processors) and E : IN→ P(E′), where E′ = {{u, v} : u, v ∈ V },
(wherever we use IN we mean IN≥1) is a function mapping a round number r ∈ IN
to a set E(r) of bidirectional links drawn from E′. Intuitively, a dynamic graph
G is an infinite sequence G(1), G(2), . . . of instantaneous graphs, whose edge sets
are subsets of E′ chosen by a (worst-case) adversary. A static network is just a
special case of a dynamic network in which E(i + 1) = E(i) for all i ∈ IN. The
set V is assumed throughout this work to be static, that is it remains the same
throughout the execution.

A dynamic graph/network G = (V,E) is said to be 1-interval connected,
if, for all r ∈ IN, the static graph G(r) is connected [KLO10]. Note that this
allows the network to change arbitrarily from round to round always subject
to the condition that it remains connected. In this work, we focus on 1-interval
connected dynamic networks which also implies that we deal with connected
networks in the static-network case.

Nodes in V are anonymous that is they do not initially have any ids and
they do not know the topology or the size of the network, apart from some
minimal knowledge when necessary (i.e. we say that the network is unknown).
However, nodes have unlimited local storage. In several cases, and in order to
break symmetry, we may assume a unique leader node (or source) l. If this is
the case, then we assume that l starts from a unique initial state l0 (e.g. 0) while
all other nodes start from the same initial state q0 (e.g. ⊥). All nodes but the
leader execute identical programs.

Communication is synchronous message passing [Lyn96,AW04], meaning
that it is executed in discrete rounds controlled by a global clock that is available
to the nodes and that nodes communicate by sending and receiving messages.
Thus all nodes have access to the current round number via a local variable
that we usually denote by r. We consider two different models of message trans-
mission. One is anonymous broadcast, in which, in every round r, each node u
generates a single message mu(r) to be delivered to all its current neighbors
in Nu(r) = {v : {u, v} ∈ E(r)}. The other is one-to-each in which a different
message m(u,i)(r), 1 ≤ i ≤ du(r), where du(r) := |Nu(r)| is the degree of u in
round r, may be generated for each neighbor vi. In every round, the adversary
first chooses the edges for the round; for this choice it can see the internal states
of the nodes at the beginning of the round. In the one-to-each message transmis-
sion model we additionally assume that the adversary also reveals to each node
u a set of locally unique edge-labels 1, 2, . . . , du(r), one for each of the edges cur-
rently incident to it. Note that these labels can be reselected arbitrarily in each



round so that a node cannot infer what the internal state of a neighbor is based
solely on the corresponding local edge-name. Then each node transitions to a
new state based on its internal state (containing the messages received in the
previous round) and generates its messages for the current round: in anonymous
broadcast a single message is generated and in one-to-each a different message
is generated for each neighbor of a node. Note that, in both models, a node
does not have any information about the internal state of its neighbors when
generating its messages. Deterministic algorithms are only based on the current
internal state to generate messages. This implies that the adversary can infer the
messages that will be generated in the current round before choosing the edges.
Messages are then delivered to the corresponding neighbors. In one-to-each, we
assume that each message mi received by some node u is accompanied with u’s
local label i of the corresponding edge, so that a node can associate a message
sent through edge i with a message received from edge i. These messages will
be processed by the nodes in the subsequent round so we typically begin rounds
with a “receive” command referring to the messages received in the previous
round. Then the next round begins.

4.2 Causal Influence

Probably the most important notion associated with a dynamic graph is the
causal influence, which formalizes the notion of one node “influencing” another
through a chain of messages originating at the former node and ending at the
latter (possibly going through other nodes in between). We use (u, r)  (v, r′)
to denote the fact that node u’s state in round r (r-state of u) influences node
v’s state in round r′. Formally:

Definition 1 ([Lam78]). Given a dynamic graph G = (V,E) we define an
order →⊆ (V × IN≥0)2, where (u, r)→ (v, r + 1) iff u = v or {u, v} ∈ E(r + 1).
The causal order  ⊆ (V × IN≥0)2 is defined to be the reflexive and transitive
closure of →.

A very important aspect of 1-interval connectivity, that will be invoked in all
our proof arguments in dynamic networks, is that it guarantees that the state of
a node causally influences the state of another uninfluenced node in every round
(if one exists). To get an intuitive feeling of this fact, consider a partitioning of
the set of nodes V to a subset V1 of nodes that know the r-state of some node
u and to a subset V2 = V \V1 of nodes that do not know it. Connectivity asserts
that there is always an edge in the cut between V1 and V2, consequently, if nodes
that know the r-state of u broadcast it in every round, then in every round at
least one node moves from V2 to V1.

This is formally captured by the following lemma from [KLO10].

Lemma 1 ([KLO10]). For any node u ∈ V and r ≥ 0 we have

1. |{v ∈ V : (u, 0) (v, r)}| ≥ min{r + 1, n},
2. |{v ∈ V : (v, 0) (u, r)}| ≥ min{r + 1, n}.



5 Problem Definitions

k-labeling. An algorithm is said to solve the k-labeling problem if whenever it
is executed on a network comprising n nodes each node u eventually terminates
and outputs a label (or name or id) idu so that |{idu : u ∈ V }| ≥ k.

Naming. The naming problem is a special case of the k-labeling problem in
which it must additionally hold that k = n. This, in turn, implies that idu 6= idv
for all distinct u, v ∈ V (so, unique labels are required for the nodes).

Minimal (Consecutive) Naming. It is a special case of naming in which it
must additionally hold that the n nodes output the labels {0, 1, . . . , n− 1}.

Counting Upper Bound. Nodes must determine an upper bound k on the
network size n.

Counting. A special case of counting upper bound in which it must hold that
k = n.

6 Static Networks with Broadcast

We here assume that the network is described by a static graph G = (V,E),
where E ⊆ {{u, v} : u, v ∈ V }. Moreover, the message transmission model is
broadcast, that is, in every round, each node u generates a single message to be
delivered to all its neighbors. Note that any impossibility result established for
static networks is also valid for dynamic networks as a static network is a special
case of a dynamic network.

First of all, note that if all nodes start from the same initial state then, if
we restrict ourselves to deterministic algorithms, naming is impossible to solve
in general static networks, even if nodes know n. The reason is that in the
worst-case they may be arranged in a ring (in which each node has precisely 2
neighbors) and it is a well-known fact [Ang80,Lyn96,AW04] that, in this case,
in every round r, all nodes are in identical states.

We show now that impossibility persists even if we allow a unique leader and
even if nodes have complete knowledge of the network.

Theorem 1. Naming is impossible to solve by deterministic algorithms in gen-
eral anonymous (static) networks with broadcast even in the presence of a leader
and even if nodes have complete knowledge of the network.

Proof. Consider a star graph with the leader in the center. ut

An obvious generalization is that, under the same assumptions as in the
statement of the theorem, it is impossible to solve k-labeling for any k ≥ 3. In
the full paper, we also provide some thoughts on a degree-based labeling.

We now turn our attention to the simpler counting problem. First we establish
the necessity of assuming a unique leader.



Theorem 2. Without a leader, counting is impossible to solve by deterministic
algorithms in general anonymous networks with broadcast.

Proof. If some algorithm counts in k rounds the n nodes of a static ring, then it
fails on a ring of k + 1 nodes. ut

In view of Theorem 2, we assume again a unique leader in order to solve
counting. Recall that the eccentricity of a node u is defined as the greatest
geodesic distance between u and v, over all v ∈ V \{u}, where “distance” is
equivalent to “shortest path”. We first describe a protocol Leader Eccentricity
(inspired by the Wake&Label set of algorithms of [FPPP00]) that assigns to
every node a label equal to its distance from the leader and then we exploit this
to solve counting. We assume that all nodes have access to the current round
number via a variable r.
Protocol Leader Eccentricity. The leader begins with label ← 0 and
max asgned ← 0 and all other nodes with label ←⊥. In the first round, the
leader broadcasts an assign (1) message. Upon reception of an assign (i) mes-
sage, a node that has label =⊥ sets label ← i and broadcasts to its neighbors
an assign (i+ 1) message and an ack (i) message. Upon reception of an ack (i)
message, a node with label 6=⊥ and label < i broadcasts it. Upon reception of an
ack (i) message, the leader sets max asgned← i and if r > 2 · (max asgned+1)
then it broadcasts a halt message, outputs its label, and halts. Upon reception
of a halt message, a node broadcasts halt, outputs its label, and halts.

Theorem 3. In Leader Eccentricity nodes output ε + 1 distinct labels where
ε is the eccentricity of the leader. In particular, every node outputs its distance
from the leader.

Proof. At time 2, nodes at distance 1 from the leader receive assign (1) and
set their label to 1. By induction on distance, nodes at distance i get label i at
round i+ 1. In the same round, they send an ack that must arrive at the leader
at round 2i+ 1. If not then there is no node at distance i. ut

We now use Leader Eccentricity to solve counting in anonymous unknown
static networks with a leader. We additionally assume that at the end of
the Leader Eccentricity process each node u knows the number of neighbors
up(u) = |{{v, u} ∈ E : label(v) = label(u) − 1}| it has to its upper level (it
can store this during the Leader Eccentricity process by counting the number
of assign messages that arrived at it from its upper level neighbors). Moreover,
we assume that all nodes know the leader’s eccentricity ε (just have the leader
include max asgned in its halt message). Finally, let, for simplicity, the first
round just after the completion of the above process be round r = 1. For this,
we just need all nodes to end concurrently the Leader Eccentricity process.
This is done by having node with label i that receives or creates (this is true for
the leader) a halt message in round r halt in round (r+max asgned− i). Then
the nodes just reset their round counters.
Protocol Anonymous Counting. Nodes first execute the modified
Leader Eccentricity. When ε− r+ 1 = label(u), a non-leader node u receives a



possibly empty (in case of no lower-level neighbors) set of partial counti (rvali)
messages and broadcasts a partial count ((1 +

∑
i rvali)/up(u)) message. When

r = ε + 1, the leader receives a set of partial counti (rvali) messages, sets
count ← 1 +

∑
i rvali, broadcasts a halt (count) message, outputs count, and

halts. When a non-leader u receives a halt (count) message, it outputs count
and halts.

For a given round r denote by rvali(u) the ith message received by node u.

Theorem 4. Anonymous Counting solves the counting problem in anonymous
static networks with broadcast under the assumption of a unique leader. All nodes
terminate in O(n) rounds and use messages of size O(log n).

Proof. By induction on the round number r, in the beginning of round r ≥ 2,
it holds that

∑
u:label(u)=ε−r+1 (1 +

∑
i rvali(u)) = |{u : label(u) ≥ ε − r + 1}|.

Clearly, in round ε + 1 it holds that count = 1 +
∑
i rvali(leader) = |{u :

label(u) ≥ 0}| = n. ut

7 Dynamic Networks with Broadcast

We now turn our attention to the more general case of 1-interval connected dy-
namic networks with broadcast. We begin with a conjecture stating that dynam-
icity renders nontrivial computation impossible (see also [OW05] for a similar
conjecture in a quite different setting). Then we naturally strengthen the model
to allow some computation.

Conjecture 1. It is impossible to compute (even with a leader) the predicate
Na ≥ 1, that is “exists an a in the input”, in general anonymous unknown
dynamic networks with broadcast.

In view of Theorem 1, which establishes that we cannot name the nodes of
a static, and thus also of a dynamic, network if broadcast communication is
assumed, and of the above conjecture, implying that in dynamic networks we
cannot count even with a leader 4, we start strengthening our initial model.

Let us assume that there is a unique leader l that knows an upper bound
d on maximum degree ever to appear in the dynamic network, that is d ≥
maxu∈V,r∈IN{du(r)}. We keep the broadcast message transmission.

Note first that impossibility of naming persists. However, we show that ob-
taining an upper bound on the size of the network now becomes possible, though
exponential in the worst case.
Protocol Degree Counting. The leader stores in d the maximum degree that
will ever appear and begins with label ← 0, count ← 1, latest event ← 0,
max label← 0, and r ← 0 while all other nodes begin with label←⊥, count← 0,
and r ← 0. In the beginning of each round each node increments by one its round

4 This is implied because, if we could count, we could have a node wait at most n− 1
rounds to hear of an a (provided that all nodes that have heard of an a forward it)
and if no, reject.



counter r. The leader in each round r broadcasts assign (r). Upon reception of
an assign (r label) message, a node with label =⊥ sets label← r label and from
now in each round r broadcasts assign (r) and my label (label). A node with
label =⊥ that did not receive an assign message sends an unassigned (r) mes-
sage. All nodes continuously broadcast the maximum my label and unassigned
messages that they have received so far. Upon reception of an unassigned (i)
message, the leader, if i > latest event, it sets count ← 1 and, for k = 1, . . . , i,
count ← count + d · count, max label ← i, and latest event ← r and upon
reception of a my label (j) message, if j > max label, it sets count ← 1
and, for k = 1, . . . , j, count ← count + d · count, latest event ← r, and
max label ← j (if receives both i, j it does it for max{i, j}). When it holds
that r > count+ latest event− 1 (eventually occurs) then the leader broadcasts
a halt (count) message for count rounds and then outputs count and halts. Each
node that receives a halt (r count) message, sets count ← r count, broadcasts
a halt (count) message for count rounds and then outputs count and halts.

Theorem 5. Degree Counting solves the counting upper bound problem in
anonymous dynamic networks with broadcast under the assumption of a unique
leader. The obtained upper bound is O(dn) (in the worst case).

Proof. In the first round, the leader assigns the label 1 to its neighbors and
obtains an unassigned (1) message from each one of them. So, it sets count←
(d+ 1) (in fact, note that in the first step it can simply set count← du(1) + 1,
but this is minor), latest event ← 1, and max label ← 1. Now, if there are
further nodes, at most by round count+ latest event− 1 it must have received
an unassigned (i) message with i > latest event or a my label (j) with j >
max label. Note that the reception of an unassigned (i) message implies that
at least i + 1 distinct labels have been assigned because as long as there are
unlabeled nodes one new label is assigned in each round to at least one node
(this is implied by Lemma 1 and the fact that all nodes with labels constantly
assign new labels). Initially, one node (the leader) assigned to at most d nodes
label 1. Then the d + 1 labeled nodes assigned to at most (d + 1)d unlabeled
nodes the label 2, totalling (d+ 1) + (d+ 1)d, and so on.

In the worst-case, each label in {0, 1, . . . , n − 1} is assigned to precisely one
node (e.g., consider a static line with the leader in the one endpoint). In this
case the nodes count O(dn). ut

We point out that if nodes have access to more drastic initial knowl-
edge such as an upper bound e on the maximum expansion, defined as
maxu,r,r′{|futureu,r(r

′ + 1)| − |futureu,r(r
′)|} (maximum number of concurrent

new influences), where future(u,r)(r
′) := {v ∈ V : (u, r)  (v, r′)}, for r ≤ r′,

then essentially the same protocol as above provides an O(n · e) upper bound.

8 Dynamic Networks with One-to-Each

The result of Theorem 1, in the light of (a) the conjecture of Section 7, and
(b) the assumption of a broadcast message transmission model, clearly indicates



that nontrivial computations in anonymous unknown dynamic networks are im-
possible even under the assumption of a unique leader. We now relax these
assumptions so that we can state a correct naming protocol. We start by relax-
ing the assumption of a broadcast message transmission medium by offering to
nodes access to a one-to-each message transmission mechanism. We also assume
a unique leader as without it, even under one-to-each, impossibility persists.

1st Version - Protocol Fair

We now present protocol Fair in which the unique leader assigns distinct labels
to each node of the network. The labels assigned are tuples (r, h, i), where r is
the round during which the label was assigned, h is the label of the leader node
and i is a unique number assigned by the leader. The labels can be uniquely
ordered first by r, then by h and finally by i (in ascending order).

Each node maintains the following local variables: clock, for counting the
rounds of execution of the protocol (due to synchrony), label, for storing the
label assigned by the leader, state, for storing the local state that can be
set to {anonymous, named, leader}, and counter, for storing the number of
labels generated. All nodes are initialized to clock ← 0, id ← (0,⊥,⊥),
state← anonymous, and counter ← 0 except from the leader that is initialized
to clock ← 0, id← (0, 1, 1), state← leader, and counter ← 1.

Each turn the leader u consults the one-to-each transmission mechanism and
identifies a set of locally unique edge-labels 1, 2, . . . , d(u), one for each of the
edges incident to it. 5 The leader iterates the edge-label set and transmits to
each neighboring node a different message mi, 1 ≤ i ≤ d(u) that contains the
unique label (clock, label, counter + i). When the transmission is complete, it
increases the variable counter by d(u). All the other nodes of the network do
not transmit any messages (or transmit a null message).

All nodes under state = anonymous, upon receiving a (non-null) message
set the local label to the contents of the message and change state to named.
All the other nodes of the network simply ignore all the messages received.

Recall that a naming assignment is correct if all nodes are assigned different
labels. It is clear that Fair is a non-terminating correct protocol, given the
following fairness assumption: the leader node at some point has become directly
connected with each other node of the network (i.e., eventually meets all nodes).

Lemma 2. With one-to-each transmission, under the fairness assumption, and
in the presence of a unique leader, protocol Fair eventually computes a unique
assignment for all the nodes in any anonymous unknown dynamic network.

2nd Version - Protocol Delegate

We now proceed by presenting a stronger protocol Delegate (based on Fair)
that is correct even without the fairness assumption. To achieve correctness

5 Recall that these edge-labels can be reselected arbitrarily in each round (even if the
neighbors remain the same) by the adversary so that a node cannot infer the internal
state of a neighbor, based solely on the corresponding local edge-name.



the leader node delegates the role of assignment of labels to all the nodes that it
encounters. Thus, without loss of generality, even if the leader does not encounter
all other nodes of the network, due to the connectivity property, all nodes will
eventually hear from the leader. Therefore, all nodes will either receive a unique
label from the leader or from another labeled node. The uniqueness among the
labels generated is guaranteed since each label can be traced back to the node
that issued it using the h parameter.

In Delegate the nodes maintain the same variables as in Fair. Each turn
the leader performs the same actions as in Fair. Also similarly to Fair, each
node that is in state = anonymous does not transmit any message (or transmits
a null message if message transmission is compulsory). Each node u that is in
state = named performs similar actions as the leader node and transmits to each
edge-label i a message containing the unique label (clocku, labelu, counteru +
i) and then increases the variable counteru by d(u). All nodes under state =
anonymous, upon receiving one or more (non-null) messages that contain a
label, select the message that contains the lowest label (i.e., the one with the
lowest h parameter) and set the local label to the contents of the message and
change state to named.

Lemma 3. With one-to-each transmission, and in the presence of a unique
leader, protocol Delegate correctly computes a unique assignment for all the
nodes in any anonymous unknown dynamic network.

3rd Version - Protocol Dynamic Naming (terminating)

The protocols Fair and Delegate compute a correct naming assignment (based
on different assumptions) but do not terminate. Essentially the nodes continue
to transmit labels forever. We now present protocol Dynamic Naming (based
on Delegate, Fair) that manages to terminate.

Dynamic Naming is an O(n)-time protocol that assigns unique ids to the
nodes and informs them of n. As usual, there is a unique leader l with id 0 while
all other nodes have id ⊥.

The idea here is as follows. Similarly toDelegate, all nodes that have obtained
an id assign ids and these ids are guaranteed to be unique. Additionally to
Delegate, we have nodes that have obtained an id to acknowledge their id to
the leader. Thus, all nodes send their ids and all nodes continuously forward
the received ids so that they eventually arrive at the leader (simple flooding
mechanism). So, at some round r, the leader knows a set of assigned ids K(r).
We describe now the termination criterion. If |K(r)| 6= |V | then in at most
|K(r)| additional rounds the leader must hear (be causally influenced) from a
node outside K(r) (to see why, see Lemma 1). Such a node, either has an id that
the leader first hears of, or has no id yet. In the first case, the leader updates
K(r) and in the second waits until it hears of a new id (which is guaranteed
to appear in the future). On the other hand, if |K(r)| = |V | no new info will
ever arrive at the leader in the future and the leader may terminate after the
|K(r)|-round waiting period ellapses.



Protocol Dynamic Naming. Initially, every node has three variables count←
0, acks ← ∅, and latest unassigned ← 0 and the leader additionally has
latest new ← 0, time bound ← 1, and known ids ← {0}. A node with
id 6=⊥ for 1 ≤ i ≤ k sends assign (id, count + i) message to its ith neigh-
bor and sets count← count+ k. In the first round, the leader additionally sets
known ids ← {0, (0, 1), (0, 2), . . . , (0, k)}, latest new ← 1, and time bound ←
1 + |known ids|. Upon receipt of l assign messages (ridj), a node with id =⊥
sets id ← minj{ridj} (in number of bits), acks ← acks ∪ id, sends an ack
(acks) message to all its k current neighbors, for 1 ≤ i ≤ k sends assign
(id, count + i) message to its ith neighbor, and sets count ← count + k. Upon
receipt of l ack messages (acksj), a nonleader sets acks ← acks ∪ (

⋃
j acksj)

and sends ack (acks). A node with id =⊥ sends unassigned (current round).
Upon receipt of l ≥ 0 unassigned messages (valj), a node with id /∈ {0,⊥
} sets latest unassigned ← max{latest unassigned,maxj{valj}} and sends
unassigned (latest unassigned). Upon receipt of l ack messages (acksj), the
leader if (

⋃
j acksj)\known ids 6= ∅ sets known ids← known ids ∪ (

⋃
j acksj),

latest new ← current round and time bound ← current round + |known ids|
and upon receipt of l unassigned messages (valj), it sets latest unassigned ←
max{latest unassigned,maxj{valj}}. If, at some round r, it holds at the leader
that r > time bound and latest unassigned < latest new, the leader sends a
halt (|known ids|) message for |known ids| − 1 rounds and then outputs id and
halts. Any node that receives a halt (n) message, sends halt (n) for n−2 rounds
and then outputs id and halts.

Denote by S(r) = {v ∈ V : (l, 0) (v, r)} the set of nodes that have obtained
an id at round r and by K(r) those nodes in S(r) whose id is known by the leader
at round r, that is K(r) = {u ∈ V : ∃r′ s.t. u ∈ S(r′) and (u, r′) (l, r)}.

Theorem 6. Dynamic Naming solves the naming problem in anonymous un-
known dynamic networks under the assumptions of one-to-each message trans-
mission and of a unique leader. All nodes terminate in O(n) rounds and use
messages of size Θ(n2).

Proof. Unique names are guaranteed as in Delegate. Termination is as follows.
Clearly, if V \K(r) 6= ∅, either |K(r + |K(r)|)| ≥ |K(r)| + 1 or (u, r)  (l, r +
|K(r)|) for some u ∈ V \S(r). The former is recognized by the leader by the
arrival of a new id and the latter by the arrival of an unassigned (timestamp)
message, where timestamp ≥ r. On the other hand, if K(r) = V then |K(r +
|K(r)|)| = |K(r)| and @u ∈ V \S(r) s.t. (u, r)  (l, r + |K(r)|) as V \S(r) = ∅.
Finally, note that connectivity implies that |S(r+1)| ≥ min{|S(r)|+1, n} which
in turn implies O(n) rounds until unique ids are assigned. Then another O(n)
rounds are required until nodes terminate. ut

Clearly, by executing a simple O(n)-time process after Dynamic Naming we
can easily reassign minimal (consecutive) names to the nodes. The leader just
floods a list of (old id, new id) pairs, one for each node in the network.

Note that the messages sent by Dynamic Naming may be of size Ω(n2). We
now refine Dynamic Naming to arrive at a more involved construction that re-



duces the message size to Θ(log n) by paying a small increase in termination time.
We call this 4th version of our naming protocols Individual Conversations. Due
to space restrictions, we only give the main idea here.
Protocol Individual Conversations [Main Idea]. To reduce the size of the
messages (i) the assigned names are now of the form k ·d+id, where id is the id of
the node, d is the number of unique consecutive ids that the leader knows so far,
and k ≥ 1 is a name counter (ii) Any time that the leader wants to communicate
to a remote node that has a unique id it sends a message with the id of that
node and a timestamp equal to the current round. The timestamp allows all
nodes to prefer this message from previous ones so that the gain is twofold: the
message is delivered and no node ever issues a message containing more than
one id. The remote node then can reply in the same way. For the assignment
formula to work, nodes that obtain ids are not allowed to further assign ids until
the leader freezes all named nodes and reassigns to them unique consecutive ids.
During freezing, the leader is informed of any new assignments by the named
nodes and terminates if all report that no further assignments were performed.

Theorem 7. Individual Conversations solves the (minimal) naming problem
in O(n3) rounds using messages of size Θ(log n).
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