
The Computational Power of Simple Protocols
for Self-Awareness on Graphs?

Ioannis Chatzigiannakis1,2, Othon Michail1, Stavros Nikolaou1,2, and
Paul G. Spirakis1,2

1 Research Academic Computer Technology Institute (CTI), Patras, Greece
2 Computer Engineering and Informatics Department (CEID), University of Patras

Email: {ichatz, michailo, nikolaou, spirakis}@cti.gr

Abstract. We explore the capability of a network of extremely lim-
ited computational entities to decide properties about any of its sub-
networks. We consider that the underlying network of the interacting
entities (devices, agents, processes etc.) is modeled by a complete in-
teraction graph and we devise simple graph protocols that can decide
properties of some input subgraph provided by some preprocessing on
the network. The agents are modeled as finite-state automata and run
the same global graph protocol. Each protocol is a fixed size grammar,
that is, its description is independent of the size (number of agents) of
the network. This size is not known by the agents. We propose a simple
model, the Mediated Graph Protocol (MGP) model, similar to the Pop-
ulation Protocol model of Angluin et al., in which each network link is
characterized by a state taken from a finite set. This state can be used
and updated during each interaction between the corresponding agents.
We provide some interesting properties of the MGP model among which
is the ability to decide properties on stabilizing (initially changing for a
finite number of steps) input graphs and we show that the MGP model
has the ability to decide properties of disconnected input graphs. We
show that the computational power within the connected components is
fairly restricted. Finally, we give an exact characterization of the class
GMGP, of graph languages decidable by the MGP model: it is equal
to the class of graph languages decidable by a nondeterministic Turing
Machine of linear space that receives its input graph by its adjacency
matrix representation.

1 Introduction

Consider an application that allows users to make voice calls over the
Internet by executing a software agent. The software agents are organized
in a peer-to-peer overlay network. Suppose that in order to achieve certain
quality of service levels, statistical data have shown that each agent must

? This work has been partially supported by the ICT Programme of the European
Union under contract number ICT-2008-215270 (FRONTS).

have at most k concurrent incoming voice-traffic flows. We assume that
the software agents are quite limited: each agent has a constant number
of bits of memory and two agents can communicate only when they are
required to forward voice traffic. We also assume that agents have access
to a global storage in which very limited information can be stored. In this
setting, software agents have no control over their interactions: users come
and go, and requests for voice calls are made by the users. We assume that
the underlying pattern of interactions guarantees a fairness condition on
the interactions: every pair of agents in the network is repeatedly allowed
to exchange control information for their users to have voice calls.

Under these assumptions, there is a simple protocol ensuring that
every agent eventually contains the correct answer. Each agent stores a
counter (0, 1, . . . , k + 1, where k is a constant) signifying the number of
active incoming traffic flows. The global storage service stores 1 bit for
each possible pair of interacting agents. Initially, all agents have their
counter set to 0 and each bit of the global storage is set to 1. When
two agents interact, e.g., to forward voice traffic, if the bit corresponding
to this interaction is 1, then the receiving agent increases its counter by
one and the corresponding bit is set to 0. If the bit is 0, then nothing
happens (the incoming flow has been already counted). If some counter
reaches the value k+1, then an alert state is propagated to the population
and eventually, all agents are informed of the existence of a potential
bottleneck in the network and can take appropriate actions.

Now consider the question of whether the overlay network is fully
connected or not. Is there a protocol to answer such questions without
any assumptions about the size of the network? In this work, we focus
on the following question: what properties of the underlying network can
be computed by populations of computationally restricted, interacting
entities? We are interested in the levels of knowledge that such systems
can achieve regarding their own properties and characteristics, in other
words, to what extent they can become self-aware. Such knowledge can be
used to optimize the system’s overall behavior w.r.t. resource usage, per-
formance, etc., and to adapt to changing conditions concerning internal
changes (e.g., a topology change) and context changes (e.g., a modifica-
tion of user behavior).

2 Previous Work

In [3], Angluin et al. introduced the Population Protocol (PP) model,
which captures the notion of computation by a population of extremely

limited communicating agents. In this model, the system consists of a
collection of agents, represented as finite-state machines. The agents ex-
change information via pairwise interactions, which they are unable to
predict or control. Via these interactions, the system organizes its com-
putation and provides complex behavior as a whole. In [3, 4], the com-
putational power of the model was studied and has been proved to be
exactly the class of semilinear predicates, consisting of all predicates de-
finable by first-order logical formulas of Presburger arithmetic (see, e.g.,
[10]). The capability of the model to decide graph properties of restricted
interaction graphs was explored in [2].

In an attempt to enhance the basic model, an interesting variation was
proposed in [7], called the Mediated Population Protocol (MPP) model,
in which the population is also capable of storing constant size informa-
tion for each pairwise interaction. This extension is fitting for modeling
more complex systems where relations are formed between the interact-
ing entities and the information generated concerning these relations is
required in each interaction of the respective entities. For example, bio-
logical and artificial neural networks concern networks of interconnected
simple processing elements that exhibit complex global behavior deter-
mined by the connections between them. These connections (synapses)
can store parameters called “weights” that influence the outcome of the
computations. In [6], it was proven that, in complete graphs, the MPP
model is computationally equivalent to a Nondeterministic Turing Ma-
chine (NTM) of O(n2) space that computes symmetric predicates.

In [8], the Graph Decision Mediated Population Protocols (GDMPPs)
were introduced, which are essentially MPPs without input, that may
run on any graph from a specified family, trying to decide some property
of that graph. GDMPPs were proven unable to compute any nontrivial
property of disconnected input graphs. For introductory texts to the area
of population protocols the interested reader is referred to [5, 12, 1].

3 Our Results - Roadmap

In Section 4, we give a formal definition of the proposed model, (MGP),
provide an example protocol illustrating the computation of the model
and present some important definitions that are used throughout this
work. We then (Section 5) present some fundamental properties of the
new model. In particular, we extend (Sec. 5.1) the MGP model to allow
the input graph to oscillate for a finite number of steps. This extension
then allows us (Sec. 5.2) to compose protocols. In Sec. 6, we present a

protocol (Sec. 6.1) that decides whether the input graph is connected
and we then extend this idea (Sec. 6.2) and show that the new model
is able to compute properties of disconnected input graphs, something
that neither the PP nor the GDMPP model were capable of. By studying
the computations in each connected component, we provide a first indi-
cation that in unrestricted (not necessarily complete) connected graphs
the computational power dramatically drops. In Sec. 7, we give an exact
characterization of the computational power of the MGP model, which is
the class of all graph properties decidable by a NTM of linear space that
takes as input the adjacency matrix of the input graph. Finally, in Sec. 8,
we conclude and discuss some future research directions.

4 A Formal Model: Mediated Graph Protocols

A Mediated Graph Protocol (MGP) consists of a finite set of agent states
Q, where q0, q1 ∈ Q are the initial agent states, an output function O :
Q → {0, 1} mapping agent states to binary outputs, a finite set of edge
states S, where s0, s1 ∈ S are the initial edge states, and a transition
function δ : Q × Q × S → Q × Q × S. If δ(a, b, s) = (a′, b′, s′) we call
(a, b, s)→ (a′, b′, s′) a transition and we define δ1(a, b, s) = a′, δ2(a, b, s) =
b′, δ3(a, b, s) = s′.

An MGP runs on an interaction graph G = (V,E), where V is a
population and E is an irreflexive binary relation on V . Throughout this
work, we assume that this graph is complete, so that an MGP may run
on any Kn = (V,E), where |V | = n and E = V 2\{(u, u) | u ∈ V }.

We assume that the initial states of the agents and the edges of the
network are specified by some function ι : V ∪E → {q0, q1, s0, s1}, which
is not part of the protocol but models some preprocessing on the network.
ι is called a network initialization function if ι(e) ∈ {s0, s1} for all e ∈ E,
ι(u) = q1 if u is incident to at least one edge in s1 according to E and
ι(u) = q0 otherwise, for all u ∈ V . Given an interaction graphKn = (V,E)
and a network initialization function ι, we may define the subgraph of Kn

specified by ι as Gι[Kn] = (V ′, E′), where V ′ = {u ∈ V | ι(u) = q1} and
E′ = {e ∈ E | ι(e) = s1}. Gι[Kn] is the input graph to the protocol.

A (network) configuration is a mapping C : V ∪ E → Q ∪ S specify-
ing the agent state of each agent in the population and the edge state of
each edge in the interaction graph. Note first that a network initialization
function ι specifies the initial configuration. Let C and C ′ be configura-
tions, and let u, υ be distinct agents. We say that C goes to C ′ via
encounter e = (u, υ), denoted C

e→ C ′, if C ′(u) = δ1(C(u), C(υ), C(e)),

C ′(υ) = δ2(C(u), C(υ), C(e)), C ′(e) = δ3(C(u), C(υ), C(e)), and C ′(z) =
C(z),∀z ∈ (V −{u, υ})∪ (E−{e}), that is, C ′ is the result of the interac-
tion of the pair (u, υ) under configuration C and is the same as C except
for the fact that the states of u, υ, and (u, υ) have been updated according
to δ1, δ2, and δ3, respectively. Note that each interaction (u, υ) is an or-
dered pair that is each agent has a distinct role in the interaction, u that
of the initiator and υ that of the responder. We say that C can go to C ′ in
one step, denoted C → C ′, if C

e→ C ′ for some encounter e ∈ E. We write
C
∗→ C ′ if there is a sequence of configurations C = C0, C1, . . . , Ct = C ′,

such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case we say that C ′ is
reachable from C. The transition graph T (A, G) of an MGP A running
on G is a directed graph whose nodes are all possible configurations and
whose edges are all possible transitions on those nodes.

An execution is a finite or infinite sequence of configurations C0, C1,
C2, . . . , where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0.
The interactions are chosen by an adversary who is not a part of the pro-
tocol and can make any scheduling assumption on the interaction pattern
as long as it keeps the execution fair. Fairness is a restriction imposed on
the adversary to prevent it from avoiding a possible step forever. There
are various notions of fairness for the protocols we study. In this work,
we use the notion of strong global fairness, according to which an infinite
execution is fair if for every pair of configurations C and C ′ such that
C → C ′, if C occurs infinitely often in the execution, then so does C ′ (cf.
[9]). A computation is an infinite fair execution. The output of any agent
u under configuration C is O(C(u)).

Due to the constant size descriptions of MGPs (Q and S are finite),
the protocols we study are uniform (independent of the population size)
and anonymous (agents can’t store unique identifiers).

In this work, we are interested in determining properties of the sub-
graph that is specified by the network initialization function. To formalize
this, let H be the family of all simple directed graphs with no isolated
nodes. Note that H also includes disconnected graphs whose connected
components have at least two nodes. A graph language is any L ⊆ H.

Definition 1. We say that an MGP A stably decides a graph language
L if, for any complete interaction graph Kn = (V,E), any network initial-
ization function ι, and any computation of A on Kn beginning from the
initial configuration specified by ι, all agents eventually output 1 (accept)
if Gι[Kn] ∈ L and 0 (reject) otherwise. A graph language is said to be
stably decidable by the MGP model (or MGP -decidable) if there is an
MGP A that stably decides it.

We call a protocol A a stabilizing output graph MGP if, in any compu-
tation ofA, all agents’ outputs and edges’ states eventually stop changing.
We define GMGP to be the class of all stably decidable graph languages
by the MGP model. We denote by LGNSPACE the class of all decidable
graph languages by a NTM of linear space which receives the input graph
by its adjacency matrix representation. We denote by SEM the class of
semilinear predicates.

As a simple illustration, we formalize a version of the count-(k + 1)-
in-neighbors protocol that was outlined in the introduction (for k = 2).
The set of agent states is Q = {q0, q1, q2, q3, q4} and the set of edge states
is S = {s0, s1}. The output function O maps all states except q4 to 0
and the state q4 to 1. The transition function δ is defined as follows: if
i < 4 and j < 3 then δ(qi, qj , s1) = (qi, qj+1, s0); if i = 4 or j ≥ 3 then
δ(qi, qj , s1) = (q4, q4, s0); if i = 4 or j = 4 then δ(qi, qj , s0) = (q4, q4, s0).
All remaining transitions leave all three components unaffected.

Assume now that the agents are u1, u2, u3, u4. Since the interaction
graph is complete, the edges are (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), . . . , (4, 3).
Let the initial configuration, as described by some network initializa-
tion function, be ((q1, q1, q1, q0), {(1, 2), (1, 3), (2, 3)}), where the tuple de-
scribes the state of each agent and the set contains the s1 edges and is
used for simplicity.

Consider now the following possible computation: ((q1, q1, q1, q0), {(1,
2), (1, 3), (2, 3)}) (2,3)−→ ((q1, q1, q2, q0), {(1, 2), (1, 3)}) (4,3)−→ ((q1, q1, q2, q0),

{(1, 2), (1, 3)}) (1,2)−→ ((q1, q2, q2, q0), {(1, 3)}) (2,3)−→ ((q1, q2, q2, q0), {(1, 3)})
(4,1)−→ ((q1, q2, q2, q0), {(1, 3)}) (1,3)−→ ((q1, q2, q3, q0), {}). In the last configu-
ration, all agents output 0, and this configuration is output stable in the
sense that, from that point on, no agent can change its output. So, in
this case, the protocol rejects the input graph that was specified by the
network initialization function and this is a correct decision because none
of its nodes has more than 2 in-neighbors.

5 Properties of MGPs

We present some useful properties of the model that will help us unfold
its computational potential. Let L−1 = {H | ∃G ∈ L such that H is the
inverse of G} 3 be the inverse of a language L.

3 Let G = (V,E) be a simple digraph and K the irreflexive subset of V 2. Then the
inverse or complement of G is defined as H = (V,K\E).

Theorem 1 (Closure). GMGP is closed under union, intersection,
complement, and inversion.

5.1 MGPs with Stabilizing Input Graphs

In this section, we define the stabilizing input graphs MGP (SIMGP)
model (similar to the PP model with stabilizing inputs [2]), in which the
initial state of each agent and edge of the interaction graph (and thus
the input graph) may change finitely many times before it stabilizes to a
final value. Here, we consider the computational capabilities of the MGP
model when the network initialization function is working in parallel (and
not as a preprocessing on the network) with the execution of an MGP, as
if another protocol eventually designates the input graph for an MGP. We
are interested in stably deciding membership of the stabilized input graph
in a graph language. Intuitively, one can think of the case where we are
concerned about properties of a dynamic overlay network (which could be
a result of a protocol running on a complete network infrastructure, e.g.,
a peer-to-peer network over the Internet) where the overlay can initially
change but eventually stabilizes.

In a similar way to that of [2], let each agent/edge store its current
initial state (which corresponds to the initial value given by ι) to a special
component of its state. This state is available to the agent/edge at every
computation step and may change arbitrarily (all the possible values,
however, constantly belong to {s0, s1} for the edges and to {q0, q1} for the
agents) between any two subsequent steps. The transition function is now
of the form δ : ((Q×{q0, q1})×(Q×{q0, q1})×(S×{s0, s1}))→ (Q×Q×S)
and a configuration is a mapping C : V ∪E → (Q×{q0, q1})∪(S×{s0, s1})
taking into account the current initial states of the agents and edges.

In the next theorem, we show that every MGP-decidable language is
stably decidable even if the input graph is initially changing for a finite
number of steps. To do so, we construct a protocol similar to the one pre-
sented in [6, 11]. That protocol is also executed on complete interaction
graphs. It constructs a correctly labeled spanning pseudo-path subgraph
of the interaction graph and then exploits this construction to simulate
a NTM on its input assignment. Informally, a pseudo-path graph is a
straight line with arbitrary link directions. The agents become ordered
according to this line and all the remaining edges of the complete inter-
action graph (those that are not part of the line) form the tape cells of
the TM. These can be visited in an ordered fashion due to the ordering
of the agents. Let L be any graph language:

Theorem 2. L is stably SIMGP-decidable iff it is MGP-decidable.

Proof. The straight direction holds trivially due to our focus on languages
of stabilized input graphs. For the inverse, let A be an MGP that stably
decides L. We can construct an SIMGP B which consists of protocolA and
the protocol of [6] (see above) running in parallel so that the population
can be organized into a pseudo-path graph. This construction ends in a
finite number of interactions with the reinitialization of A’s execution and
can be used to perform further reinitializations whenever the input graph
changes. Since the input graph stabilizes, A will eventually be executed
correctly given the stabilized graph as input. ut

5.2 Composition of MGPs

We will now present another interesting property of MGPs. According to
this property, which we call MGP-composition, given two MGPs A and
B, where A is a stabilizing output graph MGP, we can compose the two
protocols to a new protocol D. D will have the same output as B as if the
latter was running on the stabilizing input graph defined byA’s execution.
B’s input graph, provided by A’s execution, is stabilizing since the edges’
states eventually stabilize (by A’s definition) and A’s outputs 0 and 1
can be trivially mapped to initial agent states q0 and q1 respectively. The
property is formalized below:

Theorem 3. For any two MGPs A,B where A is a stabilizing output
graph MGP, there is an MGP D which is a composition of A and B, has
as input the input graph of A and as output the output of B running on
the stabilized input graph provided by A.

Proof. From Theorem 2, we have that B can be replaced by a stabilizing
input graphs protocol B′ that runs on the stabilizing graph defined by A
and works exactly like B running on the same graph. ut

6 Disconnected graphs

We now discuss the capability of our model to decide languages on discon-
nected graphs. Neither the PP model [2] nor the GDMPP model [8] are
capable of supporting this feature. We here exploit the complete infras-
tructure to communicate information between the connected components
of the disconnected input graph and make a decision according to the
exchanged information. In Sec. 6.1, we present a simple protocol that can

decide whether the input graph is a connected graph and, in Sec. 6.2, we
generalize the idea to prove that any semilinear predicate on the multiset
of decisions of any GDMPP running on the connected components (where
the decision of each component is counted only once) that constitute the
input graph is stably decidable.

6.1 Deciding Connectivity

In this section, we present an MGP CP that decides the language LC =
{G | G is a connected graph}.

Protocol 1 Connectivity Protocol (CP)

1: Q = {q0, q1, t, t′, l, l′}, S = {s0, s1},
2: O(q0) = 0, O(q1) = 0, O(t) = 1, O(t′) = 0, O(l) = 1, O(l′) = 0,
3: δ:

a single leader is generated
(q1, q1, s1)→ (l, t, s1)

the single leader turns all nodes of the input graph it can reach to followers
(l, t, s1) → (t, l, s1), (t, l, s1) → (l, t, s1), (l, q1, s1) → (t, l, s1), (q1, l, s1) →
(l, t, s1)

the single leader turns all nodes that do not belong to the input graph to
followers of a single leader
(l, q0, s0)→ (l, t, s0)

two single leaders meet in the same connected component of the input
graph; one is turned to follower
(l, l, s1)→ (l, t, s1)

two non-adjacent single leaders meet in the same connected component
of the input graph or in different connected components (in the case of
disconnected input graph); they become non-unique leaders
(l, l, s0)→ (l′, l′, s0)

the non-unique leaders turn non-leaders into their followers
(l′, t, s1) → (t′, l′, s1), (t, l′, s1) → (l′, t′, s1), (l′, q1, s1) → (t′, l′, s1),
(q1, l

′, s1) → (l′, t′, s1), (l′, q0, s0) → (l′, t′, s0), (l′, t, s0) → (l′, t′, s0)

any two leaders meet in the same component; one single leader remains
(l′, l, s1)→ (l, t, s1), (l, l′, s1)→ (l, t, s1), (l′, l′, s1)→ (l, t, s1)

any two leaders meet in different components; both become non-unique
(l′, l, s0)→ (l′, l′, s0), (l, l′, s0)→ (l′, l′, s0)

a single leader restores all followers of multiple leaders to followers of single
leaders
(l, t′, s0)→ (l, t, s0), (l, t′, s1)→ (t, l, s1), (t′, l, s1)→ (l, t, s1)

Theorem 4. Protocol CP stably computes LC for any input graph Gι[Kn]
on the complete interaction graph Kn.

Proof. As can be observed by the description of Protocol 1 each con-
nected component elects a leader which eventually becomes unique for
the component. Therefore, if there are more than one connected com-
ponents, their leaders will interact via an s0 edge and all agents will be
informed that there are at least 2 components in the input graph and will
output 0. If no such interaction takes place, all agents output 1. ut

6.2 Computing Graph Languages on Disconnected Graphs

In this section, we are interested in languages that describe properties
of disconnected input graphs, that is, graphs with > 1 connected com-
ponents. We use the term “connected components” for weakly-connected
components as well. We are not interested in components consisting of a
single agent (input graphs with isolated nodes). To achieve this, we pro-
pose a construction which combines the functionality of four MGPs that
allow information exchange between the connected components by ex-
ploiting the complete underlying infrastructure. In what follows, we give
a description of these protocols.

First, we have the spanning pseudo-path graph protocol described in
Section 5.1 that is required for the composition of protocols. We will call
it RP (Reinitialization Protocol since it is mainly used to reinitialize the
execution of the composed protocols).

Then, there is a Leader Election MGP (LE) that practically runs on
the connected components of the input graph (leaving all q0 agents of
the population intact). LE = {QLE , SLE , δ}, where QLE = {q0, q1, l, f},
SLE = {s1} and δ has the following transitions: (q1, q1, s1)→ (l, f, s1) in
which a leader is generated; (l, q1, s1)→ (f, l, s1) and (q1, l, s1)→ (l, f, s1)
via which the leader turns non-leaders to followers; (l, f, s1) → (f, l, s1)
and (f, l, s1) → (l, f, s1) which allow the leader state to move among
the agents of a connected component; (l, l, s1)→ (l, f, s1) which removes
multiple leaders. Interactions between agents not defined by the previous
transitions are ineffective (leave the states of both agents unchanged).

Lemma 1. LE eventually elects a unique, constantly moving leader in
each connected component of the input graph.

Proof. The functionality is similar to the one of Protocol 1 of Sec. 6.1
without the interactions between leaders of different connected compo-
nents. The remaining leader moves constantly due to the transitions
(l, f, s1)→ (f, l, s1) and (f, l, s1)→ (l, f, s1). ut

The third protocol is a parameter to the composition. It can be any
MGP that works only within the connected components (effective inter-
actions take place only between agents linked with s1 edges). This proto-
col, that we call BGP (Basic Graph Protocol) hereafter, is practically a
GDMPP [8] since it runs on any connected graph (instead of a complete
one). BGP runs in parallel with LE within the connected components of
the input graph and decides the same graph property within each com-
ponent. This means that, once all components of the input graph stabilize
w.r.t. BGP ’s execution, all agents within each component will output 1
if the component satisfies the property and 0 otherwise. Obviously, agents
of different components may have different outputs.

The parallel execution of LE and BGP ends up with a unique moving
leader in each connected component, all other agents are followers and
every agent knows the decision of BGP for the component it belongs
to. An agent that is not part of the input graph (q0) is not affected and
outputs by default 0. For each connected component of the input graph:

Definition 2. We call an agent representative of the component if it is
the unique leader and its output w.r.t. BGP has stabilized.

In other words, once the number of leaders stops changing and BGP
stabilizes, the unique leader of each connected component becomes a rep-
resentative (the elected agent that bears the decision of the component
w.r.t. the graph property that BGP decides). Note that regardless of the
movement of the leader state within each component, once BGP stabi-
lizes, the leader’s output w.r.t. BGP remains the same no matter which
agent is the leader.

The final protocol is also a parameter to the composition and is prac-
tically a population protocol (see [2]) running on the population of repre-
sentatives. We call this protocol REP (REpresentative Protocol) and it
runs in parallel with RP , LE and BGP . Since the interaction graph of
MGPs is complete the representatives’ population will be fully connected
via the s0 edges. The inputs of REP will be the outputs (decisions on
the satisfiability of the graph property) of the agents w.r.t. BGP . We
consider that effective interactions w.r.t. to REP can take place only be-
tween the representatives (via s0 edges) of the population. In addition,
we demand that whenever a representative moves to a neighboring agent
within its component (since the leaders constantly move), it also copies
its REP -state component to that agent. We consider that the output
of REP is the output of the whole composition and we extend REP so
that the representatives propagate their state when interacting with q0

agents. In this way, all agents (the followers in each component due to
representatives’ movement and the q0 agents due to the previous exten-
sion) will eventually have in their REP -state components the contents of
the representatives’ REP -state components.

The composition of the protocols: The composition is similar
to the one described in Section 5.2. Firstly, RP constructs the span-
ning pseudo-path graph of the interaction graph reinitializing all other
protocols during the process, then LE and BGP run in parallel to gen-
erate the representatives reinitializing REP , and finally, REP runs on
the population of the representatives. We call the protocol resulting from
the previous composition GLADIS (Graph LAnguages on DIsconnected
graphS). Since BGP and REP can be any GDMPP and PP, respectively,
we denote the composition as GLADIS(BGP,REP). The conclusion of
this section is captured by the Theorem 5.

For all G, denote by NG,L the number of components of G that belong
to a language L and by NG,L the number of those that do not.

Theorem 5. Let L be a GDMPP-decidable language. Let p be a semi-
linear predicate on IN2. Then L′ = {G | p(NG,L, NG,L) = 1} is MGP-
decidable.

Proof. GLADIS(BGP,REP) takes an input graph given by some net-
work initialization function and computes any semilinear predicate (due
to REP) on the decisions (outputs of BGP) of the connected components
(each component’s decision is counted only once) of this input graph con-
cerning any GDMPP-decidable graph property (since BGP is a essen-
tially a GDMPP). ut

The applications of Theorem 5 are various, depending on the BGP
and REP we use. Given a GDMPP-decidable graph language, e.g., L =
{G | G contains at least one 2-cycle } (the decidability of L was an im-
portant question left open by [8]; in fact, it turns out that L is decidable
even by PPs), we can now answer questions about predicates on the num-
ber of components that satisfy L; questions like whether at least 25% of
the components contain some 2-cycle. Whether the whole graph contains
some 2-cycle can be simply decided by an OR population protocol on the
representatives’ population.

A fair question that arises is: what graph properties are stably decid-
able by the GDMPPs running on the components of the input graph? The
exact computational power of the GDMPP model has not been character-
ized yet [8]. We approach the answer indirectly, by extending the notion of

input graphs to vertex-labeled input graphs (whose labels are taken from
a finite set X and are assigned by ι) and by considering computations on
the multisets of the labels. These are, in fact, computations performed by
any MPP (see [7]) on any connected graph given as input the multiset of
labels. We call the corresponding computational class MPU. We provide
the following exact characterization of MPU.

Theorem 6. MPU = SEM.

Proof. Let p ∈ MPU be computable by an MPP A. A still computes
p if we restrict our attention on star graphs, which consist of 1 internal
node of degree n and n external nodes of degree 1. The latter situation
can be simulated by a PP, running on complete graphs, with a unique
leader in its initial configuration since the leader can play the role of the
internal node and also can safely (since external nodes have no effective
interactions with each other) store the states of the edges on the external
nodes. The latter, in turn, can be simulated by a PP (as we have proved
recently) which is the composition of a leader election protocol, that elects
a leader while leaving the inputs unaffected, and the stabilizing inputs
implementation of a PP, whose transition function is the same as the
simulated protocol, extended appropriately by ineffective transitions. ut

The consequences of the above theorem are twofold. First of all, the
GDMPP model on unrestricted connected graphs seems to be computa-
tionally weak; this is a first step towards answering a major question left
open by [8]. Secondly, this characterization, if compared to the one for
the MGP model that is provided in the following section, shows that the
MGPs seem to be significantly more powerful than the GDMPPs.

7 An Exact Characterization: GMGP = LGNSPACE

In this section, we will develop an MGP that is capable of simulating
a linear-space NTM on input Gι[Kn] = (V ′, E′). In this manner, we es-
tablish that any graph language L ∈ LGNSPACE is stably decidable
by the MGP model, or equivalently that LGNSPACE ⊆ GMGP. By
showing that the inverse is also possible, we conclude that the inclusion
holds with equality.

Now, consider the following 3-component initial configuration: Ac-
cording to the first component, called the label, there is a unique span-
ning correctly labeled pseudo-path subgraph L = (V,A) of a complete

interaction graph Kn. 4 The second component stores the values of some
network initialization function ι and is called the membership indicator.
The third component is the (simulation) tape and has initially the value
tk for some predetermined constant k.

Lemma 2. There is an MPP that in any computation on Kn, beginning
from such a configuration, stores the input graph Gι[Kn] in the leftmost
cells of the tape and halts in a finite number of steps having preserved the
initial states of both the label and the membership indicator components.

Proof. We use the protocol of [6, 11] that constructs a spanning pseudo-
path graph of Kn, L which allows the orderly visit of Kn’s edges and
the full use of the distributed memory of the population. To store the
adjacency matrix, we visit the edges in an orderly fashion and store each
time the distances of the two ends of the visited edge. The distance of
an agent is the length of the unique pseudo-path from the fixed leader
endpoint of L to that agent. Thus, the distance of both ends of a visited
edge can be stored in two O(n) counters which are the indexes of the
entry corresponding to the edge on the adjacency matrix. If the visited
edge belongs to the input graph, then a 1 is stored in theO(n2) distributed
memory and 0 otherwise. ut

Now the exact characterization follows easily:

Theorem 7. GMGP = LGNSPACE.

8 Conclusions - Future Research Directions

Many interesting issues arise by the findings of our work. The ability of
the new model to use its complete network infrastructure enables us to
compose protocols and decide graph properties of disconnected graphs.
The additional memory provided by the extra edges of the complete in-
teraction graph gives an important advantage to MGPs in comparison
to GDMPPs. However, extra nodes do not seem to help: after all, in our
model, the worst-case interaction graph of any input graph is itself made
complete. Various questions arise from the above conclusions. How would
the computability be affected if we had allowed more memory in each
agent or each edge? Which interaction graph topologies allow the full use
of the distributed memory? Do we truly require a complete interaction

4 Note that, by definition of a correctly labeled pseudo-path subgraph, it holds that
for all e ∈ E −A, e is inactive.

graph to decide graph languages in disconnected graphs or a connected
infrastructure would suffice? How can we exploit the presence of extra
nodes for increasing the computational power?
Acknowledgements. We would like to specifically thank Theofanis Rap-
tis for his useful comments throughout the writing of this work.

References

1. Carme Àlvarez, Ioannis Chatzigiannakis, Amalia Duch, Joaquim Gabarró, Othon
Michail, Serna Maria, and Paul G. Spirakis. Computational models for networks
of tiny artifacts: A survey. Computer Science Review, 5(1), January 2011.

2. Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, and
René Peralta. Stably computable properties of network graphs. In 1st IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS
2005), volume 3560 of LNCS, pages 63–74. Springer-Verlag, June 2005.

3. Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-
alta. Computation in networks of passively mobile finite-state sensors. Distributed
Computing, pages 235–253, mar 2006.

4. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The compu-
tational power of population protocols. Distributed Computing, 20(4):279–304,
November 2007.

5. James Aspnes and Eric Ruppert. An introduction to population protocols. Bulletin
of the EATCS, 93:98–117, October 2007.

6. Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogian-
nis, and Paul G. Spirakis. All symmetric predicates in NSPACE(n2) are stably
computable by the mediated population protocol model. In 35th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume
6281 of LNCS, pages 270–281. Springer-Verlag, August 23–27 2010.

7. Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Mediated popu-
lation protocols. In 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009), volume 5556 of LNCS, pages 363–374, July 2009.

8. Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. Stably decidable
graph languages by mediated population protocols. In Stabilization, Safety, and
Security of Distributed Systems, volume 6366 of LNCS, pages 252–266. September
2010.

9. Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks of
finite-state anonymous agents. In Principles of Distributed Systems, volume 4305
of LNCS, pages 395–409. Springer-Verlang, 2006.

10. S. Ginsburg and E. H. Spanier. Semigroups, presburger formulas, and languages.
Pacific Journal of Mathematics, 16:285–296, 1966.

11. Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Mediated popula-
tion protocols. Theor. Comput. Sci., 412:2434–2450, May 2011.

12. Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. New Models for
Population Protocols. N. A. Lynch (Ed), Synthesis Lectures on Distributed Com-
puting Theory. Morgan & Claypool, 2011.

