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Abstract. In this work, we study the propagation of influence and com-
putation in dynamic networks that are possibly disconnected at every in-
stant. We focus on a synchronous message passing communication model
with broadcast and bidirectional links. To allow for bounded end-to-end
communication we propose a set of minimal temporal connectivity con-
ditions that bound from the above the time it takes for information to
make progress in the network. We show that even in dynamic networks
that are disconnected at every instant information may spread as fast
as in networks that are connected at every instant. Further, we inves-
tigate termination criteria when the nodes know some upper bound on
each of the temporal connectivity conditions. We exploit our termination
criteria to provide efficient protocols (optimal in some cases) that solve
the fundamental counting and all-to-all token dissemination (or gossip)
problems. Finally, we show that any protocol that is correct in instan-
taneous connectivity networks can be adapted to work in temporally
connected networks.
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1 Introduction

Distributed computing systems are more and more becoming dynamic. The
static and relatively stable models of computation can no longer represent the
plethora of recently established and rapidly emerging information and commu-
nication technologies. In recent years, we have seen a tremendous increase in the
number of new mobile computing devices. Most of these devices are equipped
with some sort of communication, sensing, and mobility capabilities. Even the
Internet has become mobile. The design is now focused on complex collections of
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heterogeneous devices that should be robust, adaptive, and self-organizing, pos-
sibly moving around and serving requests that vary with time. Delay-tolerant
networks are highly-dynamic, infrastructure-less networks whose essential char-
acteristic is a possible absence of end-to-end communication routes at any in-
stant. Mobility may be active, when the devices control and plan their mobility
pattern (e.g. mobile robots), or passive, in opportinistic-mobility networks, where
mobility stems from the mobility of the carries of the devices (e.g. humans car-
rying cell phones) or a combination of both (e.g. the devices have partial control
over the mobility pattern, like for example when GPS devices provide route in-
structions to their carriers). Thus, it can vary from being completely predictable
to being completely unpredictable. Gossip-based communication mechanisms,
e-mail exchanges, peer-to-peer networks, and many other contemporary com-
munication networks all assume or induce some sort of high dynamicity.

The formal study of dynamic communication networks is hardly a new area
of research. There is a huge amount of work in distributed computing that deals
with causes of dynamicity such as failures and changes in the topology that are
rather slow and usually eventually stabilize (like, for example, in self-stabilizing
systems [Dol00]). However the low rate of topological changes that is usually
assumed there is unsuitable for reasoning about truly dynamic networks. Even
graph-theoretic techniques need to be revisited: the suitable graph model is now
that of a dynamic graph (a.k.a. temporal graph or time-varying graph) (see e.g.
[CFQS11]), in which each edge has an associated set of time-labels indicating
availability times. Even fundamental properties of classical graphs do not carry
over to their temporal counterparts. For example, Kempe, Kleinberg, and Ku-
mar [KKK00] found out that there is no analogue of Menger’s theorem (see e.g.
[Bol98] for a definition) for arbitrary temporal networks, which additionally ren-
ders the computation of the number of node-disjoint s-t paths NP-complete.
Even the standard network diameter metric is no more suitable and has to be
replaced by a dynamic/temporal version. In a dynamic star graph in which all
leaf-nodes but one go to the center one after the other in a modular way, any
message from the node that enters last the center to the node that never enters
the center needs n−1 steps to be delivered, where n is the size (number of nodes)
of the network; that is the dynamic diameter is n− 1 while, one the other hand,
the classical diameter is just 2 [AKL08] (see also [KO11]).

2 Related Work

Distributed systems with worst-case dynamicity were first studied in [OW05].
Their outstanding novelty was to assume a communication network that may
change arbitrarily from time to time subject to the condition that each instance
of the network is connected. They studied asynchronous communication and con-
sidered nodes that can detect local neighborhood changes; these changes cannot
happen faster than it takes for a message to transmit. They studied flooding
(in which one node wants to disseminate one piece of information to all nodes)
and routing (in which the information need only reach a particular destination



node t) in this setting. They described a uniform protocol for flooding that ter-
minates in O(Tn2) rounds using O(log n) bit storage and message overhead,
where T is the maximum time it takes to transmit a message. They conjectured
that without identifiers (IDs) flooding is impossible to solve within the above
resources. Finally, a uniform routing algorithm was provided that delivers to the
destination in O(Tn) rounds using O(log n) bit storage and message overhead.

Computation under worst-case dynamicity was further and extensively stud-
ied in a series of works by Kuhn et al. in the synchronous case. In [KLO10], the
network was assumed to be T -interval connected meaning that any time-window
of length T has a static connected spanning subgraph (persisting throughout the
window). Among others, counting (in which nodes must determine the size of
the network) and all-to-all token dissemination (in which n different pieces of
information, called tokens, are handed out to the n nodes of the network, each
node being assigned one token, and all nodes must collect all n tokens) were
solved in O(n2/T ) rounds using O(log n) bits per message, almost-linear-time
randomized approximate counting was established for T = 1, and two lower
bounds on token dissemination were given. Several variants of coordinated con-
sensus in 1-interval connected networks were studied in [KOM11]. [Hae11] is a
recent work that presents information spreading algorithms in worst-case dy-
namic networks based on network coding. An open setting (modeled as high
churn) in which nodes constantly join and leave has very recently been con-
sidered in [APRU12]. For an excellent introduction to distributed computation
under worst-case dynamicity see [KO11]. Two very thorough surveys on dynamic
networks are [Sch02,CFQS11].

Another notable model for dynamic distributed computing systems is the
population protocol model [AAD+06]. In that model, the computational agents
are passively mobile, interact in ordered pairs, and the connectivity assumption
is a strong global fairness condition according to which all events that may al-
ways occur, occur infinitely often. These assumptions give rise to some sort of
structureless interacting automata model. The usually assumed anonymity and
uniformity (i.e. n is not known) of protocols only allow for commutative compu-
tations that eventualy stabilize to a desired configuration. Most computability
issues in this area have now been established. Constant-state nodes on a com-
plete interaction network (and several variations) compute the semilinear pred-
icates [AAER07]. Semilinearity persists up to o(log log n) local space but not
more than this [CMN+11]. If constant-state nodes can additionally leave and
update fixed-length pairwise marks then the computational power dramatically
increases to the commutative subclass of NSPACE(n2) [MCS11a]. For a very
recent introductory text see [MCS11b].

3 Contribution

In this work, we study worst-case dynamic networks that are free of any connec-
tivity assumption about their instances. Our dynamic network model is formally
defined in Section 4.1. We only impose some temporal connectivity conditions



on the adversary guaranteeing that another causal influence occurs within every
time-window of some given length, meaning that, in that time, another node first
hears of the state that some node u had at some time t (see Section 4.2 for a
formal definition of causal influence). Note that our temporal connectivity con-
ditions are minimal assumptions that allow for bounded end-to-end communica-
tion in any dynamic network including those that have disconnected instances.
Based on this basic idea, we define several novel generic metrics for capturing
the speed of information spreading in a dynamic network. In particular, we de-
fine the outgoing influence time (oit) as the maximal time until the state of a
node influences the state of another node, the incoming influence time (iit) as
the maximal time until the state of a node is influenced by the state of another
node, and the connectivity time (ct) as the maximal time until the two parts of
any cut of the network become connected. These metrics are defined in Section
5, where also several results that correlate these metrics are presented.

In Section 5.1, we present a simple but very fundamental dynamic graph
based on alternating matchings that has oit 1 (equal to that of instantaneous
connectivity networks) but at the same time is disconnected in every instance.
In Section 6, we exhibit another dynamic graph additionally guaranteeing that
edges take maximal time to reappear. That graph is based on a geometric edge-
coloring method due to Soifer for coloring a complete graph of even order n with
n− 1 colors [Soi09]. Similar results have appeared before but to the best of our
knowledge only in probabilistic settings [CMM+08,BCF09].

In Section 7, we turn our attention to terminating computations and, in
particular, we investigate termination criteria in networks in which an upper
bound on the ct or the oit is known. By “termination criterion” we essentially
mean any locally verifiable property that can be used to determine whether a
node has heard from all other nodes. Note that we do not allow to the nodes
any further knowledge on the network; for instance, nodes do not know the
dynamic diameter of the network. In particular, in Section 7.1, we study the
case in which an upper bound T on the ct is known and we present an optimal
termination criterion that only needs time linear in the dynamic diameter and
in T . Then, in Section 7.2, we study the case in which an upper bound K on the
oit is known. We first present a termination criterion that needs time O(K ·n2).
Additionally, we establish that even the optimal termination criterion for the
ct case does not work in the oit case. These criteria share the fundamental
property of hearing from the past. We then develop a new technique that gives
an optimal termination criterion (time linear in the dynamic diameter and in K)
by hearing from the future (by this we essentially mean that a node is interested
for its outgoing influences instead for its incoming ones). Additionally, we exploit
throughout the paper our termination criteria to provide protocols that solve the
fundamental counting and all-to-all token dissemination (or gossip) problems; in
the former nodes must determine the size of the network n and in the latter each
node of the network is provided with a unique piece of information, called token,
and all nodes must collect all n tokens. Then, we show that any protocol that is



correct in 1-interval connected networks can be adapted to work in networks in
which an upper bound on the oit, the iit, or the ct is known.

Finally, in Section 8, we conclude and discuss some interesting future research
directions.

4 Preliminaries

4.1 The Dynamic Network Model

A dynamic network is modeled by a dynamic graph G = (V,E), where V is a
set of n nodes (or processors) and E : IN→ P(E′) (wherever we use IN we mean
IN≥1) is a function mapping a round number r ∈ IN to a set E(r) of bidirectional
links drawn from E′ = {{u, v} : u, v ∈ V }. 3 Intuitively, a dynamic graph G is
an infinite sequence G(1), G(2), . . . of instantaneous graphs, whose edge sets are
subsets of E′ chosen by a worst-case adversary. A static network is just a special
case of a dynamic network in which E(i + 1) = E(i) for all i ∈ IN. The set
V is assumed throughout this work to be static, that is it remains the same
throughout the execution.

We assume that nodes in V have unique identities (ids) drawn from some
namespace U (we assume that ids are represented using O(log n) bits) and that
they do not know the topology or the size of the network, apart from some
minimal necessary knowledge to allow for terminating computations (usually
an upper bound on the time it takes for information to make some sort of
progress). Any such assumed knowledge will be clearly stated. Moreover, nodes
have unlimited local storage (though they usually use a reasonable portion of
it).

Communication is synchronous message passing [Lyn96,AW04], meaning that
it is executed in discrete steps controlled by a global clock that is available to
the nodes and that nodes communicate by sending and receiving messages (usu-
ally of length that is some reasonable function of n, like e.g. log n). We use the
terms round, time, and step interchangeably to refer to the discrete steps of the
system. Naturally, real rounds begin to count from 1 (e.g. “first round”) and we
reserve time 0 to refer to the initial state of the system. We assume that the
message transmission model is anonymous broadcast, in which, in every round r,
each node u generates a single message mu(r) to be delivered to all its current
neighbors in Nu(r) = {v : {u, v} ∈ E(r)} without knowing Nu(r).

In every round, the adversary first chooses the edges for the round; for this
choice it can see the internal states of the nodes at the beginning of the round.
At the same time and independently of the adversary’s choice of edges each
node generates its message for the current round. Note that a node does not
have any information about the internal state of its neighbors when generating
its messages. In deterministic algorithms, nodes are only based on their current
internal state to generate their messages and this implies that the adversary can
infer the messages that will be generated in the current round before choosing

3 By P(S) we denote the powerset of the set S, that is the set of all subsets of S.



the edges. In this work, we only consider deterministic algorithms. Each message
is then delivered to the sender’s neighbors, as chosen by the adversary; the nodes
transition to new states, and the next round begins.

4.2 Spread of Influence in Dynamic Graphs (Causal Influence)

Probably the most important notion associated with a dynamic network/graph
is the causal influence, which formalizes the notion of one node “influencing”
another through a chain of messages originating at the former node and ending
at the latter (possibly going through other nodes in between). We denote by
(u, t) the state of node u at time t and usually call it the t-state of u. The pair
(u, t) is also called a time-node. We use (u, r)  (v, r′) to denote the fact that
node u’s state in round r influences node v’s state in round r′. Formally:

Definition 1 ([Lam78]). Given a dynamic graph G = (V,E) we define an
order →⊆ (V × IN≥0)2, where (u, r)→ (v, r + 1) iff u = v or {u, v} ∈ E(r + 1).
The causal order  ⊆ (V × IN≥0)2 is defined to be the reflexive and transitive
closure of →.

Obviously, for a dynamic distributed system to operate as a whole there
must exist some upper bound on the time needed for information to spread
through the network. This is the weakest possible guarantee since without it
global computation is impossible. An abstract way to talk about information
spreading is via the notion of the dynamic diameter. The dynamic diameter (also
called flooding time, e.g., in [CMM+08,BCF09]) of a dynamic graph, is an upper
bound on the time required for each node to causally influence (or, equivalently,
to be causally influenced by) every other node; formally, the dynamic diameter
is the minimum D ∈ IN s.t. for all times t ≥ 0 and all u, v ∈ V it holds that
(u, t)  (v, t + D). A small dynamic diameter allows for fast dissemination of
information. In this work, we do not allow nodes to know the dynamic diameter
of the network. We only allow some minimal knowledge (that will be explained
in the sequel) based on which nodes may infer bounds on the dynamic diameter.

A class of dynamic graphs with small dynamic diameter is that of T -interval
connected graphs. Formally, a dynamic graph G = (V,E) is said to be T -interval

connected, for T ≥ 1, if, for all r ∈ IN, the static graph Gr,T := (V,
⋂r+T−1

i=r E(r))
is connected [KLO10]; that is, in every time-window of length T , a connected
spanning subgraph is preserved.

Let us also define two very useful sets. We define by past(u,t′)(t) := {v ∈ V :
(v, t)  (u, t′)} [KOM11] the past set of a time-node (u, t′) from time t and by
future(u,t)(t

′) := {v ∈ V : (u, t)  (v, t′)} the future set of a time-node (u, t)
at time t′, for times 0 ≤ t ≤ t′. In words, past(u,t′)(t) is the set of nodes whose
t-state (i.e. their state at time t) has causally influenced the t′-state of u and
future(u,t)(t

′) is the set of nodes whose t′-state has been causally influenced by
the t-state of u. If v ∈ future(u,t)(t

′) we say that at time t′ node v has heard
of/from the t-state of node u. If it happens that t = 0 we say simply that v has
heard of u. Note that v ∈ past(u,t′)(t) iff u ∈ future(v,t)(t

′).



For a distributed system to be able to perform global computation, nodes
need to be able to determine for all times 0 ≤ t ≤ t′ whether past(u,t′)(t) = V . If
nodes know n, then a node can easily determine at time t′ whether past(u,t′)(t) =
V by counting all different t-states that it has heard of so far. If it has heard the
t-states of all nodes then the equality is satisfied. If n is not known then various
techniques may be applied (which is the subject of this work). By termination
criterion we mean any locally verifiable property that can be used to determine
whether past(u,t′)(t) = V .

Remark 1. Note that any protocol that allows the nodes to determine whether
past(u,t′)(t) = V can be used to solve the counting and all-to-all token dissem-
ination problems. The reason is that if a node knows at round r that it has
been causally influenced by the initial states of all other nodes then it can solve
counting by writing |past(u,r)(0)| on its output and all-to-all dissemination by
writing past(u,r)(0) (provided that all nodes send their initial states and all nodes
constantly broadcast all initial states that they have heard of so far).

5 Our Metrics

As already stated, in this work we aim to deal with dynamic networks that are
allowed to have disconnected instances. To this end, we define some novel generic
metrics that are particularly suitable for capturing the speed of information
propagation in such networks.

5.1 The Influence Time

Recall that the guarantee on propagation of information resulting from instan-
taneous connectivity ensures that any time-node (u, t) influences another node
in each step (if an uninfluenced one exists). From this fact, we extract two novel
generic influence metrics that capture the maximal time until another influence
(outgoing or incoming) of a time-node occurs.

We now formalize our first influence metric. We define the outgoing influence
time (oit) as the minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t.
t′ ≥ t it holds that

|future(u,t)(t
′ + k)| ≥ min{|future(u,t)(t

′)|+ 1, n}.

Intuitively, the oit is the maximal time until the t-state of a node influences the
state of another node (if an uninfluenced one exists) and captures the speed of
information spreading.

Our second metric, the incoming influence time (iit), is similarly defined as
the minimum k ∈ IN s.t. for all u ∈ V and all times t, t′ ≥ 0 s.t. t′ ≥ t it holds
that |past(u,t′+k)(t)| ≥ min{|past(u,t′)(t)|+ 1, n}.

We can now say that the oit of a T -interval connected graph is 1 and that
the iit can be up to n − 2. However, is it necessary for a dynamic graph to be
T -interval connected in order to achieve unit oit? First, let us make a simple but
useful observation:



Proposition 1. If a dynamic graph G = (V,E) has oit (or iit) 1 then every
instance has at least dn/2e edges.

Proposition 1 is easily generalized as: if a dynamic graph G = (V,E) has oit

(or iit) k then for all times t it holds that |
⋃t+k−1

i=t E(i)| ≥ dn/2e. The reason is
that now any node must have a neighbor in any k-window of the dynamic graph
(and not necessarily in every round).

Now, inspired by Proposition 1, we define a minimal dynamic graph that at
the same time satisfies oit 1 and always disconnected instances:

The Alternating Matchings Dynamic Graph. Take a ring of an even num-
ber of nodes n = 2l, partition the edges into 2 disjoint perfect matchings A and
B (each consisting of l edges) and alternate round after round between the edge
sets A and B.

Proposition 2. The Alternating Matchings dynamic graph has oit 1 and any
node needs precisely n/2 rounds to influence all other nodes.

In the alternating matchings construction any edge reappears every second
step but not faster than this. We now formalize the notion of the fastest edge
reappearence (fer) of a dynamic graph.

Definition 2. The fastest edge reappearence (fer) of a dynamic graph G =
(V,E) is defined as the minimum p ∈ IN s.t., ∃e ∈ {{u, v} : u, v ∈ V } and
∃t ∈ IN, e ∈ E(t) ∩ E(t+ p).

Clearly, the fer of the alternating matchings dynamic graph described above
is 2, because no edge ever reappears in 1 step and all and always reappear in 2
steps. In Section 6, by invoking a geometric edge-coloring method, we generalize
this basic contruction to a more involved dynamic graph with oit 1, always
disconnected instances, and fer equal to n−1. Note that the fer is always bounded
from above by a function of n.

5.2 The Connectivity Time

We now propose another natural and practical metric for capturing the tem-
poral connectivity of a possibly disconnected dynamic network that we call the
connectivity time (ct).

Definition 3. We define the connectivity time (ct) of a dynamic network G =
(V,E) as the minimum k ∈ IN s.t. for all times t ∈ IN the static graph (V,⋃t+k−1

i=t E(i)) is connected.

In words, the ct of a dynamic network is the maximal time of keeping the two
parts of any cut of the network disconnected. That is to say, in every ct-window
of the network an edge appears in every (V1, V2)-cut. Note that, in the extreme
case in which the ct is 1, every instance of the dynamic graph is connected and



we thus obtain a 1-interval connected graph. On the other hand, greater ct allows
for different cuts to be connected at different times in the ct-round interval and
the resulting dynamic graph can very well have disconnected instances. For an il-
lustrating example, consider again the alternating matchings graph from Section
5.1. Draw a line that crosses two edges belonging to matching A partitioning the
ring into two parts. Clearly, these two parts communicate every second round
(as they only communicate when matching A becomes available), thus the ct is
2 and every instance is disconnected. We now provide a result associating the ct
of a dynamic graph with its oit.

Proposition 3. (i) oit ≤ ct but (ii) there is a dynamic graph with oit 1 and
ct = Ω(n).

Proof. (i) We show that for all u ∈ V and all times t, t′ ∈ IN s.t. t′ ≥ t it holds
that |future(u,t)(t

′+ct)| ≥ min{|future(u,t)(t
′)|+1, n}. Assume V \future(u,t)(t

′) 6=
∅ (as the other case is trivial). In at most ct rounds at least one edge joins
future(u,t)(t

′) to V \future(u,t)(t
′). Thus, in at most ct rounds future(u,t)(t

′) in-
creases by at least one.

(ii) Recall the alternating matchings on a ring dynamic graph from Section
5.1. Now take any set V of a number of nodes that is a multiple of 4 (this is
just for simplicity and is not necessary) and partition it into two sets V1, V2
s.t. |V1| = |V2| = n/2. If each part is an alternating matchings graph for |V1|/2
rounds then every u say in V1 influences 2 new nodes in each round and similarly
for V2. Clearly we can keep V1 disconnected from V2 for n/4 rounds without
violating oit = 1. ut

6 Fast Propagation of Information Under Continuous
Disconnectivity

In Section 5.1, we presented a simple example of an always-disconnected dynamic
graph, namely, the alternating matchings dynamic graph, with optimal oit (i.e.
unit oit). Note that the alternating matchings dynamic graph may be conceived
as simple as it has small fer (equal to 2). We pose now, and answer to the
positive, an interesting question: Is there an always-disconnected dynamic graph
with unit oit and fer as big as n− 1?

Let us define a very useful dynamic graph coming from the area of edge-
coloring.

Definition 4. We define the following dynamic graph S based on an edge-
coloring method due to Soifer [Soi09]: V (S) = {u1, u2, . . . , un} where n = 2l,
l ≥ 2. Place un on the center and u1, . . . , nn−1 on the vertices of a (n − 1)-
sided polygon. For each time t ≥ 1 make available only the edges {un, um(0)} for
m(j) := (t−1+ j mod n− 1)+1 and {um(−i), um(i)} for i = 1, . . . , n/2−1; that
is make available one edge joining the center to a polygon-vertex and all edges
perpendicular to it.



Theorem 1. For all n = 2l, l ≥ 2, there is a dynamic graph of order n, with oit
equal to 1, fer equal to n− 1, and in which every instance is a perfect matching.
This is Soifer’s graph.

Note that Theorem 1 is optimal w.r.t. fer as it is impossible to achieve at the
same time unit oit and fer strictly greater than n− 1. To see this, notice that if
no edge is allowed to reappear in less than n steps then any node must have no
neighbors once every n steps.

7 Termination and Computation

We now turn our attention to termination criteria that we exploit to solve the
fundamental counting and all-to-all token dissemination problems. Keep in mind
that nodes have no a priori knowledge of the size of the network.

7.1 Nodes Know an Upper Bound on the ct: An Optimal
Termination Criterion

We here assume that all nodes know some upper bound T on the ct. We will
give an optimal condition that allows a node to determine whether it has heard
from all nodes in the graph. This condition results in an algorithm for counting
and all-to-all token dissemination which is optimal, requiring O(D + T ) rounds
in any dynamic network with dynamic diameter D. The core idea is to have each
node keep track of its past sets from time 0 and from time T and terminate as
long as these two sets become equal. This technique is inspired from [KOM11],
where a comparison between the past sets from time 0 and time 1 was used to
obtain an optimal termination criterion in 1-interval connected networks.

Theorem 2 (Repeated Past). Node u knows at time t that past(u,t)(0) = V
iff past(u,t)(0) = past(u,t)(T ).

Proof. If past(u,t)(0) = past(u,t)(T ) then we have that past(u,t)(T ) = V . The
reason is that |past(u,t)( 0)| ≥ min{|past(u,t)(T )| + 1, n}. To see this, assume
that V \past(u,t)(T ) 6= ∅. At most by round T there is some edge joining some
w ∈ V \past(u,t)(T ) to some v ∈ past(u,t)(T ). Thus, (w, 0)  (v, T )  (u, t) ⇒
w ∈ past(u,t)(0). In words, all nodes in past(u,t)(T ) belong to past(u,t)(0) and at
least one node not in past(u,t)(T ) (if one exists) must belong to past(u,t)(0).

For the other direction, assume that there exists v ∈ past(u,t)(0)\past(u,t)(T ).
This does not imply that past(u,t)(0) 6= V but it does imply that even if
past(u,t)(0) = V node u cannot know it has heard from everyone. Note that
u heard from v at some time T ′ < T but has not heard from v since then. It can
be the case that arbitrarily many nodes were connected to no node until time
T − 1 and from time T onwards were connected only to node v (v in some sense
conceals these nodes from u). As u has not heard from the T -state of v it can be
the case that it has not heard at all from arbitrarily many nodes, thus it cannot
decide on the count. ut



We now give a time-optimal O(D + T )-round algorithm for counting and
all-to-all token dissemination that is based on Theorem 2.

Protocol A. All nodes constantly forward all 0-states and T -states of nodes
that they have heard of so far (the ids of the nodes accompanied with 0 and T
timestamps, respectively) and a node halts as soon as past(u,t)(0) = past(u,t)(T )
and outputs |past(u,t)(0)| for counting or past(u,t)(0) for all-to-all dissemination.

7.2 Known Upper Bound on the oit: Another Optimal Termination
Criterion

Now we assume that all nodes know some upper bound K on the oit.

7.2.1 Inefficiency of Hearing the Past We begin by proving that if a node
u has at some point heard of l nodes, then u hears of another node in O(Kl2)
rounds (if an unknown one exists).

Theorem 3. In any given dynamic graph with oit upper bounded by K, take a
node u and a time t and denote |past(u,t)(0)| by l. It holds that |{v : (v, 0)  
(u, t+Kl(l + 1)/2)}| ≥ min{l + 1, n}.

Proof. Consider a node u and a time t and define Au(t) := past(u,t)(0) (we only
prove it for the initial states of nodes but easily generalizes to any time), Iu(t′) :=
{v ∈ Au(t) : Av(t′)\Au(t) 6= ∅}, t′ ≥ t, that is Iu(t′) contains all nodes in Au(t)
whose t′-states have been influence by nodes not in Au(t) (these nodes know new
info for u), Bu(t′) := Au(t)\Iu(t′), that is all nodes in Au(t) that do not know
new info, and l := |Au(t)|. The only interesting case is for V \Au(t) 6= ∅. Since the
oit is at most K we have that at most by round t+Kl, (u, t) influences some node
in V \Bu(t) say via some u2 ∈ Bu(t). By that time, u2 leaves Bu. Next consider
(u, t+Kl+ 1). In K(l−1) steps it must influence some node in V \Bu since now
u2 is not in Bu. Thus, at most by round t+Kl+K(l−1) another node, say e.g.
u3, leaves Bu. In general, it holds that Bu(t′+K|Bu(t′)|) ≤ max{|Bu(t′)|−1, 0}.
It is not hard to see that at most by round j = t + K(

∑
1≤i≤l i), Bu becomes

empty, which by definition implies that u has been influenced by the initial state
of a new node. In summary, u is influenced by another initial state in at most
K(

∑
1≤i≤l i) = kl(l + 1)/2 steps. ut

The good thing about the upper bound of Theorem 3 is that it associates
the time for a new incoming influence to arrive at a node only with an upper
bound on the oit, which is known, and the number of existing incoming influences
which is also known, and thus the bound is locally computable at any time. So,
there is a straightforward translation of this bound to a termination criterion
and further to an O(Kn2) algorithm for counting and all-to-all dissemination.

Note that the upper bound of Theorem 3 is loose. The reason is that if a
dynamic graph has oit upper bounded by K then in O(Kn) rounds all nodes have
causally influenced all other nodes and clearly the iit can be at most O(Kn). In



fact, it is not hard to construct a dynamic graph that achieves this worst possible
gap between the iit and the oit. On the other hand, the bound of Theorem 3 is
optimal in the following sense: a node cannot obtain a better upper bound based
solely on K and l.

We now show that even the criterion of Theorem 2, that is optimal if an upper
bound on the ct is known, does not work in dynamic graphs with known an upper
bound K on the oit. In particular, we show that for any time t′ ∈ IN which can
only depend on K (otherwise it is fixed) there is a dynamic graph with oit upper
bounded by K, a node u, and a time t ∈ IN s.t. past(u,t)(0) = past(u,t)(t

′) while
past(u,t)(0) 6= V . In words, for any such t′ it can be the case that while u has
not been yet causally influenced by all initial states its past set from time 0
may become equal to its past set from time t′, which violates the termination
criterion of Theorem 2.

Theorem 4. For any time t′ (which can only depend on the upper bound K on
the oit) there is a dynamic graph with oit upper bounded by K, a node u, and a
time t ∈ IN s.t. past(u,t)(0) = past(u,t)(t

′) while past(u,t)(0) 6= V .

Proof. Let n be sufficiently large, that is n� t′, and for simplicity assume that
n is a multiple of 4. As in Proposition 3-ii, we can keep two parts V1, V2 of the
network, of size n/2 each, disconnected up to some time Ω(n). Let u ∈ V1. At
time t′ + 1 the adversary directly connects some node v ∈ V1 to all w ∈ V1.
Now v knows the t′-states (and of course also the 0-states) of all nodes in V1.
Then at time t′ + 2 the adversary connects v only to u and to some node in V2.
Clearly, at time t′+2, u learns the t′-states of all nodes in V1 (v inclusive) and it
holds that past(u,t′+2)(0) = past(u,t′+2)(t

′). Additionally, |past(u,t)(0)| = n/2⇒
past(u,t)(0) 6= V . ut

7.2.2 Hearing the Future We now present an optimal protocol for counting
and all-to-all dissemination in dynamic networks with known an upper bound
K on the oit, that is based on the following termination criterion. By definition
of oit, if future(u,0)(t) = future(u,0)(t + K) then future(u,0)(t) = V . The reason
is that if there exist uninfluenced nodes, then at least one such node must be
influenced in at most K rounds, otherwise no such node exists and (u, 0) must
have already influenced all nodes. So, a fundamental goal is to allow a node to
know its future set. Note that this criterion has a very basic difference from all
termination criteria that have so far been applied to worst-case dynamic net-
works: instead of keeping track of its past set(s) and waiting for new incoming
influences a node now directly keeps track of its future set and is informed by
other nodes of its progress. We assume, for simplicity, a unique leader l in the
initial configuration of the system (we later drop this unnecessary assumption).

Protocol Hear from known. We denote by r the current round. Each node u
keeps a list Influ in which it keeps track of all nodes that first heard of (l, 0) (the
initial state of the leader) by u (u was between those nodes that first acquained
(l, 0) to nodes in Influ), a set Au in which it keeps track of the Inflv sets that



it is aware of initially set to (u, Influ, 1), and a variable timestamp initially
set to 1. Each node u broadcast in every round (u,Au) and if it has heard of
(l, 0) also broadcasts (l, 0). Upon reception of an id w that is not accompanied
with (l, 0), a node u that has already heard of (l, 0) adds (w, r) to Influ to
recall that at round r it notified w of (l, 0) (note that it is possible that other
nodes also notify w of (l, 0) at the same time without u being aware of them;
all these nodes will write (w, r) in their lists). If it ever holds at a node u that
r > max(v 6=u,r′)∈Influ{r′}+K then u adds (u, r) in Influ (replacing any existing
(u, t) ∈ Influ) to denote the fact that r is the maximum known time until which
u has performed no further propagations of (l, 0). If at some round r a node u
modifies its Influ set, it sets timestamp← r. In every round, a node u updates
Au by storing in it the most recent (v, Inflv, timestamp) triple of each node
v that it has heard of so far (its own (u, Influ, timestamp) inclusive), where
the “most recent” triple of a node v is the one with the greatest timestamp
between those whose first component is v. Moreover, u clears multiple (w, r)
records from the Inflv lists of Au. In particular, it keeps (w, r) only in the
Inflv list of the node v with the smallest id between those that share (w, r).
Similarly, the leader collects all (v, Inflv, timestamp) triples in its own Al set.
Let tmax denote the maximum timestamp appearing in Al, that is the maximum
time for which the leader knows that some node was influenced by (l, 0) at that
time. Moreover denote by I the set of nodes that the leader knows to have
been influenced by (l, 0) 4. If at some round r it holds at the leader that for all
u ∈ I there is a (u, Influ, timestamp) ∈ Al s.t. timestamp ≥ tmax + K and
max(w 6=u,r′)∈Influ{r′} ≤ tmax then the leader notifies the other nodes about
termination for K · |I| rounds and then outputs |I| or I depending on whether
counting or all-to-all dissemination needs to be solved and halts.

The above protocol can be easily made to work without the assumption of
a unique leader. The idea is to have all nodes begin as leaders and make all
nodes prefer the leader with the smallest id that they have heard of so far. In
particular, we can have each node keep an Infl(u,v) only for the smallest v that
it has heard of so far. Clearly, in O(D) rounds all nodes will have sticked to the
node with the smallest id in the network.

Theorem 5. Protocol Hear from known solves counting and all-to-all dissem-
ination in O(D + K) rounds by using messages of size O(n logKn), in any
dynamic network with dynamic diameter D, and with oit upper bounded by some
K known to the nodes.

We defer for the full paper a protocol (inspired from a technique from [MCS12])
that solves counting and all-to-all dissemination in O(Dn2 + K) rounds by us-
ing messages of size O(logD + log n), in any dynamic network with dynamic
diameter D, and with oit upper bounded by some K known to the nodes.

4 Note that I can be extracted from Al by I = {v ∈ V : ∃u ∈ V , ∃timestamp, r ∈ IN
s.t. (u, Influ, timestamp) ∈ Al and (v, r) ∈ Influ}.



Finally, it is not hard to prove that protocols that are correct in 1-interval
connected networks carry over to networks in which an upper bound on the oit,
iit, or ct is known, with only a small delay being introduced in the process.

8 Conclusions

We studied for the first time worst-case dynamic networks that are free of any
connectivity assumption about their instances. To enable a quantitative study
we proposed some novel generic metrics that capture the speed of information
propagation in a dynamic network. We proved that fast dissemination and com-
putation are possible even under continuous disconnectivity. In particular, we
presented optimal termination conditions and protocols based on them for the
fundamental counting and all-to-all token dissemination problems.

There are many open problems and promising research directions related to
this work. An asynchronous communication model in which nodes can broad-
cast when there are new neighbors would be a very natural extension of the
synchronous model that we studied in this work. Note that in our work (and all
previous work on the subject) information dissemination is only guaranteed un-
der continuous broadcasting. How can the number of redundant transmissions be
reduced in order to improve communication efficiency? Is there a way to exploit
visibility to this end? Does predictability help? Finally, randomization will be
certainly valuable in constructing fast and symmetry-free protocols. We strongly
believe that these and other known open questions and research directions will
motivate the further growth of this emerging field.
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