
Population Protocols and Related Models∗

Paul G. Spirakis

Abstract This is a joint work with Ioannis Chatzigiannakis and Othon Michail.
We discuss here the population protocol model and most of its well-known exten-
sions. The population protocol model aims to represent sensor networks consist-
ing of tiny computational devices with sensing capabilities that follow some unpre-
dictable and uncontrollable mobility pattern. It adopts a minimalistic approach and,
thus, naturally computes a quite restricted class of predicates and exhibits almost
no fault-tolerance. Most recent approaches make extra realistic and implementable
assumptions, in order to gain more computational power and/or speed-up the time to
convergence and/or improve fault-tolerance. In particular, the mediated population
protocol model, the community protocol model, and the PALOMA model, which
are all extensions of the population protocol model, are thoroughly discussed. Fi-
nally, the inherent difficulty of verifying the correctness of population protocols that
run on complete communication graphs is revealed, but a promising algorithmic
solution is presented.

1 Introduction

Wireless Sensor Networks (WSNs) will play an increasingly important role in criti-
cal systems’ infrastructure and should be correct, reliable and robust. Formal speci-
fication helps to obtain not only a better (more modular) description, but also a clear
understanding and an abstract view of a system [8]. Given the increasing sophis-
tication of WSN algorithms and the difficulty of modifying an algorithm once the
network is deployed, there is a clear need to use formal methods to validate system

Research Academic Computer Technology Institute (RACTI), +302610960200, Patras, Greece,
e-mail: spirakis@cti.gr

∗ This work has been partially supported by the ICT Programme of the European Union under
contract number ICT-2008-215270 (FRONTS).

1

2 Paul G. Spirakis

performance and functionality prior to implementing such algorithms [34]. Formal
analysis requires the use of models, trusted to behave like a real system. It is there-
fore critical to find the correct abstraction layer for the models and to verify the
models.

Towards providing a concrete and realistic model for future sensor networks,
Angluin et al. [2] introduced the notion of a computation by a population protocol.
Due to the minimalistic nature of their model, individual agents are extremely lim-
ited and can be represented as finite-state machines. The computation is carried out
by a collection of agents, each of which receives a piece of the input. Information
can be exchanged between two agents whenever they come into contact with (or
sufficiently close to) each other. The goal is to ensure that every agent can eventu-
ally output the value that is to be computed. The critical assumptions that diversify
the population protocol model from traditional distributed systems is that the in-
teraction pattern is inherently nondeterministic and that the protocols’ description
is independent of the population size (that is, need O(1) total memory capacity in
each agent). The latter is known as the uniformity property of population protocols.
Moreover, population protocols are anonymous since there is no room in the state
of an agent to store a unique identifier.

The population protocol model was designed to represent sensor networks con-
sisting of very limited mobile agents with no control over their own movement. It
also bears a strong resemblance to models of interacting molecules in theoretical
chemistry [27, 26]. The defining features of the population protocol model are:

1. Anonymous, finite-state agents. The system consists of a large population of in-
distinguishable finite-state agents.

2. Computation by direct interaction. In the original model, agents do not send mes-
sages or share memory; instead, an interaction between two agents updates both
of their states according to a global transition table. The actual mechanism of
such interactions is abstracted away.

3. Unpredictable interaction patterns. The choice of which agents interact is made
by an adversary. Agents have little control over which other agents they inter-
act with, although the adversary may be limited to pairing only agents that are
adjacent in an interaction graph, typically representing distance constraints or
obstacle presence. A strong global fairness condition is imposed on the adver-
sary to ensure that the protocol makes progress (e.g. the adversary cannot keep
the agents forever disconnected).

4. Distributed inputs and outputs. The input to a population protocol is distributed
across the agents of the entire population. In what concerns predicates, all agents
are expected to give the correct output value (which is known as the predicate
output convention [2]), thus, the output is collected from any agent in the popu-
lation (after, of course, the computation has stabilized).

5. Convergence rather than termination. Population protocols generally cannot de-
tect when they have finished; instead, the agents’ outputs are required to converge
after some finite time to a common correct value.

Population Protocols and Related Models 3

The population protocol model was inspired in part by work by Diamadi and
Fischer [23] on trust propagation in a social network. The urn automata of [3] can
be seen as a first draft of the model that retained in vestigial form several features of
classical automata: instead of interacting with each other, agents could only interact
with a finite-state controller, complete with input tape. The motivation given for the
current model in [2] was the study of sensor networks in which passive agents were
carried along by other entities; the canonical example was sensors attached to a flock
of birds. The name of the model was chosen by analogy to population processes [33]
in probability theory.

The initial goal of the model was to study the computational limitations of coop-
erative systems consisting of many limited devices (agents), imposed to passive (but
fair) communication by some scheduler. Much work showed that there exists an ex-
act characterization of the computable predicates: they are precisely the semilinear
predicates or equivalently the predicates definable by first-order logical formulas
in Presburger arithmetic [2, 5, 6, 7]. More recent work has concentrated on perfor-
mance, supported by a random scheduling assumption. [16] proposed a collection of
fair schedulers and examined the performance of various protocols. [12] went one
step further by proposing a generic definition of probabilistic schedulers and prov-
ing that the schedulers of [16] are all fair with probability 1, and revealed the need
for the protocols to adapt when natural modifications of the mobility pattern occur.
[11, 19] considered a huge population hypothesis (population going to infinity) and
studied the dynamics, stability, and computational power of probabilistic popula-
tion protocols by exploiting the tools of continuous nonlinear dynamics. In [11] it
was also proven that there is a strong relation between classical finite population
protocols and models given by ordinary differential equations.

There exist a few extensions of the population protocol model in the relevant
literature to more accurately reflect the requirements of practical systems. In [1] they
studied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with stabilizing
inputs. The results of [5] show that again the semilinear predicates are all that can
be computed by this model. Finally, some works incorporated agent failures [22]
and gave to some agents slightly increased computational power [9] (heterogeneous
systems). For an excellent introduction to most of the preceding subjects see [7].

In this chapter we start by presenting in detail the basic population protocol
model. Unfortunately, the class of solvable problems by this theoretical model is
fairly small. For instance, it does not include multiplication. Moreover, even for
this restricted class, algorithms tolerate no failures or, at worst, a fixed number of
benign failures [22]. Therefore, we present four interesting extensions of the popu-
lation protocol model that investigate the computational benefits of cooperative sys-
tems when adding new features (e.g. to the hardware of the devices). The extended
models are summarized as follows:

• First, based on [17] (see also [18]), the population protocol model is extended to
include a Mediator, i.e., a global storage capable of storing very limited infor-
mation for each communication arc (the state of the arc). When pairs of agents
interact, they can read and update the state of the link (arc). The extended model

4 Paul G. Spirakis

is called the Mediated Population Protocol (MPP) model. Interestingly, although
anonymity and uniformity are preserved in this model, the presence of a media-
tor provides us with significantly more computational power and gives birth to a
new collection of interesting problems in the area of tiny networked and possi-
bly moving artefacts; based on this model we can build systems with the ability
of computing subgraphs and solve optimization problems concerning the com-
munication graph. Moreover, as we shall see, MPPs are capable of computing
non-semilinear predicates and here any stably computable predicate belongs to
NSPACE(m), where m denotes the number of edges of the communication graph.

• One of the most interesting and applicable capabilities of the mediated population
protocol model is its ability to decide graph properties. To understand properties
of the communication graph is an important step in almost any distributed sys-
tem. In particular, if we temporarily disregard the input notion of the population
and assume that all agents simply start from a unique initial state (and the same
holds for the edges), then we obtain another interesting model that is called the
GDM (standing for Graph Decision Mediated) model [15]. When GDM proto-
cols are executed fairly on any communication graph G, after a finite number of
steps stabilize to a configuration where all agents give 1 as output if G belongs
to a graph language L, and 0 otherwise. This is motivated by the idea of having
protocols that eventually accept all communication graphs (on which they run)
that satisfy a specific property, and eventually reject all remaining communica-
tion graphs. The motivation for studying a simplified version of the mediated
population protocol model is that it enables us to study what graph properties are
stably computable by the mediated model without the need to keep in mind its
remaining parameters (which, as a matter of fact, are a lot).

• Another direction for extending the population protocol model is to assume the
existence of a unique identifier for each agent. This is a natural extension since,
although a tiny device’s memory is often very constrained, it is usually sufficient
to store a unique identity. In fact, in most modern tiny devices the communica-
tion module is often equipped with a unique identifier. For example, they might
contain Maxim’s DS2411 chip, which stores just 64 bits of ROM and is set by
the factory to store a unique serial number. This idea gave birth to the Community
Protocol model [29]. In this model, all n agents have unique identifiers (ids) and
can store O(1) other agents’ ids. The ids are stored in ROM (as in the DS2411
chip), so that Byzantine agents cannot alter their ids. The usage of ids is re-
stricted to their fundamental purpose, identification, by assuming that algorithms
can only compare ids (an algorithm cannot, for example, perform arithmetic on
ids). In addition to having ids, the ability of agents to remember other ids is
crucial as, otherwise, the model would be as weak as population protocols. The
computational power of this extension is greatly increased; a community pro-
tocol of n agents can simulate a nondeterministic Turing Machine of O(n logn)
space. In particular, it can compute any symmetric predicate in NSPACE(n logn).
Moreover, as in the population protocol model, a single algorithm must work for
all values of n. Furthermore, the simulation is resilient to a constant number of
Byzantine failures. So, although community protocols only make a rational addi-

Population Protocols and Related Models 5

tional assumption (that is, the ids equipment), they are much more powerful than
population protocols: they solve a much wider class of problems and tolerate
Byzantine failures.

• Finally, we present another extension called the PALOMA model [14]. In this
model, the system consists of PAssively mobile LOgarithmic space MAchines.
The idea is to provide each agent with a memory whose size is logarithmic in
the population size, which seems a very natural assumption: only 266 bits are
required for 2266 agents (which is an astronomical population size)! Moreover,
we can think of an agent as a small Turing Machine, which also seems natural:
mobile phones, PDAs and many other common mobile devices are in fact sophis-
ticated Turing Machines. The PALOMA model is also extremely strong, since it
can stably compute any symmetric predicate in NSPACE(n logn).

A very important aspect of WSNs is to provide solutions that are verifiably cor-
rect, in the sense of giving a “proof” that the solution will work, given the appli-
cation goals and network set-up. Population protocol models can detect errors in
the design that are not so easily found using emulation or testing. Formal analy-
sis techniques are also supported by (semi-)automated tools. Such tools can also
detect errors in the design and they can be used to establish correctness. Model
checking is an exhaustive state space exploration technique that is used to validate
formally specified system requirements with respect to a formal system description
[21]. Such a system is verified for a fixed configuration; so in most cases, no gen-
eral system correctness can be obtained. Using some high-level formal modeling
language, automatically an underlying state space can be derived, be it implicitly or
symbolically. The system requirements are specified using some logical language,
like LTL, CTL or extensions thereof [32]. Well-known and widely applied model
checking tools are SPIN [31], Uppaal [10] (for timed systems), and PRISM [30]
(for probabilistic systems). The system specification language can, e.g., be based on
process algebra, automata or Petri nets. However, model checking suffers from the
so-called state explosion problem, meaning that the state space of a specified system
grows exponentially with respect to its number of components. The main challenge
for model checking lies in modeling large-scale dynamic systems.

The important feature that diversifies the population protocol model from tradi-
tional distributed systems is that the protocol specifications are independent of the
population size which makes them suitable for the verification of protocols that tar-
get systems spanning thousands of objects. Evaluating if a property is valid or not in
the system can be done with a number of components that is independent to the size
of the population. The most important factor to decide the reachability of a certain
configuration is the size of the protocol. Towards further minimizing the configu-
ration space of the protocols we can apply the protocol composition methodology.
This approach states that one may reduce a protocol into two (or more) protocols
of reduced state space that maintain the same correctness and efficiency properties.
The combination of the above help overcome the state explosion problem and speed
up the verification process. We expect that population protocol models will be used
to model such networks and the interactions, as dictated by the MAC protocol or the

6 Paul G. Spirakis

overall protocol stack, providing the ability, in a formal and modern way, to define
the system in a minimalist way (in contrast to other approaches).

Section 2 discusses the population protocol model of Angluin et al [2]. Section 3
deals with a first extension of the population protocol model, the mediated popula-
tion protocol model [17]. Section 4 goes one step further in the investigation of the
mediated population protocol model by focusing on its ability to decide interesting
graph properties. The simplified version of the mediated population protocol model
discussed there is the GDM model [15]. In Section 5, the community protocol model
of Guerraoui and Ruppert [29] is discussed and in Section 6 the PALOMA model
[14]. Both models have the same computational power and are particularly power-
ful. Section 7 deals with correctness of population protocols that run on complete
communication graphs. In particular, it focuses on the problem of algorithmically
verifying whether a given population protocol is correct w.r.t. its specifications and
is based on [13]. The problem is shown to be hard, but a promising algorithmic so-
lution is presented. Finally, Section 8 discusses some interesting open problems in
the area of small passively mobile communicating devices.

2 Population Protocols

We begin with a formal definition of the population protocol model proposed in a
seminal work of Angluin et al. in [2]. The model represents sensor networks con-
sisting of extremely limited agents that may move and interact in pairs.

2.1 The Model

Definition 1. A population protocol (PP) is a 6-tuple (X ,Y,Q, I,O,δ), where X , Y ,
and Q are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of states,
4. I : X → Q is the input function,
5. O : Q→ Y is the output function, and
6. δ : Q×Q→ Q×Q is the transition function.

If δ (a,b) = (a′,b′), we call (a,b)→ (a′,b′) a transition and we define δ1(a,b) =
a′ and δ2(a,b) = b′. We call δ1 the initiator’s acquisition and δ2 the responder’s
acquisition.

A population protocol A = (X ,Y,Q, I,O,δ) runs on a communication graph G =
(V,E) with no self-loops and no multiple edges. From now on, we will denote by n
the number of nodes of the communication graph and by m the number of its edges.
Initially, all agents (i.e. the elements of V) receive a global start signal, sense their

Population Protocols and Related Models 7

environment and each one receives an input symbol from X . All agents are initially
in a special empty state t /∈ Q. When an agent receives an input symbol σ , applies
the input function to it and goes to its initial state I(σ) ∈Q. An adversary scheduler
selects in each step a directed pair of distinct agents (u,υ) ∈ E (that is, u,υ ∈ V
and u 6= υ) to interact. The interaction is established only if both agents are not in
the empty state (they must both have been initialized). Assume that the scheduler
selects the pair (u,υ), that the current states of u and υ are a,b∈Q, respectively, and
that δ (a,b) = (a′,b′). Agent u plays the role of the initiator in the interaction (u,υ)
and υ that of the responder. During their interaction u and υ apply the transition
function to their directed pair of states (to be more precise, the initiator applies δ1
while the responder δ2) and, as a result, u goes to a′ and υ to b′ (both update their
states according to δ).

A configuration is a snapshot of the population states. Formally, a configuration
is a mapping C : V → Q specifying the state of each agent in the population. C0
is the initial configuration (for simplicity, we assume that all agents apply the input
function at the same time, which is one step before C0, so in C0 all empty states have
been already replaced, and that’ s the reason why we have chosen not to include t
in the model definition) and, for all u ∈V , C0(u) = I(x(u)), where x(u) is the input
symbol sensed by agent u. Let C and C′ be configurations, and let u, υ be distinct
agents. We say that C goes to C′ via encounter e = (u,υ), denoted C e→C′, if

C′(u) = δ1(C(u),C(υ)),
C′(υ) = δ2(C(u),C(υ)), and
C′(w) = C(w) for all w ∈V −{u,υ},

that is, C′ is the result of the interaction of the pair (u,υ) under configuration C
and is the same as C except for the fact that the states of u, υ have been updated
according to δ1 and δ2, respectively. We say that C can go to C′ in one step, denoted
C→C′, if C e→C′ for some encounter e ∈ E. We write C ∗→C′ if there is a sequence
of configurations C = C0,C1, . . . ,Ct = C′, such that Ci→Ci+1 for all i, 0≤ i < t, in
which case we say that C′ is reachable from C.

An execution is a finite or infinite sequence of configurations C0,C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have both fi-
nite and infinite kinds of executions since the scheduler may stop in a finite number
of steps or continue selecting pairs for ever. Moreover, note that, according to the
preceding definitions, a scheduler may partition the agents into non-communicating
clusters. If that’s the case, then it is easy to see that no meaningful computation is
possible. To avoid this unpleasant scenario, a strong global fairness condition is im-
posed on the scheduler to ensure the protocol makes progress. Formally, an infinite
execution is fair if for every pair of configurations C and C′ such that C→ C′, if
C occurs infinitely often in the execution, then C′ also occurs infinitely often in the
execution. A scheduler is fair if it always leads to fair executions. A computation is
an infinite fair execution.

The above fairness condition, although at first sight may seem too strong, is in
fact absolutely natural. The reason is that in most natural systems, between those

8 Paul G. Spirakis

under consideration, the passive mobility pattern that the agents follow will be the
result of some natural phenomenon, like, for example, birds flying, river flow, and
so on, that usually follows some probability distribution or, possibly, a collection of
such probability distributions. Most of these schedulers, as indicated by [12], satisfy
the above fairness condition; they only have to also satisfy some natural properties.

The following are two critical properties of population protocols:

1. Uniformity: Population protocols are uniform. This means that any protocol’s
description is independent of the population size. Since we assume that the agents
have finite storage capacity, and independent of the population size, uniformity
enables us to store the protocol code in each agent of the population.

2. Anonymity: Population protocols are anonymous. The set of states is finite and
does not depend on the size of the population. This implies that there is no room
in the state of an agent to store a unique identifier, and, thus, all agents are treated
in the same way by the transition function.

Example 1. A very celebrated population protocol is the “flock of birds” (or “count
to five”) protocol. Every bird in a particular flock is equipped with a sensor node
that can determine whether the bird’s temperature is elevated or not, and we wish to
know whether at least 5 birds in the flock have elevated temperatures. Moreover, we
assume that all ordered pairs of sensor nodes are permitted interaction. This was the
motivating scenario of population protocols [2].

We think as follows. The sensor senses the temperature of its corresponding bird
(its carrier) and if it is found elevated it outputs 1, otherwise 0. As soon as the agent
receives a global start signal (e.g. from a base station) it reads its sensor’s output
σ ∈ {0,1} and applies to it the input function I. We can assume here that I maps
0 to initial state q0 and 1 to q1. This means that the number of agents that are in
state q1 under the initial configuration is equal to the number of sick birds, while all
remaining agents are in state q0. Now, when two agents interact, the initiator sets its
state index to the sum of the state indices and the responder goes to q0, except for
the case in which the sum of the indices is at least 5. In the latter case both agents
set their indices to 5. The idea is to try aggregating the initial number of 1 indices
to one agent’s state index. Note that the sum of nonzero indices is always equal to
the number of sick birds; obviously, this holds until index 5 first appears. But what
about the output of the protocol? If an agent gets q5 then it knows that initially at
least 5 birds were sick, and it outputs the value 1 in order to indicate this fact, and
eventually q5 is propagated to all agents. Otherwise, it outputs 0 because it may still
have partial information.

Let us now formalize the above description. The “flock of birds” protocol is F =
(X ,Y,Q, I,O,δ). The input and output alphabets are X =Y = {0,1}, the set of states
is Q = {q0,q1, . . . ,q5}, the input function I maps 0 to q0 and 1 to q1, the output
function O maps q5 to 1 and all states in {q0, . . . ,q4} to 0, and the transition function
δ (qi,q j) is defined as follows:

1. if i+ j < 5, then the result is (qi+ j,q0), and
2. if i+ j ≥ 5, then the result is (q5,q5).
ut

Population Protocols and Related Models 9

Exercise 1. Assume that all agents may err in two different ways. One possibility
is that they do not apply the input function correctly and another is that they do
not apply the transition function correctly. Fortunately, all are equipped with a spe-
cial mechanism that automatically overwrites the faulty state with state r ∈ {r1,r2},
where r1 and r2 are the error reports/identifiers for the input function and the transi-
tion function, respectively. Try to adapt the “flock of birds” protocol to this scenario
by keeping in mind that we require the protocol to give the correct output or report
all the errors that have occurred.

Exercise 2. All birds in the flock are now additionally equipped with a sensor that
determines their color, which is either black or white. Try to modify the “flock of
birds” protocol in order to determine whether at least 3 black birds in the flock have
elevated temperatures. Also exploit the white birds in order to (possibly2) improve
performance.
Hint: assume that the input symbols are of the form (i, j) where i corresponds to the
temperature and j to the color.

2.2 Stable Computation

Assume a fair scheduler that keeps working forever and a protocol A that runs on
a communication graph G = (V,E). As already said, initially, each agent receives
an input symbol from X . An input assignment x : V → X is a mapping specifying
the input symbol of each agent in the population. Let X = XV be the set of all
possible input assignments, given the population V and the input alphabet X of A .
Population protocols, when controlled by infinitely working schedulers, do not halt.
Instead of halting we require any computation of a protocol to stabilize. An output
assignment y : V →Y is a mapping specifying the output symbol of each agent in the
population. Any configuration C ∈ C = QV is associated with an output assignment
yC = O ◦C. A configuration C is said to be output-stable if for any configuration
C′ such that C ∗→ C′ (any configuration reachable from C) yC′ = yC. In words, a
configuration C is output-stable if all agents maintain the output symbol that have
under C in all subsequent steps, no matter how the scheduler proceeds thereafter. A
computation C0,C1,C2, . . . is stable if it contains an output-stable configuration Ci,
where i is finite.

Definition 2. A population protocol A running on a communication graph G =
(V,E) stably computes a predicate p : X → {0,1}, if, for any x ∈X , every com-
putation of A on G beginning from C0 = I ◦ x reaches in a finite number of steps
an output-stable configuration Cstable such that yCstable(u) = p(x) for all u ∈ V . A
predicate is stably computable if some population protocol stably computes it.

Assume, for example, that a computation of A on G begins from the initial
configuration corresponding to an input assignment x. Assume, also, that p(x) = 1.

2 We say possibly, because performance mainly depends on the scheduler. But if the scheduler is
assumed to be probabilistic, then exploiting all agents should improve expected performance.

10 Paul G. Spirakis

If A stably computes p, then we know that after a finite number of steps (if, of
course, the scheduler is fair) all agents will give 1 as output, and will continue doing
so for ever. This means, that if we wait for a sufficient, but finite, number of steps
we can obtain the correct answer of p with input x by querying any agent in the
population.

Definition 3. The basic population protocol model (or standard) assumes that the
communication graph G is always directed and complete.

In the case of the basic model, a configuration simplifies to a vector of nonnega-
tive integers that sum up to n indexed by states, and similarly for input assignments.
Intuitively, we are allowed to do so because agents are anonymous and fairness
guarantees that it does not matter in which agent each symbol or state lies. More-
over, here, stably computable predicates have to be symmetric. A predicate on input
assignments p is called symmetric if for every x = (σ1,σ2, . . . ,σn) ∈X and any
x′ which is a permutation of x’s components, it holds that p(x) = p(x′) (in words,
permuting the input symbols does not affect the predicate’s outcome).

Thus, in the basic model, we can ignore the agents’ underlying names to obtain a,
seemingly, less descriptive, but sufficient for the basic model, definition of a config-
uration c as a |Q|-vector of nonnegative integers (ci)i=0,...,|Q|−1, where ci = |c−1(qi)|
and |c−1(qi)| is equal to the number of agents to which state qi is assigned by config-
uration c (the cardinality of the preimage of qi), for all i ∈ {0, . . . , |Q|−1}. It is not
hard to see that the above definition implies that ∑|Q|−1

i=0 ci = n for any configuration
c.

Exercise 3. Do the same for the input assignments; that is, define formally their
vector description.

Example 2. Now, that the most important notions have been defined, we are ready
to prove that the “flock of birds” protocol stably computes the predicate

p(x) =
{

1, if x1 >= 5
0, if x1 < 5,

where x1 denotes the number of agents that get input symbol 1. Another way to
write the predicate is (x1 >= 5), which specifies that the value “true” is expected as
output by all agents for every input assignment that provides at least 5 agents with
the input symbol 1.

Proof. There is no transition in δ that decreases the sum of the indices. In particular,
if i + j < 5 then transitions are of the form (qi,q j)→ (qi+ j,q0) and leave the sum
unaffected, while if i + j ≥ 5 then transitions are of the form (qi,q j)→ (q5,q5)
and all strictly increase it except for (q5,q5)→ (q5,q5) that leaves it unaffected.
So the initial sum is always preserved except for the case where state q5 appears.
If x1 < 5 then it suffices to prove that state q5 does not appear, because then all
agents will forever remain in states {q0, . . . ,q4} that give output 0. Assume that it
appears. When this happened for the first time it was because the sum of the states of

Population Protocols and Related Models 11

two interacting agents was at least 5. But this is a contradiction, because the initial
sum should have been preserved until q5 appeared. We now prove that if q5 ever
appears then all agents will eventually get it and remain to it forever. Obviously, if
all get q5 then they cannot escape from it, because no transition does this, thus, they
forever remain to it. Now assume that q5 has appeared in agent u and that agent
υ 6= u never gets it. From the time that u got q5 it could not change its state, thus
any interaction of u and υ would make υ’s state be q5. This implies that u and υ did
not interact for infinitely many steps, but this clearly violates the fairness condition
(a configuration in which υ is in q5 was always reachable in one step but was never
reached). Now, if x1 ≥ 5 then it suffices to prove that q5 appears. To see this, notice
that all reachable configurations c for which cq5 = 0 can reach in one step themselves
and some configurations that preserve the sum but decrease the number of agents
not in state q0. Due to fairness, this will lead to a decrease by one in the number of
non-q0 agents in a finite number of steps, implying an increase in one agent’s state
index. This process ends either when all indices have been aggregated to one agent
or when two agents, having a sum of indices at least 5, interact, and it must end,
otherwise the number of q0 agents would increase an unbounded number of times,
being impossible for a fixed n. ut

Note that such proofs are simplified a lot when we use arguments of the form
“if q5 appears then due to fairness all agents will eventually obtain it” and “due to
fairness the sum will eventually be aggregated to one agent unless q5 appears first”
without getting into the details of the fairness assumption. Of course, we have to be
very careful when using abstractions of this kind. ut

Exercise 4. Consider the following protocol, known as “parity protocol”:

The input and output alphabets are X = Y = {0,1}. The state of each agent consists of a
data bit and a live bit. Initially, the data bit is equal to the input bit and the live bit is 1. For
each state, the output bit is equal to the data bit. When two agents meet whose live bits are
both 1, one sets its live bit to 0, and the other sets its data bit to the mod 2 sum of their
data bits. When an agent with live bit 0 (a sleeping agent) meets an agent with live bit 1 (an
awake agent), the former copies the data bit of the latter.

Prove that the “parity protocol” stably computes the predicate (x1 mod 2 = 1), which
is true iff there is an odd number of 1s in the input.

Exercise 5. Given a population protocol A , if Q is the set of A ’s states and if A
runs on the complete communication graph of n nodes (basic model), show that
there are (1+ n

|Q|−1)|Q|−1 different configurations.

Semilinear predicates are predicates whose support is a semilinear set. A semi-
linear set is the finite union of linear sets. A set of vectors in INk is linear if it is of
the form

{b+ l1a1 + l2a2 + · · ·+ lmam | li ∈ IN},

where b is a base vector, ai are basis vectors, and li are nonnegative integer coef-
ficients. Moreover, semilinear predicates are precisely those predicates that can be

12 Paul G. Spirakis

defined by first-order logical formulas in Presburger arithmetic, as was proven by
Ginsburg and Spanier [28].

Angluin et al. proved in [2] that any semilinear predicate is stably computable by
the basic population protocol model and in [5] that any stably computable predicate,
by the same model, is semilinear, thus together providing an exact characterization
of the class of stably computable predicates:

Theorem 1 ([2, 5]). A predicate is stably computable by the basic population pro-
tocol model iff it is semilinear.

An immediate observation is that predicates like “the number of c’s is the product
of the number of a’s and the number of b’s (in the input assignment)” and “the
number of 1’s is a power of 2” are not stably computable by the basic model.

A graph family, or graph universe, is any set of communication graphs. Let
G be a graph family. For any G ∈ G , and given that X is the input alphabet of
some protocol A , there exists a set XG of all input assignments appropriate for
G, defined as XG = XV (G). Let now XG =

∪
G∈G (XG × {G}) or, equivalently,

XG = {(x,G) | G ∈ G and x is an input assignment appropriate for G}. Then we
have the following definition:

Definition 4. A population protocol A stably computes a predicate p : XG →
{0,1} in a family of communication graphs G , if, for any G ∈ G and any x ∈XG,
every computation of A on G beginning from C0 = I ◦ x reaches in a finite number
of steps an output-stable configuration Cstable such that yCstable(u) = p(x,G) for all
u ∈V (G).

Moreover, if p is a mapping from G to {0,1}, that is, a graph property (obviously,
independent of the input assignment), then we say that A stably computes property
p.

Note that we can also consider undirected communication graphs. In the case of
an undirected graph we only require that E is symmetric, but we keep the initiator-
responder assumption. The latter is important to ensure deterministic transitions,
since otherwise we would not be able to know which agent applies δ1 and which δ2.

3 Mediated Population Protocols

Consider now the following question: “Is there a way to extend the population
protocol model and obtain a stronger model, without violating the uniformity and
anonymity properties”? As we shall, in this section, see, the answer is in the affir-
mative. Although the idea is simple, it provides us with a model with significantly
more computational power and extra capabilities in comparison to the population
protocol model. The main modification is to allow the edges of the communication
graph to store states from a finite set, whose cardinality is independent of the pop-
ulation size. Two interacting agents read the corresponding edge’s state and update
it, according to a global transition function, by also taking into account their own
states.

Population Protocols and Related Models 13

3.1 Formal Definition

Definition 5. A mediated population protocol (MPP) is a 12-tuple (X ,Y,Q, I,O,S, ι ,
ω ,r,K,c,δ), where X , Y , Q, S, and K are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of agent states,
4. I : X → Q is the agent input function,
5. O : Q→ Y is the agent output function,
6. S is the set of edge states,
7. ι : X → S is the edge input function,
8. ω : S→ Y is the edge output function,
9. r is the output instruction (informing the output-viewer how to interpret the out-

put of the protocol),
10. K is the totally ordered cost set,
11. c : E→ K is the cost function
12. δ : Q×Q×K×S→ Q×Q×K×S is the transition function.

We assume that the cost remains the same after applying δ and so we omit specify-
ing an output cost. If δ (qi,q j,x,s) = (q′i,q

′
j,s
′) (which, according to our assumption,

is equivalent to δ (qi,q j,x,s) = (q′i,q
′
j,x,s

′)), we call (qi,q j,x,s)→ (q′i,q
′
j,s
′) a tran-

sition, and we define δ1(qi,q j,x,s) = q′i, δ2(qi,q j,x,s) = q′j and δ3(qi,q j,x,s) = s′.
Here, we, additionally, call δ3 the edge acquisition (after the corresponding interac-
tion).

In most cases we assume that K ⊂ ZZ+ and that cmax = maxw∈K {w} = O(1).
Generally, if cmax = maxw∈K {|w|} = O(1) then any agent is capable of storing at
most k cumulative costs (at most the value kcmax), for some k = O(1), and we say
that the cost function is useful (note that a cost range that depends on the population
size could make the agents incapable for even a single cost storage and any kind of
optimization would be impossible).

A network configuration is a mapping C :V ∪E→Q∪S specifying the agent state
of each agent in the population and the edge state of each edge in the communication
graph. Let C and C′ be network configurations, and let u, υ be distinct agents. We
say that C goes to C′ via encounter e = (u,υ), denoted C e→C′, if

C′(u) = δ1(C(u),C(υ),x,C(e))
C′(υ) = δ2(C(u),C(υ),x,C(e))
C′(e) = δ3(C(u),C(υ),x,C(e))
C′(z) = C(z), for all z ∈ (V −{u,υ})∪ (E− e).

The definitions of execution and computation are the same as in the population pro-
tocol model but concern network configurations. Note that the mediated population
protocol model preserves both uniformity and anonymity properties. As a result, any

14 Paul G. Spirakis

MPP’s code is of constant size and, thus, can be stored in each agent (device) of the
population.

A configuration C is called r-stable if one of the following conditions holds:

• If the problem concerns a subgraph to be found, then C should fix a subgraph
that will not change in any C′ reachable from C.

• If the problem concerns a function to be computed by the agents, then an r-stable
configuration drops down to an output-stable configuration.

We say that a protocol A stably solves a problem Π , if for every instance I of Π
and every computation of A on I, the network reaches an r-stable configuration C
that gives the correct solution for I if interpreted according to the output instruction
r. If instead of a problem Π we have a function f to be computed, we say that A
stably computes f .

In the special case where Π is an optimization problem, a protocol that stably
solves Π is called an optimizing population protocol for problem Π .

Example 3. We will present now a MPP with a leader that stably solves the following
problem:

Problem 1 (Transitive Closure). We are given a complete directed communication
graph G = (V,E). Let E ′ be a subset of E. For all e ∈ E ′) it holds that initially the
state of e is 1. We are asked to find the transitive closure of G′, that is, find a new
edge set E∗ that will contain a directed edge (u,υ) joining any nodes u,υ for which
there is a non-null path from u to υ in G′ (note that always E ′ ⊆ E∗).

We assume a controlled input assignment W : E→ X that allows us to give input
1 to any edge belonging to E ′ and input 0 to any other edge. Moreover, we assume
that initially all agents are in state q0, except for a unique leader that is in state l.

Protocol 1 TranClos

1: X = Y = {0,1}
2: Q = {l,q0,q1,q′1,q2,q′2,q3}
3: S = {0,1}
4: controlled input assignment: “W (e′) = 1, for all e′ ∈ E ′, and W (e) = 0, for all e ∈ E−E ′”
5: ι(x) = x, for all x ∈ X
6: ω(s) = s, for all s ∈ S
7: r: “Collect the subgraph induced by all e ∈ E for which ω(se) = 1 (where se is the state of e)”
8: δ :

(l,q0,0) → (q0, l,0) (q2,q0,1) → (q′2,q3,1)
(l,q0,1) → (q1,q2,1) (q1,q3,x) → (q′1,q0,1), for x ∈ {0,1}

(q1,q2,1) → (q0, l,1) (q′1,q
′
2,1) → (q0, l,1)

ut

The MPP TranClos (Protocol 1) stably solves the transitive closure problem
(Problem 1). You are asked to prove this in Exercise 6. Let us, first, explain one

Population Protocols and Related Models 15

after the other the protocol’s components before explaining its functionality (that
is, what is done by the transition function δ). The input alphabet X and the output
alphabet Y are both binary, that is, both consists of the symbols 0 and 1. The set of
agent states Q consists of the states l, q0, q1, q′1, q2, q′2, and q3, which are the states
that agents may obtain during the protocol’s computations. The set of edge states
S is binary, which means that the edges joining the agents will at any time be in
one of the states 0 and 1. The controlled input assignment simply specifies that all
edges belonging to E ′ are initially in state 1 (by taking into account that ι(x) = x,
for all x ∈ X) and all remaining edges of the communication graph are initially in
state 0. This is done in order to help the protocol distinguish E ′. ω(s) = s, for all
s ∈ S, simply says that the output of any edge is its current state, thus, either 0 or
1. Finally, the output instruction r informs the user that the protocol’s output will
consist of all edges that will eventually output the value 1. In this case, these edges
will form the transitive closure of the communication graph G. We next discuss the
protocol’s functionality, which is described by the transition function δ .

The protocol TranClos (Protocol 1) repeats the following procedure. Initially,
by assumption, there is a unique leader u in state l and all the other agents are in
q0. When the leader u interacts with an agent υ in q0 through (u,υ) in state 0, the
agents swap states, that is, now υ is the unique leader. If, instead, (u,υ) is in state
1, then the leader gets q1 and υ gets q2. After the latter has happened, all agents are
in q0 except for u and υ which are in q1 and q2, respectively, while (u,υ) is in state
1, and only the rules (q1,q2,1)→ (q0, l,1) and (q2,q0,1)→ (q′2,q3,1) can apply
(all the other rules have no effect). If the former applies first, then the population
goes to a configuration similar to the initial one, with a unique leader and all the
other agents in q0. This rule is important (although maybe not obvious why) since
it guarantees that, if υ , which is in q2, has no outgoing neighbor w, where qw = q0
and s(υ ,w) = 1, then the protocol won’t get stuck. If, instead, the latter applies first,
then υ has interacted with an agent w in q0 where (υ ,w) is in state 1. Now υ gets q′2
and w gets q3. After this step, the protocol has formed the directed path uυw, with
agent states q1,q′2,q3, respectively, and (u,υ), (υ ,w) (i.e. the edges of the path) in
state 1. From now on, only (q1,q3,x)→ (q′1,q0,1) can apply, which simply assigns
state 1 to the edge (u,w). Finally, the population remains again with a unique leader,
υ , and all the other agents in q0, simply proceeding with the same general operation
that we have just described.

Exercise 6. Give a formal proof that the MPP TranClos (Protocol 1) stably solves
the transitive closure problem (Problem 1).

Exercise 7. Assume that the input symbols are only 0 and 1 and that the communi-
cation graph G = (V,E) is any directed graph. Let G′ be the subgraph of G induced
by V ′ = {u ∈ V | u gets the input symbol 1}. Devise a MPP that will construct a
(not necessarily connected) subgraph G′′ = (V ′′,E ′′) of G′, in which all nodes have
in-degree at most one and out-degree at most one.

16 Paul G. Spirakis

3.2 Computational Power

The population protocol model is a special case of the mediated population protocol
model (try to prove it). Moreover, as we shall see, there exists a MPP protocol that
stably computes the non-semilinear predicate (Nc = Na ·Nb). In words, it eventually
decides whether the number of c’s in the input assignment is equal to the product of
the number of a’s and the number of b’s. The following definitions will prove useful
for our purpose.

Definition 6. A MPP A has stabilizing states if in any computation of A , after a
finite number of interactions, the states of all agents stop changing.

Definition 7. We say that a predicate is strongly stably computable by the MPP
model, if it is stably computable with the predicate output convention, that is, all
agents eventually agree on the correct output value.

Protocol 2 VarProduct

1: X = {a,b,c,0}
2: Y = {0,1}
3: Q = {a, ȧ,b,c, c̄,0}
4: S = {0,1}
5: I(x) = x, for all x ∈ X
6: O(a) = O(b) = O(c̄) = O(0) = 1 and O(c) = O(ȧ) = 0
7: ι(x) = 0, for all x ∈ X
8: r: “If there is at least one agent with output 0, reject; otherwise, accept.”
9: δ : (a,b,0)→ (ȧ,b,1), (c, ȧ,0)→ (c̄,a,0), (ȧ,c,0)→ (a, c̄,0)

Theorem 2. The MPP VarProduct (Protocol 2) stably computes (according to the
output instruction r) the predicate (Nc = Na ·Nb) in the family of complete directed
communication graphs.

Proof. Notice that the number of links leading from agents in state a to agents in
state b equals Na ·Nb. For each a the protocol tries to erase b c’s. Each a is able to
remember the b’s that it has already counted (for every such b a c has been erased)
by marking the corresponding links. If the c’s are less than the product then at least
one ȧ remains and if the c’s are more at least one c remains. In both cases at least
one agent that outputs 0 remains. If Nc = Na ·Nb then every agent eventually outputs
1. ut

Theorem 3. Let p be any predicate on input assignments. Let A be a MPP that
stably computes p with stabilizing states in some family of directed and connected
communication graphs G and also assume that A contains an instruction r that de-
fines a semilinear predicate t on multisets of A ’s agent states. Since t is semilinear,
it is stably computable with stabilizing inputs by the PP model [1, 5], and, thus, by

Population Protocols and Related Models 17

the MPP model. Let B be a MPP that strongly stably computes t with stabilizing
inputs in G .

If all the above hold then A can be composed with B to give a new MPP C
satisfying the following properties:

• C is formed by the composition of A and B,
• its input is A ’s input,
• its output is B’s output, and
• C strongly stably computes p (i.e. all agents agree on the correct output) in G .

Exercise 8. Prove Theorem 3.
Hint: B will make use of the stabilizing inputs idea from [1]; its inputs that eventu-
ally stabilize are A ’s states.

Theorems 2 and 3 together imply that the MPP model strongly stably computes
VarProduct which is non-semilinear. Since the MPP model strongly stably com-
putes a non-semilinear predicate and the PP model is a special case of MPP, it fol-
lows that the class of computable predicates by MPP is a proper superset of the class
of computable predicates by PP. In other words, the MPP model is computationally
stronger than the PP model.

In what concerns the class of stably computable predicates by MPP, recent (un-
published) research shows that is a superset of SSPACE(n) (symmetric predicates in
LINSPACE). We also know the following upper bound: “Any predicate that is stably
computable by the MPP model in any family of communication graphs belongs to
the space complexity class NSPACE(m)” (recall that m = |E|). The idea is simple:
By using the MPP that stably computes the predicate we construct a nondetermin-
istic Turing machine that guesses in each step the next selection of the scheduler
(thus the next configuration). The machine always replaces the current configura-
tion with a new legal one, and, since any configuration can be represented explicitly
with O(m) space, any branch uses O(m) space. The machine accepts if some branch
reaches a configuration C that satisfies instruction r of the protocol, and if, moreover,
no configuration reachable from C violates r (i.e. C must also be r-stable).

4 The GDM model

Here we deal with MPP’s ability to decide graph languages. To do so, we consider
a special case of the mediated population protocol model, the Graph Decision Me-
diated population protocol model, or simply GDM model.

4.1 Formal Definition

Definition 8. A GDM protocol is an 8-tuple (Y,Q,O,S,r,δ ,q0,s0), where Y , Q, and
S are all finite sets and

18 Paul G. Spirakis

1. Y = {0,1} is the binary output alphabet,
2. Q is the set of agent states,
3. O : Q→ Y is the agent output function,
4. S is the set of edge states,
5. r is the output instruction,
6. δ : Q×Q×S→ Q×Q×S is the transition function,
7. q0 ∈ Q is the initial agent state, and
8. s0 ∈ S is the initial edge state.

If δ (a,b,s) = (a′,b′,s′), we call (a,b,s)→ (a′,b′,s′) a transition and we define
δ1(a,b,s) = a′, δ2(a,b,s) = b′, and δ3(a,b,s) = s′.

Let U be a graph universe. A graph language L is a subset of U containing
communication graphs that possibly share some common property. For example,
a common graph universe is the set of all possible directed and weakly connected
communication graphs, denoted by G , and L = {G ∈ G | G has an even number of
edges} is a possible graph language w.r.t. G .

A GDM protocol may run on any graph from a specified graph universe. The
graph on which the protocol runs is considered as the input graph of the protocol.
Note that GDM protocols have no sensed input. Instead, we require each agent in
the population to be initially in the initial agent state q0 and each edge of the com-
munication graph to be initially in the initial edge state s0. In other words, the initial
network configuration, C0, of any GDM protocol is defined as C0(u) = q0, for all
u ∈V , and C0(e) = s0, for all e ∈ E, and any input graph G = (V,E).

We say that a GDM protocol A accepts an input graph G if in any computation
of A on G after finitely many interactions all agents output the value 1 and continue
doing so in all subsequent (infinite) computational steps. By replacing 1 with 0 we
get the definition of the reject case.

Definition 9. We say that a GDM protocol A decides a graph language L⊆U if it
accepts any G ∈ L and rejects any G /∈ L.

Definition 10. A graph language is said to be GDM-decidable, or simply decidable,
if some GDM protocol decides it.

4.2 Weakly Connected Graphs

4.2.1 Decidability

The most meaningful graph universe is G containing all possible directed and
weakly connected communication graphs, without self-loops or multiple edges, of
any finite number of nodes greater than or equal to 2 (we do not allow the empty
graph, the graph with a unique node and we neither allow infinite graphs). Here the
graph universe is G and, thus, a graph language can only be a subset of G (moreover,
its elements must share some common property).

Population Protocols and Related Models 19

We begin with some easy to prove, but often useful, closure results.

Theorem 4. The class of decidable graph languages is closed under complement,
union and intersection operations.

Proof. First we show that for any decidable graph language L its complement L
is also decidable. From definition of decidability there exists a GDM protocol AL
that decides L. Thus, for any G ∈ G and any computation of AL on G all agents
eventually output 1 if G ∈ L and 0 otherwise. By complementing the output map
OA of A we obtain a new protocol A , with output map defined as OA (q) = 1 iff
OA (q) = 0, for all q ∈ QA = QA , whose agents eventually output 1 if G /∈ L and 0
otherwise, thus deciding L.

Now we show that for any decidable graph languages L1 and L2, L3 = L1∪L2 is
also decidable. Let A1 and A2 be GDM protocols that decide L1 and L2, respectively
(we know their existence). We let the two protocols operate in parallel, i.e. we devise
a new protocol A3 whose agent and edge states consist of two components, one for
protocol A1 and one for A2. Let O1 and O2 be the output maps of the two protocols.
We define the output map O3 of A3 as O3(q,q′) = 1 iff at least one of O1(q) and
O2(q′) equals to 1, for all q∈QA1 and q′ ∈QA2 . If G∈ L3 then at least one of the two
protocols has eventually all its agent components giving output 1, thus A3 correctly
answers “accept”, while if G /∈ L3 then both protocols have eventually all their agent
components giving output 0, thus A3 correctly answers “reject”. We conclude that
A3 decides L3 which proves that L3 is decidable.

By defining the output map O3 of A3 as O3(q,q′) = 1 iff O1(q) = O2(q′) = 1,
for all q ∈QA1 and q′ ∈QA2 , and making the same composition as before, it is easy
to see that in this case A3 decides the intersection of L1 and L2.

Note, however, that in each union and intersection operation the resulting proto-
col’s size is the product of the sizes of the composed protocols. It follows that the
closure under these two operations can only hold for a constant number of subse-
quent applications. ut

Example 4. Let us now illustrate what we have seen so far by presenting a paramet-
ric GDM protocol that decides the graph language Nout

k = {G ∈ G | G has some
node with at least k outgoing neighbors} for any k = O(1).

We provide a high-level description of the protocol. Initially all agents are in q0
and all edges in 0. The set of agent states is Q = {q0, . . . ,qk} the set of edge states
is binary and the output function is defined as O(qk) = 1 and O(qi) = 0 for all i ∈
{0, . . . ,k− 1}. We now describe the transition function. In any interaction through
an edge in state 0, the initiator visits an unvisited outgoing edge, so it marks it by
updating the edge’s state to 1 and increases its own state index by one, e.g. initially
(q0,q0,0) yields (q1,q0,1), and, generally, (qi,q j,0)→ (qi+1,q j,1), if i+1 < k and
j < k, and (qi,q j,0)→ (qk,qk,1), otherwise. Whenever two agents meet through
a marked edge they do nothing, except for the case where only one of them is in
the special alert state qk. If the latter holds, then both go to the alert state, since
in this case the protocol has located an agent with at least k outgoing neighbors.
To conclude, all agents count their outgoing edges and initially output 0. Iff one

20 Paul G. Spirakis

of them marks its k-th outgoing edge, both end points of that edge go to an alert
state qk that is eventually propagated to the whole population and whose output
is 1, indicating that G belongs to Nout

k . Clearly, the described protocol decides Nout
k ,

which means that Nout
k is a decidable graph language. Moreover, the same must hold

for Nout
k because, according to Theorem 4, the class of decidable graph languages is

closed under complement. Note that Nout
k contains all graphs that have no node with

at least k = O(1) outgoing neighbors. In other words, the GDM model can decide if
all nodes have less than k outgoing edges, which is simply the well-known bounded
by k out-degree predicate. ut

Example 5. We show now that the graph language Pk = {G ∈ G | G has at least one
directed path of at least k edges} is decidable for any k = O(1) (the same holds for
Pk).

If k = 1 the protocol that decides P1 is trivial, since it accepts iff at least one inter-
action happens (in fact it can always accept since all graphs have at least two nodes
and they are weakly connected, and thus P1 = G). The protocol DirPath (Protocol
3) that we have constructed decides Pk for any constant k > 1.

Protocol 3 DirPath

1: Q = {q0,q1,1, . . . ,k}
2: S = {0,1}
3: O(k) = 1, O(q) = 0, for all q ∈ Q−{k}
4: r: “Get any u ∈V and read its output”
5: δ :

(q0,q0,0)→ (q1,1,1)

(q1,x,1)→ (x−1,q0,0), if x≥ 2

→ (q0,q0,0), if x = 1

(x,q0,0)→ (q1,x+1,1), if x+1 < k

→ (k,k,0), if x+1 = k

(k, ·, ·)→ (k,k, ·)
(·,k, ·)→ (k,k, ·)

Initially all nodes are in q0 and all edges in 0. The protocol tries to expand disjoint
paths. When rule (q0,q0,0)→ (q1,1,1) applies, the initiator goes to q1 indicating
that it is a node of an active path, the responder goes to 1 indicating that it is the
head of an active path of length 1 and the edge goes to 1 indicating that it is part of
an active path. By inspecting the transition function it is easy to see that the nodes of
two disjoint active paths have no way of interacting with each other (in fact, the in-
teractions happening between them leave their interacting components unaffected).
This holds because all nodes in q1 do nothing when communicating through an edge
in state 0 and disjoint active paths can only communicate through edges in state 0.

Population Protocols and Related Models 21

Moreover, the heads of the paths only expand by communicating with nodes in q0
which, of course, cannot be nodes of active paths (all nodes of active paths are in
q1 except for the heads which are in states from {1, . . . ,k−1}). There are two main
possibilities for an active path: either the protocol expands it, thus obtaining a node
and an edge and increasing the head counter by one, or shrinks it, thus releasing a
node and an edge and decreasing the head counter by one. Eventually, a path will
either be totally released (all its nodes and edges will return to the initial states) or
it will become of length k. In the first case the protocol simply keeps working but in
the second, a path of length at least k was found and state k that outputs 1 is correctly
propagated. The crucial point is that state k is the only state that outputs 1 and can
only be reached and propagated by the agents iff there exists some path of length at
least k. Moreover, if such a path exists, due to fairness assumption, the protocol will
eventually manage to find it. ut

The following graph languages are also decidable by the GDM model:

1. Neven = {G ∈ G | |V (G)| is even}.
2. Eeven = {G ∈ G | |E(G)| is even}.
3. Kout

k = {G ∈ G | Any node in G has at least k outgoing neighbors} for any k =
O(1).

4. Mout = {G∈G |G has some node with more outgoing than incoming neighbors}.

Of course, by closure under complement, the same holds for their complements.

Exercise 9. Do you think it is possible to construct a GDM protocol that decides
the graph language consisting of all directed and weakly connected communication
graphs in which all nodes have at most k = O(1) incoming edges and in which the
number of nodes is at least 5% of the number of edges? If yes, construct the protocol
and prove its correctness; if no, explain why.

4.2.2 Undecidability

If we allow only GDM protocols with stabilizing states, i.e. GDM protocols that in
any computation after finitely many interactions stop changing their states, then we
can prove that a specific graph language w.r.t. G is undecidable. In particular, we
can prove that there exists no GDM protocol with stabilizing states to decide the
graph language

2C = {G ∈ G | G has at least two nodes u,υ s.t. both (u,υ),(υ ,u)
∈ E(G) (in other words, G has at least one 2-cycle)}.

The proof is based on the following lemma.

Lemma 1. For any GDM protocol A and any computation C0,C1,C2, . . . of A on
G (Figure 1(a)) there exists a computation C′0,C

′
1,C
′
2, . . . ,C

′
i , . . . of A on G′ (Figure

1(b)) s.t.

22 Paul G. Spirakis

(a) Graph G (b) Graph G′

Fig. 1 G ∈ 2C and G′ /∈ 2C.

Ci(υ1) = C′2i(u1) = C′2i(u3)
Ci(υ2) = C′2i(u2) = C′2i(u4)
Ci(e1) = C′2i(t1) = C′2i(t3)
Ci(e2) = C′2i(t2) = C′2i(t4)

for any finite i≥ 0.

Exercise 10. Prove Lemma 1 by using induction on i.

Lemma 1 shows that if a GDM protocol A with stabilizing states could decide
2C then there would exist a computation of A on G′ forcing all agents to output in-
correctly the value 1 in finitely many steps. But G′ does not belong to 2C, and, since
A decides 2C, all agents must correct their states to eventually output 0. By taking
into account the fact that A has stabilizing states it is easy to reach a contradiction
and prove that no GDM protocol with stabilizing states can decide 2C. Whether the
graph language 2C is undecidable by the GDM model in the general case (not only
by GDM protocols with stabilizing states) remains an interesting open problem.

4.3 All Possible Directed Graphs

It is not hard to show that if the graph universe, H , is allowed to contain also
disconnected communication graphs, then in this case the GDM model is incapable
of deciding even a single nontrivial graph language (we call a graph language L
nontrivial if L 6= /0 and L 6= H). Here we assume the graph universe H consisting
of all possible directed communication graphs, without self-loops or multiple edges
of any finite number of nodes greater or equal to 2 (we now also allow graphs that
are not even weakly connected). So, now, a graph language can only be a subset of
H .

Population Protocols and Related Models 23

The crucial part is to show that for any nontrivial graph language L, there exists
some disconnected graph G in L where at least one component of G does not belong
to L or there exists some disconnected graph G′ in L where at least one component
of G′ does not belong to L (or both). If the statement does not hold then any discon-
nected graph in L has all its components in L and any disconnected graph in L has
all its components in L.

1. All connected graphs belong to L. Then L contains at least one disconnected
graph (since it is nontrivial) that has all its components in L, which contradicts
the fact that the components of any disconnected graph in L also belong to L.

2. All connected graphs belong to L. The contradiction is symmetric to the previous
case.

3. L and L contain connected graphs G and G′, respectively. Their disjoint union
U = (V ∪V ′,E ∪E ′) is disconnected, belongs to L or L but one of its compo-
nents belongs to L and the other to L. The latter contradicts the fact that both
components should belong to the same language.

Now it won’t be hard to prove the impossibility result as an exercise.

Exercise 11. Prove that any nontrivial graph language L⊂H is undecidable by the
GDM model.
Hint: notice that agents of different components cannot communicate with each
other.

Exercise 12. Do you think that Connectivity property is GDM-decidable?

5 Community Protocols

In this section, we present the Community Protocol model, which was proposed by
Guerraoui and Ruppert in [29] and is another extension of the population protocol
model. In fact, this, recently proposed, model makes the assumption that the agents
are equipped with unique ids and are also allowed to store a fixed number of other
agents’ ids. The term “community” in the model’s name is used to emphasize the
fact that the agents here form a collection of unique individuals similar to the notion
of a human community, in contrast to a population which is merely an agglomeration
of nameless multitude.

5.1 The Model

As usual, we start with a formal definition of the model, and then a somewhat infor-
mal description of its functionality follows.

24 Paul G. Spirakis

Definition 11. Let U be an infinite ordered set containing all possible ids. A Com-
munity Protocol Algorithm is an 8-tuple (X ,Y,B,d, I,O,Q,δ), where X , Y , and B
are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. B is the set of basic states,
4. d is a nonnegative integer representing the number of ids that can be remembered

by an agent,
5. I : X → B is the input function mapping input symbols to basic states,
6. O : B→ Y is the output function mapping basic states to outputs,
7. Q = B× (U ∪{⊥})d is the set of agent states, and
8. δ : Q×Q→ Q×Q is the transition function.

If δ (a,b) = (a′,b′), we call (a,b)→ (a′,b′) a transition and we define δ1(a,b) = a′

and δ2(a,b) = b′.

The first obvious difference between this and the population protocol model is
that the agent states are allowed to contain up to d ids. Additionally, each agent is
assumed to have its own unique id from the industry (which is an element of U).
As in the population protocol model, initially each agent i ∈ {1, . . . ,n} receives an
input symbol from X . Note that the ith agent is the agent whose id is in position i in
the ascending ordering of agent ids. An input assignment x ∈X = XV is again any
n-vector of input symbols, where xi is the input to agent i. Moreover, let idi denote
the actual id of agent i and bi = I(xi) (that is, the initial basic state of agent i). Then
the initial state of each agent i is of the form (bi, idi,⊥,⊥, . . . ,⊥). Thus initially,
each agent i is in basic state bi, contains its own unique id idi in the first position of
its list of ids, and the remaining list is filled with d−1 repetitions of the symbol ⊥.

A configuration C is a vector in Qn of the form C = (q1,q2, . . . ,qn), where qi is
simply the state of agent i for all i∈ {1, . . . ,n}. Thus, the initial configuration corre-
sponding to input assignment x is ((bi, idi,⊥,⊥, . . . ,⊥))|x|i=1, where again bi = I(xi)
and idi is the actual id of agent i. The notions of execution, computation, and fair-
ness are defined in the same way as in the population protocol model. Moreover,
we will call the community protocol model, in which the communication graph is
directed and complete, basic community protocol model (like we did with the pop-
ulation protocol model). The scheduler choosing the interactions is again assumed
to be fair.

The output of an agent at any step of the computation is the output of its basic
state. For example, the output of an agent in state (bi, idi,1,5, . . . ,⊥) is O(bi) ∈ Y .
A community protocol algorithm for the basic model stably computes a function
f : X≥2 → Y , where X≥2 denotes the set of all finite strings over X of length at
least 2, if for any x ∈ X≥2 and any assignment of the symbols in x to the nodes of
the complete communication graph of |x| nodes, all agents, independently of the fair
computation followed, eventually stabilize to the output f (x); that is, a configuration
is reached under which all agents output f (x) and continue doing so forever, no
matter how the computation proceeds thereafter (such a configuration is, as usual,
called an output stable configuration).

Population Protocols and Related Models 25

As in population protocols, algorithms are uniform (but, clearly, not anonymous).
The reason is that their description makes no assumption of the community size n,
thus their functionality remains identical for all complete communication graphs.
That’s why the set of ids U is infinite. The suspicious reader would notice that if
we do not impose further restrictions on the model then the agents can use their
d slots to store arbitrary amounts of information (by exploiting the fact that U is
defined to be infinite), which is artificial. To avoid this, we impose a local knowledge
constraint, according to which agents can only store ids that they have learned from
other agents via interactions with them. To formalize this, let l(q) denote the set
of different ids appearing in the list of ids of state q. If δ (q1,q2) = (q′1,q

′
2) and

id ∈ l(q′1)∪ l(q′2) then id ∈ l(q1)∪ l(q2) (in words, no new ids appear in the outcome
of an interaction).

Additionally, an operational constraint is imposed that allows no other operations
except for comparisons to be performed on ids by the agents. This constraint is only
imposed to keep the model minimal, because it turns out that, even in the presence
of this constraint, the model is surprisingly strong (computationally). Intuitively, if
((b1, . . .),(b2, . . .))→ ((b′1, . . .),(b

′
2, . . .)) is a transition in δ , then any transition with

precisely the same basic states in which the ids of the lhs are replaced by ids that
preserve the order (which, according to the local knowledge constraint, implies that
also the ids in the rhs will preserve the order) also belongs to δ . Since this may be
a little subtle, another way to think of it is the following. All interactions that do
not differ w.r.t. the basic states of the agents and whose lists of ids contain ids that
preserve the order, provide the agents with the same new pair of basic states and
with new lists of ids that do not different w.r.t. the order of ids.

To make this precise, let δ (q1,q2) = (q′1,q
′
2). Moreover, let id1 < id2 < .. . < idk

be all ids in l(q1)∪ l(q2)∪ l(q′1)∪ l(q′2) and let id′1 < id′2 < .. . < id′k be ids. If ρ(q)
is the state obtained from q by replacing all occurences of each id idi by id′i , then we
require that δ (ρ(q1),ρ(q2)) = (ρ(q′1),ρ(q′2)) also holds.

Example 6. Assume that δ ((b1,1,2,⊥),(b2,7,⊥,⊥)) = ((b′1,1,7,⊥),(b′2,2,2,1)).
Then it holds that δ ((b1,2,5,⊥),(b2,8,⊥,⊥)) = ((b′1,2,8,⊥),(b′2,5,5,2)). The
reason is that 1 < 2 < 7 and 2 < 5 < 8 and we have replaced 1 by 2, 2 by 5, and 7
by 8, thus, preserving the order of ids. Generally, δ ((b1, id1, id2,⊥),(b2, id3,⊥,⊥))
= ((b′1, id1, id3,⊥),(b′2, id2, id2, id1)) must hold for all id1, id2, id3 ∈U , where id1 <
id2 < id3, for the same reason. ut

Exercise 13. Consider a transition function δ and let δ (q1,q2) = (q′1,q
′
2) be any

transition. Let bq denote the basic state of state q, and idq, j the jth id in the id list of
q. δ is defined as follows. If bq1 = bq2 then nothing happens. If bq1 6= bq2 then

• If idq1, j > idq2, j and idq1, j, idq2, j 6=⊥ for some j ∈ {2, . . . ,d}, then idq′2,i =⊥ and
idq′1,i = idq2,i for all i ∈ {2, . . . ,d}, and bq′1

= bq′2
= bq1 .

• Else idq′1,i =⊥ and idq′2,i = idq1,i for all i ∈ {2, . . . ,d}, and bq′1
= bq′2

= bq2 .

Does δ satisfy the local knowledge and operational constraints? Support your an-
swer with a formal proof.

26 Paul G. Spirakis

5.2 Computational Power

The community protocol model turns out to be extremely strong in terms of its
computational power. In fact it turns out, that any symmetric predicate p : X≥2 →
{0,1} is (stably) computable by the basic community protocol model if and only if
it belongs to NSPACE(n logn), where, as usual, n denotes the community size. The
reason that we consider symmetric predicates is that the identifiers of the model
cannot be used to order the input symbols, thus an algorithm’s functionality in the
basic model has to be identical for any permutation of the inputs w.r.t. to the agents’
ordering.

Definition 12. Let CP denote the class of all symmetric predicates p that are stably
computable by the basic community protocol model.

First of all, we prove that any stably computable symmetric predicate p is in
NSPACE(n logn).

Theorem 5 ([29]). CP is a subset of NSPACE(n logn).

Proof. We will construct a nondeterministic TM N that decides the language
Lp = {x ∈ X≥2 | p(x) = 1} (the support of p) using at most NPSACE(n logn) =
NPSACE(|< x > | log |< x > |) cells on any branch of its computation. The reason
that the latter equality holds is that the input of p consists of n input symbols, picked
from the set X whose cardinality is independent of n. This means that for any input
x to the machine N (any element of Lp) it holds that |< x > |= O(n), where n is the
community size.

First of all, we make the following natural assumption: n agents have w.l.o.g.
the unique ids 1,2, . . . ,n. This implies that each id occupies O(logn) cells in a TM.
Moreover, there are d id slots in an agent’s state, and since d is independent of n
again O(logn) cells suffice to store the list of ids of any state. The cardinality of B is
also independent of n, thus we conclude that O(logn) cells suffice to store any state
of Q. A configuration is simply a vector consisting of n states, thus a configuration
will occupy O(n logn) cells of memory storage.

To accept input x, N must verify two conditions: That there exists a configura-
tion C reachable from I(x) (that here denotes the initial configuration corresponding
to x), in which all basic states output p(x), and that there is no configuration C′

reachable from C, in which some basic state does not output p(x).
The first condition is verified by guessing and checking a sequence of config-

urations, starting from I(x) and reaching such a C. N guesses a Ci+1 each time,
verifies that Ci→Ci+1 (begins from C0 = I(x), i.e. i = 0) and, if so, replaces Ci by
Ci+1, otherwise drops this Ci+1. The second condition is the complement of a sim-
ilar reachability problem. But NSPACE is closed under complement for all space
functions ≥ logn (Immerman-Szelepcsényi theorem). Thus, by taking into account
that only one configuration is kept at any step of any branch and that the size of any
configuration is O(n logn), we conclude that N decides Lp in O(n logn) space. ut

Population Protocols and Related Models 27

A Schönhage’s Storage Modification Machine (SMM) is a kind of pointer ma-
chine (not a distributed system). Its memory stores a finite directed graph of constant
out-degree with a distinguished node called the center. The edges of the graph are
called pointers. The edges out of each node are labeled by distinct directions drawn
from a finite set ∆ . For example, a reasonable implementation of ∆ could use all
nonnegative integers up to the maximum out-degree in the graph minus one. Any
string x ∈ ∆ ∗ can be used as a reference to the node that is reached if we begin
from the center and follow the pointers whose labels are indicated by the sequence
of symbols in x. We denote the node indicated by x ∈ ∆ ∗ by p∗(x). The basic op-
erations of an SMM allow the machine to create nodes, modify pointers and follow
paths of pointers. We now formalize the above description.

Definition 13. A Nondeterministic Storage Modification Machine (NSMM) is a 3-
tuple (Σ ,∆ ,P), where Σ , and ∆ are both finite sets and

1. Σ is the input alphabet,
2. ∆ is the set of distinct directions, and
3. P is the program, which is a finite list of instructions.

Inputs to the SMM are finite strings from Σ ∗. Programs may use instructions of the
following types:

• new: creates a node, makes it the center, and sets all its outgoing pointers to the
old center.

• recenter x, where x ∈ ∆+: changes the center of the graph to p∗(x).
• set xδ to y, where x,y ∈ ∆ ∗ and δ ∈ ∆ : changes the pointer of node p∗(x) that is

labeled by δ to point to node p∗(y).
• if x = y then goto l, where x,y ∈ ∆ ∗: jumps to (program) line l if p∗(x) = p∗(y).
• input l1, . . . , lr, where l1, . . . , lr are (program) line numbers: consumes the next

input symbol (if there is one) and jumps to line li if that symbol is σi.
• output o, where o ∈ {0,1}: causes the machine to halt and output o.
• choose l0, l1, where l0 and l1 are line numbers: causes the machine to transfer

control either to line l0 or to line l1 nondeterministically.

When a node becomes unreachable from the center, it can be dropped from the
graph, since it plays no further role in the computation. Space complexity is mea-
sured by the maximum number of (reachable) nodes present at any step of any
branch of the machine’s nondeterministic computation.

It can be proved that any language decided by a nondeterministic Turing Machine
using O(S logS) space can be decided by an NSMM using S nodes. Thus, to prove
that all symmetric predicates in NSPACE(n logn) also belong to CP it suffices to
show that there exists a community protocol that simulates an NSMM that uses
O(n) nodes. The latter can be shown but, unfortunately, the construction is quite
involved, so we skip it. Now by taking into account Theorem 5 we get the following
exact characterization.

Theorem 6 ([29]). CP is equal to the class of all symmetric predicates in NSPACE(
n logn).

28 Paul G. Spirakis

6 Logarithmic-Space Machines

In this section, we study another recently proposed model, called the PALOMA
model [14]. In fact, it is a model of PAssively mobile MAchines (that we keep
calling agents) equipped with two-way communication and each having a memory
whose size is LOgarithmic in the population size n.

The reason for studying such an extension is that having logarithmic communi-
cating machines seems to be more natural than communicating automata of constant
memory. First of all, the communicating machines assumption is perfectly consistent
with current technology (cellphones, iPods, PDAs, and so on). Moreover, logarith-
mic is, in fact, extremely small. For a convincing example, it suffices to mention
that for a population consisting of 2266 agents, which is a number greater than the
number of atoms in the observable universe, we only require each agent to have 266
cells of memory (while small-sized flash memory cards nowadays exceed 16GB
of storage capacity)! Interestingly, it turns out that the agents, by assigning unique
ids to themselves, are able to get organized into a distributed nondeterministic TM
that makes full use of the agents’ memories! The TM draws its nondeterminism by
the nondeterminism inherent in the interaction pattern. It is here like the nameless
multitude can turn itself into a well organized community.

Definition 14. A PALOMA protocol A is a 7-tuple (Σ ,X ,Γ ,Q,δ ,γ,q0) where Σ ,
X , Γ and Q are all finite sets and

1. Σ is the input alphabet, where #,t /∈ Σ ,
2. X ⊆ Σ ∗ is the set of input strings,
3. Γ is the tape alphabet, where #,t ∈ Γ and Σ ⊂ Γ ,
4. Q is the set of states,
5. δ : Q×Γ → Q×Γ ×{L,R}×{0,1} is the internal transition function,
6. γ : Q×Q→ Q×Q is the external transition function (or interaction transition

function), and
7. q0 ∈ Q is the initial state.

Each agent is equipped with the following:

• A sensor in order to sense its environment and receive a piece of the input (which
is an input string from X).

• A tape (memory) consisting of O(logn) cells. The tape is partitioned into three
parts each consisting of O(logn) cells: the leftmost part is the working tape, the
middle part is the output tape, and the rightmost part is the message tape (we
call the parts “tapes” because such a partition is equivalent to a 3-tape machine).
The last cell of each part contains permanently the symbol # (we assume that the
machine never alters it); it is the symbol used to separate the three tapes and to
mark the end of the overall tape.

• A control unit that contains the state of the agent and applies the transition func-
tions.

• A head that reads from and writes to the cells and can move one step at a time,
either to the left or to the right.

Population Protocols and Related Models 29

• A binary working flag either set to 1 meaning that the agent is working internally
or to 0 meaning that the agent is ready for interaction.

Initially, all agents are in state q0 and all their cells contain the blank symbol
t except for the last cell of the working, output, and message tapes that contain
the separator #. We assume that all agents concurrently receive their sensed input
(different agents may sense different data) as a response to a global start signal. The
input is a string from X and after reception (or, alternatively, during reception, in
an online fashion) it is written symbol by symbol on their working tape beginning
from the leftmost cell. During this process the working flag is set to 1 and remains
to 1 when this process ends (the agent may set it to 0 in future steps).

When its working flag is set to 1 we can think of the agent working as a usual
Turing Machine (but it additionally writes the working flag). In particular, whenever
the working flag is set to 1 the internal transition function δ is applied, the control
unit reads the symbol under the head and its own state and updates its state and the
symbol under the head, moves the head one step to the left or to the right and sets
the working flag to 0 or 1, according to the internal transition function.

We assume that the set of states Q and the tape alphabet Γ , are both sets whose
size is fixed and independent of the population size (i.e. |Q| = |Γ | = O(1)), thus,
there is, clearly, enough room in the memory of an agent to store both the internal
and the external transition functions.

Again here, a fair adversary scheduler selects ordered pairs of agents to interact.
Assume now that two agents u and υ are about to interact with u being the initia-
tor of the interaction and υ being the responder. Let f : V → {0,1} be a function
returning the current value of each agent’s working flag. If at least one of f (u) and
f (υ) is equal to 1, then nothing happens, because at least one agent is still working
internally. Otherwise (f (u) = f (υ) = 0), both agents are ready and an interaction is
established. In the latter case, the external transition function γ is applied, the states
of the agents are updated accordingly, the message of the initiator is copied to the
message tape of the responder (replacing its contents) and vice versa (the real mech-
anism would require that each one receives the other’s message and then copies it to
its memory, because instant replacement would make them lose their own message,
but this can be easily implemented with O(logn) extra cells of memory, so it is not
an issue), and finally the working flags of both agents are again set to 1.

Since each agent is a TM (of logarithmic memory), we use the notion of a config-
uration to capture its “state”. An agent configuration is a quadruple (q, l,r, f), where
q ∈ Q, l,r ∈ Γ O(logn) = {s ∈ Γ ∗ | |s| = O(logn)}, and f ∈ {0,1}. q is the state of
the control unit, l is the string to the left of the head (including the symbol scanned),
r is the string to the right of the head, and f is the working flag indicating whether
the agent is ready to interact (f = 0) or carrying out some internal computation
(f = 1). Let B be the set of all agent configurations. Given two agent configura-
tions A,A′ ∈B, we say that A yields A′ if A′ follows A by a single application of
δ .

A population configuration is a mapping C : V →B, specifying the agent con-
figuration of each agent in the population. Let C, C′ be population configurations

30 Paul G. Spirakis

and let u ∈ V . We say that C yields C′ via agent transition u, denoted C u→ C′, if
C(u) yields C′(u) and C′(w) = C(w), ∀w ∈V −{u}.

Let q(A) denote the state of an agent configuration A, l(A) its string to the left
of the head including the symbol under the head, r(A) its string to the right of the
head, and f (A) its working flag. Given two population configurations C and C′, we
say that C yields C′ via encounter e = (u,υ) ∈ E, denoted C e→ C′, if one of the
following two cases holds:

Case 1:

• f (C(u)) = f (C(υ)) = 0 which guarantees that both agents u and υ are ready for
interaction under the population configuration C.

• r(C(u)) and r(C(υ)) are precisely the message strings of u and υ , respectively
(this is a simplifying assumption stating that when an agent is ready to interact
its head is over the last # symbol, just before the message tape),

• C′(u) = (γ1(q(C(u)),q(C(υ))), l(C(u)),r(C(υ)),1),
• C′(υ) = (γ2(q(C(u)),q(C(υ))), l(C(υ)),r(C(u)),1), and
• C′(w) = C(w), ∀w ∈V −{u,υ}.

Case 2:

• f (C(u)) = 1 or f (C(υ)) = 1, which means that at least one agent between u and
υ is working internally under the population configuration C, and

• C′(w) = C(w), ∀w ∈V . In this case no effective interaction takes place, thus the
population configuration remains the same.

Generally, we say that C yields (or can go in one step to) C′, and write C→C′,
if C e→ C′ for some e ∈ E (via encounter) or C u→ C′ for some u ∈ V (via agent
transition), or both. We say that C′ is reachable from C, and write C ∗→C′ if there is
a sequence of population configurations C = C0,C1, . . . ,Ct = C′ such that Ci→Ci+1
holds for all i ∈ {0,1, . . . , t − 1}. An execution is a finite or infinite sequence of
population configurations C0,C1 . . . , so that Ci→Ci+1. An infinite execution is fair
if for all population configurations C, C′ such that C→ C′, if C appears infinitely
often then so does C′. A computation is an infinite fair execution.

Note that the PALOMA model preserves uniformity, because X , Γ and Q are all
finite sets whose cardinality is independent of the population size. Thus, protocol
descriptions have also no dependence on the population size. Moreover, PALOMA
protocols are anonymous, since initially all agents are identical and have no unique
identifiers.

Example 7. We present now a PALOMA protocol that stably computes the predicate
(Nc = Na ·Nb) (on the complete communication graph of n nodes) that is, all agents
eventually decide whether the number of cs in the input assignment is the product
of the number of as and the number of bs. We give a high-level description of the
protocol.

Initially, all agents have one of a, b and c written on the first cell of their working
memory (according to their sensed value). That is, the set of input strings is X =

Population Protocols and Related Models 31

Σ = {a,b,c}. Each agent that receives input a goes to state a and becomes ready for
interaction (sets its working flag to 0). Agents in state a and b both do nothing when
interacting with agents in state a and agents in state b. An agent in c initially creates
in its working memory three binary counters, the a-counter that counts the number
of as, the b-counter, and the c-counter, initializes the a and b counters to 0, the c-
counter to 1, and becomes ready. When an agent in state a interacts with an agent
in state c, a becomes ā to indicate that the agent is now sleeping, and c does the
following (in fact, we assume that c goes to a special state ca in which it knows that
it has seen an a, and that all the following are done internally, after the interaction;
finally the agent restores its state to c and becomes again ready for interaction): it
increases its a-counter by one (in binary), multiplies its a and b counters, which can
be done in binary in logarithmic space (binary multiplication is in LOGSPACE),
compares the result with the c-counter, copies the result of the comparison to its
output tape, that is, 1 if they are equal and 0 otherwise, and finally it copies the
comparison result and its three counters to the message tape and becomes ready
for interaction. Similar things happen when a b meets a c (interchange the roles of
a and b in the above discussion). When a c meets a c, the responder becomes c̄
and copies to its output tape the output bit contained in the initiator’s message. The
initiator remains to c, adds the a-counter contained in the responder’s message to its
a-counter, the b and c counters of the message to its b and c counters, respectively,
multiplies again the updated a and b counters, compares the result to its updated
c counter, stores the comparison result to its output and message tapes, copies its
counters to its message tape and becomes ready again. When a ā, b̄ or c̄ meets a
c they only copy to their output tape the output bit contained in c’s message and
become ready again (eg ā remains ā), while c does nothing.

Note that the number of cs is at most n which means that the c-counter will
become at most dlogne bits long, and the same holds for the a and b counters, so
there is enough room in the tape of an agent to store them.

Given a fair execution, eventually only one agent in state c will remain, its a-
counter will contain the total number of as, its b-counter the total number of bs,
and its c-counter the total number of cs. By executing the multiplication of the a
and b counters and comparing the result to its c-counter it will correctly determine
whether (Nc = Na ·Nb) holds and it will store the correct result (0 or 1) to its output
and message tapes. At that point all other agents will be in one of the states ā, b̄, and
c̄. All these, again due to fairness, will eventually meet the unique agent in state c
and copy its correct output bit (which they will find in the message they get from c)
to their output tapes. Thus, eventually all agents will output the correct value of the
predicate. ut

Exercise 14. Prove that the basic PALOMA model is strictly stronger than the basic
population protocol model, without exploiting the predicate (Nc = Na ·Nb).
Hint: Find another non-semilinear predicate that is (stably) computable by the basic
PALOMA model. Do not forget to show first that the basic PALOMA model is at
least as strong as the basic population protocol model.

32 Paul G. Spirakis

Definition 15. Let PLM denote the class of all symmetric predicates p that are sta-
bly computable by the basic PALOMA model.

Then, one can prove the following exact characterization for PLM [14]. Unfortu-
nately, this proof is also quite involved and due to space restrictions we skip it.

Theorem 7. PLM is equal to the class of all symmetric predicates in NSPACE(n logn).

7 Algorithmic Verification of Population Protocols

In order to apply our protocols to real-critical application scenarios, some form of
computer-aided verification is necessary. Even if a protocol is followed by a formal
proof of correctness it would be safer to verify its code before loading it to the real
sensor nodes.

It seems that the easiest (but not easy) place to start the investigation of veri-
fication is the basic population protocol model. In this model we can exploit the
fact that symmetry allows a configuration to be safely represented as a |Q|-vector
of nonnegative integers. This section, based on [13], will reveal the inherent hard-
ness of algorithmic verification of basic population protocols but will also present a
promising algorithmic solution.

Subsection 7.1 provides all necessary definitions. Subsection 7.2 deals with the
hardness of algorithmic verification of basic population protocols; the general prob-
lem and many of its special cases are proved to be hard. Subsection 7.3 studies an
efficiently solvable, but though almost trivial, special case. Finally, Subsection 7.4
presents some non-complete and one complete algorithmic solution.

7.1 Necessary Definitions

7.1.1 Population Protocols

We begin by revising all relevant definitions concerning the basic population pro-
tocol model, most of which are now presented in an alternative manner, because
throughout this section we will exploit the fact that symmetry allows a configura-
tion to be represented as a |Q|-vector of nonnegative integers, and there is no need
now to use a function for this purpose.

In this section, the transition function δ is also treated as a relation ∆ ⊆ Q4, de-
fined as (qi,q j,ql ,qt)∈∆ iff δ (qi,q j) = (ql ,qt). We assume that the communication
graph is a complete digraph, without self-loops and multiple edges (that is, we deal
with the basic model). We denote by Gk the complete communication graph of k
nodes.

Let now k ≡ |V | denote the population size. An input assignment x is a mapping
from V = [k] to X (where [l], for l ∈ ZZ≥1, denotes the set {1, . . . , l}), assigning an

Population Protocols and Related Models 33

input symbol to each agent of the population. As already mentioned in Subsection
2.2, since the communication graph is complete, due to symmetry, we can, equiva-
lently, think of an input assignment as a |X |-vector of integers x = (xi)i∈[|X |], where,
for all i, xi is nonnegative and equal to the number of agents that receive the symbol
σi ∈ X , assuming an ordering on the input symbols. We denote by X the set of all
possible input assignments. Note that for all x ∈X it holds that ∑|X |i=1 xi = k.

A state q ∈ Q is called initial if I(σ) = q for some σ ∈ X . A configuration c
is a mapping from [k] to Q, so, again, it is a |Q|-vector of nonnegative integers
c = (ci)i∈[|Q|] such that ∑|Q|i=1 ci = k holds. Each input assignment corresponds to an
initial configuration which is indicated by the input function I. In particular, in-
put assignment x corresponds to the initial configuration c(x) = (ci(x))i∈[|Q|], where
ci(x) is equal to the number of agents that get some input symbols σ j for which
I(σ j) = qi (qi is the ith state in Q if we assume the existence of an ordering on
the set of states Q). More formally, ci(x) = ∑ j:I(σ j)=qi x j for all i ∈ [|Q|]. By ex-
tending I to a mapping from input assignments to configurations we can write
I(x) = c to denote that c is the initial configuration corresponding to input as-
signment x. Let C = {(ci)i∈[|Q|] | ci ∈ ZZ+ and ∑|Q|i=1 ci = k} denote the set of all
possible configurations given the population protocol A and Gk. Moreover, let
CI = {c ∈ C | I(x) = c for some x ∈X } denote the set of all possible initial con-
figurations. Any r ∈ ∆ has four components which are elements from Q and we
denote by ri, where i ∈ [4], the i-th component (i.e. state) of r. r ∈ Q4 belongs to
∆ iff δ (r1,r2) = (r3,r4). We say that a configuration c can go in one step to c′ via
transition r ∈ ∆ , and write c r→ c′, if

• ci ≥ r1,2(i), for all i ∈ [|Q|] for which qi ∈ {r1,r2},
• c′i = ci− r1,2(i)+ r3,4(i), for all i ∈ [|Q|] for which qi ∈ {r1,r2,r3,r4}, and
• c′j = c j, for all j ∈ [|Q|] for which q j ∈ Q−{r1,r2,r3,r4},

where rl,t(i) denotes the number of times state qi appears in (rl ,rt). Moreover, we
say that a configuration c can go in one step to a configuration c′, and write c→ c′ if
c r→ c′ for some r ∈ ∆ . We say that a configuration c′ is reachable from a configura-
tion c, denoted c ∗→ c′ if there is a sequence of configurations c = c0,c1, . . . ,ct = c′,
such that ci → ci+1 for all i, 0 ≤ i < t, where ci denotes here the (i + 1)th con-
figuration of an execution (and not the ith component of configuration c which is
denoted ci). An execution is a finite or infinite sequence of configurations c0,c1, . . .,
so that ci→ ci+1. An execution is fair if for all configurations c, c′ such that c→ c′,
if c appears infinitely often then so does c′. A computation is an infinite fair ex-
ecution. A predicate p is said to be stably computable by a PP A if, for any
input assignment x, any computation of A contains an output stable configura-
tion in which all agents output p(x). a configuration c is called output stable if
O(c) = O(c′), for all c′ reachable from c (where O, here, is an extended version of
the output function from configurations to output assignments in Y k). We denote by
CF = {c∈C | c→ c′⇒ c′ = c} the set of all final configurations. We can further ex-
tend the output function O to a mapping from configurations to {−1,0,1}, defined
as

34 Paul G. Spirakis

O(c) =

 0, if O(c(u)) = 0, for all u ∈V
1, if O(c(u)) = 1, for all u ∈V
−1, if ∃u,υ ∈V s.t. O(c(u)) 6= O(c(υ)).

It is known [2, 6] that a predicate is stably computable by the PP model iff it can
be defined as a first-order logical formula in Presburger arithmetic. Let φ be such a
formula. There exists some PP that stably computes φ , thus φ constitutes, in fact, the
specifications of that protocol. For example, consider the formula φ = (Na≥ 2Nb). φ
partitions the set of all input assignments, X , to those input assignments that satisfy
the predicate (that is, the number of as assigned is at least two times the number of
bs assigned) and to those that do not. Moreover, φ can be further extended to a
mapping from CI to {−1,0,1}. In this case, φ is defined as

φ(c) =

0, if φ(x) = 0, for all x ∈ I−1(c)
1, if φ(x) = 1, for all x ∈ I−1(c)
−1, if ∃x,x′ ∈ I−1(c) s.t. φ(x) 6= φ(x′),

where I−1(c) denotes the set of all x ∈X for which I(x) = c holds (the preimage
of c).

We now define the transition graph, which is similar to that defined in [2], except
for the fact that it here contains only those configurations that are reachable from
some initial configuration in CI . Specifically, given a population protocol A and an
integer k≥ 2 we can define the transition graph of the pair (A ,k) as GA ,k = (Cr,Er),
where the node set Cr = CI ∪{c ∈ C | c′ ∗→ c for some c′ ∈ CI} of Gr (we use Gr
as a shorthand of GA ,k) is the subset of C containing all initial configurations and
all configurations that are reachable from some initial one, and the edge (or arc) set
Er = {(c,c′) | c,c′ ∈Cr and c→ c′} of Gr contains a directed edge (c,c′) for any two
(not necessarily distinct) configurations c and c′ of Cr for which it holds that c can go
in one step to c′. Note that Gr is a directed (weakly) connected graph with possible
self-loops. It was shown in [2] that, given a computation Ξ, the configurations that
appear infinitely often in Ξ form a final strongly connected component of Gr. We
denote by S the collection of all strongly connected components of Gr. Note that
each B ∈ S is simply a set of configurations. Moreover, given B,B′ ∈ S we say the B
can go in one step to B′, and write B→ B′, if c→ c′ for c ∈ B and c′ ∈ B′. B ∗→ B′

is defined as in the case of configurations. We denote by IS = {B ∈ S | such that
B∩CI 6= /0} those components that contain at least one initial configuration, and by
FS = {B ∈ S | such that B→ B′⇒ B′ = B} the final ones. We can now extend φ to a
mapping from IS to {−1,0,1} defined as

φ(B) =

 0, if φ(c) = 0, for all c ∈ B∩CI
1, if φ(c) = 1, for all c ∈ B∩CI
−1, if ∃c,c′ ∈ B∩CI s.t. φ(c) 6= φ(c′),

and O to a mapping from FS to {−1,0,1} defined as

Population Protocols and Related Models 35

O(B) =

 0, if O(c) = 0, for all c ∈ B
1, if O(c) = 1, for all c ∈ B
−1, otherwise.

7.1.2 Problems’ Definitions

We begin by defining the most interesting and natural version of the problem of al-
gorithmically verifying basic population protocols. We call it GBPV ER (‘G’ stand-
ing for “General’, ‘B’ for “Basic”, and ‘P’ for “Predicate”) and its complement
GBPV ER is defined as follows:

Problem 2 (GBPV ER). Given a population protocol A for the basic model whose
output alphabet YA is binary (i.e. YA = {0,1}) and a first-order logical formula φ
in Presburger arithmetic representing the specifications of A , determine whether
there exists some integer k ≥ 2 and some legal input assignment x for the complete
communication graph of k nodes, Gk, for which not all computations of A on Gk

beginning from the initial configuration corresponding to x stabilize to the correct
output w.r.t. φ .

A special case of GBPV ER is BPV ER (its non-general version as revealed by the
missing ‘G’), and is defined as follows.

Problem 3 (BPV ER). Given a population protocol A for the basic model whose
output alphabet YA is binary (i.e. YA = {0,1}), a first-order logical formula φ in
Presburger arithmetic representing the specifications of A , and an integer k ≥ 2 (in
binary) determine whether A conforms to its specifications on Gk.

“Conforms to φ” here means that for any legal input assignment x, which is a |XA |-
vector with nonnegative integer entries that sum up to k, and any computation be-
ginning from the initial configuration corresponding to x on Gk, the population sta-
bilizes to a configuration in which all agents output the value φ(x) ∈ {0,1} (that
is, it is equivalent to “stably computes”, but we now view it from the verification
perspective). On the other hand, “does not conform” means that there is at least one
computation of A on Gk which is unstable or the stable output does not agree with
φ(x) - i.e. not all agents output the value φ(x).

Problem 4 (BBPV ER). BBPV ER (the additional ‘B’ is from “Binary input alpha-
bet”) is BPV ER with A ’s input alphabet restricted to {0,1}.

7.2 NP-hardness Results

7.2.1 BP Verification

We first show that BPV ER is a hard computational problem.

36 Paul G. Spirakis

Theorem 8. BPV ER is coNP-hard.

Proof. We shall present a polynomial-time reduction from HAMPAT H = {< D,s, t >
| D is a directed graph with a Hamiltonian path from s to t } to BPV ER. In
other words, we will present a procedure that given an instance < D,s, t > of
HAMPAT H returns in polynomial time an instance < A ,φ ,k > of BPV ER, such
that < D,s, t >∈ HAMPAT H iff < A ,φ ,k >∈ BPV ER. If there is a hamiltonian
path from s to t in D we will return a population protocol A that for some compu-
tation on the complete graph of k nodes fails to conform to its specification φ , and
if there is no such path all computations will conform to φ .

We assume that all nodes in V (D)−{s, t} are named q1, . . . ,qn−2, where n de-
notes the number of nodes of D (be careful: n does not denote the size of the popu-
lation, but the number of nodes of the graph D in HAMPAT H’s instance). We now
construct the protocol A = (X ,Y,Q, I,O,δ). The output alphabet Y is {0,1} by def-
inition. The input alphabet X is E(D)−({(·,s)}∪{t, ·}), that is, consists of all edges
of D except for those leading into s and those going out of t. The set of states Q is
equal to X ∪T ∪{r}, where T = {(s,qi,q j, l) | 1 ≤ i, j ≤ n− 2 and 1 ≤ l ≤ n− 1}
and its usefulness will be explained later. r can be thought of as being the “reject”
state, since we will define it to be the only state giving the output value 0. Notice
that |Q|= O(n3). The input function I : X → Q is defined as I(x) = x, for all x ∈ X ,
and for the output function O : Q→ {0,1} we have O(r) = 0 and O(q) = 1 for all
q ∈ Q−{r}. That is, all input symbols are mapped to themselves, while all states
are mapped to the output value 1, except for r which is the only state giving 0 as
output. Thinking of the transition function δ as a transition matrix ∆ it is easy to see
that ∆ is a |Q|×|Q|matrix whose entries are elements from Q×Q. Each entry ∆q,q′

corresponds to the rhs of a rule (q,q′)→ (z,z′) in δ . Clearly, ∆ consists of O(n6)
entries, which is again polynomial in n.

We shall postpone for a while the definition of ∆ to first define the remaining
parameters φ and k of BPV ER’s instance. We define formula φ to be a trivial first-
order Presburger arithmetic logical formula that is always false. For example, in the
natural nontrivial case where X 6= /0 (that is, D has at least one edge that is not leading
into s and not going out of t) we can pick any x ∈ X and set φ = (Nx < 0) which, for
Nx denoting the number of xs appearing in the input assignment, is obviously always
false. It is useful to notice that the only configuration that gives the correct output
w.r.t. φ is the one in which all agents are in state r. φ being always false means
that in a correct protocol all computations must stabilize to the all-zero output, and
r is the only state giving output 0. On the other hand for A not to be correct w.r.t.
φ it suffices to show that there exists some computation in which r cannot appear.
Moreover, we set k equal to n−1, that is, the communication graph on which A ’s
correctness has to be checked by the verifier is the complete digraph of n−1 nodes
(or, equivalently, agents).

To complete the reduction, it remains to construct the transition function δ :

• (r, ·)→ (r,r) and (·,r)→ (r,r) (so r is a propagating state, meaning that once it
appears it eventually becomes the state of every agent in the population)

Population Protocols and Related Models 37

• ((qi,q j),(qi,q j))→ (r,r) (if two agents get the same edge of D then the protocol
rejects)

• ((qi,q j),(qi,ql))→ (r,r) (if two agents get edges of D with adjacent tails then
the protocol rejects)

• ((q j,qi),(ql ,qi))→ (r,r) (if two agents get edges of D with adjacent heads then
the protocol rejects - it also holds if one of q j and ql is s)

• ((qi, t),(q j, t)→ (r,r) (the latter also holds for the sink t)
• ((s, · · ·),(s, · · ·))→ (r,r) (if two agents have both s as the first component of their

states then the protocol rejects)
• ((s,qi),(qi,q j))→ ((s,qi,q j,2),(qi,q j)) (when s meets an agent υ that contains

a successor edge it keeps q j to remember the head of υ’s successor edge and
releases a counter set to 2 - it counts the number of edges encountered so far on
the path trying to reach t from s)

• ((s,qi,q j, i),(q j,ql))→ ((s,qi,ql , i+1),(q j,ql)), for i < n−2
• ((s,qi,q j, i),(q j, t))→ (r,r), for i < n− 2 (the protocol rejects if s is connected

to t through a directed path with less than n−1 edges)
• All the transitions not appearing above are identity rules (i.e. they do nothing)

Now we prove that the above, obviously polynomial-time, construction is in fact
the desired reduction. If D contains some hamiltonian path from s to t, then the n−1
edges of that path form a possible input assignment to protocol A (since its input
symbols are the edges and the population consists of n− 1 agents). When A gets
that input it cannot reject (r cannot appear) for the following reasons:

• no two agents get the same edge of D
• no two agents get edges of D with adjacent tails
• no two agents get edges of D with adjacent heads
• only one (s, · · ·) exists
• s cannot count less than n−1 edges from itself to t

So, when A gets the input alluded to above, it cannot reach state r, thus, it cannot
reject, which implies that A for that input always stabilizes to the wrong output
w.r.t. φ (which always requires the “reject” output) when runs on the Gn−1. So,
in this case < A ,φ ,k > consists of a protocol A that, when runs on Gk, where
k = n−1, for a specific input it does not conform to its specifications as described
by φ , so clearly it belongs to BPV ER.

For the other direction, if < A ,φ ,k >∈ BPV ER then obviously there exists some
computation of A on the complete graph of k = n− 1 nodes in which r does not
appear at all (if it had appeared once then, due to fairness, the population would
have stabilized to the all-r configuration, resulting to a computation conforming to
φ). It is helpful to keep in mind that most arguments here hold because of the fair-
ness condition. Since r cannot appear, every agent (of the n−1 in total) must have
been assigned a different edge of D. Moreover, no two of them contain edges with
common tails or common heads in D. Note that there is only one agent with state
(s, · · ·) because if there were two of them they would have rejected when interacted
with each other, and if no (s, · · ·) appeared then two agents would have edges with
common tails because there are n−1 edges for n−2 candidate initiating points (we

38 Paul G. Spirakis

have not allowed t to be an initiating point) and the pigeonhole principle applies
(and by symmetric arguments only one with state (· · · , t)). So, in the induced graph
formed by the edges that have been assigned to the agents, s has outdegree 1 and
indegree 0, t has indegree 1 and outdegree 0 and all remaining nodes have indegree
at most 1 and outdegree at most 1. This implies that all nodes except for s and t must
have indegree equal to 1 and outdegree equal to 1. If, for example, some node had
indegree 0, then the total indegree could not have been n− 1 because n− 3 other
nodes have indegree at most 1, t has indegree 1, and s has 0 (the same holds for
outdegrees). Additionally, there is some path initiating from s and ending to t. This
holds because the path initiating from s (s has outdegree 1) cannot fold upon itself
(this would result in a node with indegree greater than 1) and cannot end to any
other node different from t because this would result to some node other than t with
outdegree equal to 0. Finally, that path has at least n− 1 edges (in fact, precisely
n−1 edges), since if it had less the protocol would have rejected. Thus, it must be
clear after the above discussion that in this case there must have been a hamiltonian
path from s to t in D, implying that < D,s, t >∈ HAMPAT H. ut

Note that in the above reduction the communication graph has only O(n) nodes
while the protocol has size O(n6). Although this is not the usual case, it is not
forbidden because this concerns only the correctness of the protocol on this specific
complete graph. The protocol remains independent of the population size; it will still
count up to n−1 while the population can have arbitrarily large size (another way to
think of this is that in the protocol description the population size is not a parameter).
The protocol may be wrong or correct for other combinations of specifications and
communication graphs but we do not care here. However, it is worth considering the
following question: “Can we also prove that the special case of BPV ER in which
the protocol has always size less than the size of the communication graph (which
is the natural scenario) is coNP-hard?” Unfortunately, the answer to this question is
that we do not know yet.

7.2.2 BBP Verification

We now deal with the hardness of BBPV ER (here, additionally, we have a binary
input alphabet).

Theorem 9. BBPV ER is coNP-hard.

Proof. The reduction is again from HAMPAT H to BBPV ER. Let again < D,s, t >
be the instance of HAMPAT H. X is equal to {0,1} as is required by definition
and so is Y . Q is again equal to (E(D)− ({(·,s)}∪ {t, ·}))∪T ∪{q0, t ′,r}, where
T = {(s,qi,q j, l) | 1≤ i, j≤ n−2 and 1≤ l ≤ n−1}. The input function I is defined
as I(0) = (s, f +(s)), where f +(s) is the first (smallest) out-neighbor of s according
to the lexicographic order of V (D) (if some node u has no neighbors we assume
that f +(u) = u), and I(1) = q0 (recall that the names that we use for nodes are
s, t,q1, . . . ,qn−2 so q0 is just a special initial state). The output function O again

Population Protocols and Related Models 39

maps all states in Q−{r} to 1 and r to 0. φ is an always false predicate and k is set
to n−1, where n = |V (G)|.

We now define the transition function.

• (r, ·)→ (r,r) and (·,r)→ (r,r) (so r is a propagating state, meaning that once it
appears it eventually becomes the state of every agent in the population)

• ((qi,q j),(qi,q j))→ (r,r) (if two agents have obtained the same edge of D then
the protocol rejects)

• ((qi,q j),(qi,ql))→ (r,r) (if two agents have obtained edges of D with adjacent
tails then the protocol rejects)

• ((q j,qi),(ql ,qi))→ (r,r) (if two agents have obtained edges of D with adjacent
heads then the protocol rejects - it also holds if one of q j and ql is s)

• (q0,q0)→ (r,r)
• ((s, . . .),(s, . . .))→ (r,r)
• (·, t),(·, t)→ (r,r)
• ((s,qi),q0) → ((s,qi),(f−(t), t)) (where f−(t) denotes the first (smallest) in-

neighbor of t according to the lexicographic order; we can w.l.o.g. assume that t
has at least one incoming edge)

• ((s,qi),(q j, t))→ ((s,h+
s (qi)),(q j, t)) (where h+

s (qi) denotes the lexicographi-
cally smallest out-neighbor of s that is lexicographically greater than qi (that is,
the next one); note that the lexicographically greatest is matched to the lexico-
graphically smallest in a cyclic fashion)

• ((q j, t),(s,qi))→ ((h−t (q j), t),(s,qi)) (where h−t (q j) denotes the lexicographi-
cally smallest in-neighbor of t that is lexicographically greater than q j)

• ((qi,q j),(ql , t))→ ((),())
• (q0,(s,qi))→ ((qi, f +(qi)),(s,qi)), if f +(qi) 6= qi, and (r,r), otherwise (if f +(qi)=

qi then qi has no outgoing neighbors and the protocol rejects; f + does not take
into account the edges leading into s and t)

• ((qi,q j),(ql , t))→ ((qi,h+
qi
(q j)),(ql , t))

• ((ql , t),(qi,q j))→ ((ql , t),(q j, f +(q j))), if f +(q j) 6= q j, and (r,r), otherwise
• ((s,qi),(qi,q j))→ ((s,qi,q j,2),(qi,q j)) (when s meets an agent υ that contains

a successor edge it keeps q j to remember the head of υ’s successor edge and
releases a counter set to 2 - it counts the number of edges encountered so far on
the path trying to reach t from s)

• ((s,qi,q j, i),(q j,ql))→ ((s,qi,ql , i+1),(q j,ql)), for i < n−2
• ((s,qi,q j, i),(q j, t))→ (r,r), for i < n− 2 (the protocol rejects if s is connected

to t through a directed path with less than n−1 edges)
• ((s,qi,q j,n−2),(q j, t))→ ((s,qi,q j,n−1), t ′)
• t ′ and q0 reject any t ′ and (·, t) that they encounter
• All the transitions not appearing above are identity rules (i.e. they do nothing)

Given a hamiltonian path s,u1, . . . ,un−2, t of D we present an erroneous compu-
tation of A on the complete digraph of k = n− 1 nodes w.r.t. φ (that is, a compu-
tation in which state r does not appear). A possible input assignment is the 2-vector
(1,n− 2) in which one agent gets input 0 and (n− 2) agents get input 1. So, the
initial configuration corresponding to this input has one agent in (s, f +(s)) and all

40 Paul G. Spirakis

the other agents in q0. The agent in (s, f +(s)) now interacts as the initiator with
some agent and (f−(t), t) appears. Now we have one agent in (s, f +(s)), one in
(f−(t), t), and all the remaining in q0. If f +(s) is not equal to u1 (the second node
in the hamiltonian path) we assume that (s, f +(s)) is the initiator of as many in-
teractions with (f−(t), t) as needed to make (s, f +(s)) go to (s,u1). Similarly, with
(f−(t), t) being the initiator we make it interact a sufficient number of times with
(s,u1) so that it becomes (un−2, t). Now one agent contains (s,u1), which is the first
edge of the hamiltonian path, one agent contains (un−2, t) which is the last edge of
the hamiltonian path, and all remaining agents are in q0. Now interaction (q0,(s,u1))
takes place and the result is ((u1, f +(u1)),(s,u1)), where f +(u1) is the lexicograph-
ically first out-neighbor of u1, which is possibly not u2. If it is not, then we let the
agent which is in (u1, f +(u1)) repeatedly interact as the initiator with (un−2, t), un-
til its state becomes (u1,u2) (e.g. during the first interaction (u1, f +(u1)) becomes
(u1,h+

u1
(f +(u1))), where h+

u1
(u) denotes the out-neighbor of u1 lexicographically

following u). As soon as this happens, (s,u1) interacts with another agent in q0
which again updates its state to (u1, f +(u1)). Again (u1, f +(u1)) interacts as the
initiator with (un−2, t) as many times as needed to make its state (u1,u2) and then
it interacts once as the responder with (un−2, t) to change its state to (u2, f +(u2)).
Even if f +(u2) does not happen to be u3 we can force it to be by subsequent interac-
tions with (un−2, t) (with the latter now being the responder). In this manner we can
easily make each agent in the population contain a different edge of the hamiltonian
path. Moreover, notice that we have not allowed any interaction that leads to failure
(i.e. that makes state r appear) happen. Now (s,u1) meets (u1,u2) and the former
becomes (s,u1,u2,2). Then it meets (u2,u3) and becomes (s,u1,u3,3), and so on,
and, finally, when it has become (s,u1,un−2,n− 2) it meets (un−2, t) and after that
interaction the former becomes (s,u1,un−2,n− 1) and the latter t ′. It is easy now
to observe that from this point on there is no possible interaction that could make
r appear and thus we have just presented an erroneous computation (all agents for-
ever output the value 1, but φ requires that any computation stabilizes to the all-zero
output). The convincing argument that it is a computation (i.e. a fair execution) is
that we keep the execution unfair only for a finite number of steps, which does not
violate the fairness condition.

For the inverse, let us assume that there exists some computation of A on the
complete digraph of k = n− 1 nodes in which r never appears. Clearly, only one
(s, . . .) ever appears (if there were two of them they would eventually meet and
reject, because once s appears as the first component of some state it cannot be
eliminated, and if there was none the population would solely consist of q0, which
would eventually meet and reject). Similarly, only one t ever appears (since, once
they appear, even if they ever become t ′, they cannot be eliminated and will even-
tually meet each other and reject). Note also that after a finite number of steps all
agents must have obtained some edge (if some agent remains forever in q0 then it
eventually meets (·, t) or t ′ and rejects). Moreover, t ′ must have appeared for the fol-
lowing reason: if not, then (·, t) would forever change the agents’ edges, so due to
fairness two agents would, in a finite number of steps, obtain the same edge, interact
with each other, and reject. But since the protocol cannot reject (in the computation

Population Protocols and Related Models 41

under consideration), s must have counted to n−2 before meeting t, and by repeat-
ing some of the arguments used in the proof of Theorem 8 one can again show that
any node in the induced graph (constructed by the edges contained in the agents)
has indegree equal to 1 and outdegree equal to 1, which implies that there must exist
some hamiltonian path from s to t in D. Clearly, this completes the proof. ut

Notice now that Theorem 9 constitutes an immediate alternative proof for Theo-
rem 8. To see this, observe that any protocol with binary input is also a protocol with
general input. Thus, in the case where A has a binary input alphabet, < A ,φ ,k >∈
BBPV ER is a sufficient and necessary condition for < A ,φ ,k >∈ BPV ER, which
establishes BBPV ER≤p BPV ER.

7.2.3 BPV ER′ and BBPV ER′

Let us denote by BPV ER′ the special case of BPV ER in which the protocol size is
at least the size k of the communication graph, and similarly for BBPV ER′. Clearly,
the proofs of Theorems 8 and 9 establish that both problems are coNP-hard.

7.2.4 GBP Verification

We now study the hardness of GBPV ER.

Theorem 10. GBPV ER is coNP-hard.

Proof. We will prove the statement by presenting a polynomial-time reduction from
BPV ER′ to GBPV ER. Every time that we get an instance < A ,φ ,k > of BPV ER′
(where A is a population protocol for which | < A > | ≥ k holds), if A has a
computation on Gk that does not stabilize to the correct output w.r.t. φ then we will
return a population protocol A ′ and a formula φ ′ such that there exists some k′ for
which A ′ has a computation on Gk′ that does not stabilize to the the correct output
w.r.t. φ ′. On the other hand, if A has no such erroneous computation on Gk, A ′ will
also have no erroneous computation (w.r.t. φ ′) for any complete communication
graph (of any size greater than or equal to 2). Moreover, we will achieve that in
polynomial time.

Keep in mind that the input to the machine computing the reduction is <
A ,φ ,k >. Let XA be the input alphabet of A . Clearly, φ ′′ = ¬(∑x∈XA

Nx = k) is a
semilinear predicate if k is treated as a constant (Nx denotes the number of agents
with input x). Thus, there exists a population protocol A ′′ for the basic model that
stably computes φ ′′. The population protocol A ′′ can be constructed efficiently. Its
input alphabet XA ′′ is equal to XA . The construction of the protocol can be found in
[2] (in fact they present there a more general protocol for any linear combination of
variables corresponding to a semilinear predicate). When the number of nodes of the
communication graph is equal to k, A ′′ always stabilizes to the all-zero output (all
agents output the value 0) and when it is not equal to k, then A ′′ always stabilizes
to the all-one output.

42 Paul G. Spirakis

We want to construct an instance < A ′,φ ′ > of GBPV ER. We set φ ′ = φ ∨φ ′′.
Moreover, A ′ is constructed to be the composition of A and A ′′. Obviously, QA ′ =
QA ×QA ′′ . We define its output to be the union of its components’ outputs, that is,
O(qA ,qA ′′) = 1 iff at least one of O(qA) and O(qA ′′) is equal to 1. It is easy to see
that the above reduction can be computed in polynomial time.

We first prove that if < A ,φ ,k >∈ BPV ER′ then < A ′,φ ′ >∈GBPV ER. When
A ′ runs on the complete graph of k nodes, the components of its states correspond-
ing to A ′′ stabilize to the all-zero output, independently of the initial configuration.
Clearly, A ′ in this case outputs whatever A outputs. Moreover, for this communi-
cation graph, φ ′ is true iff φ is true (because φ ′′ = ¬(∑x∈XA

Nx = k) is false, and
φ ′ = φ ∨ φ ′′). But there exists some input for which A does not give the correct
output with respect to φ (e.g. φ is true for some input but A for some computa-
tion does not stabilize to the all-one output). Since φ ′ expects the same output as φ
and A ′ gives the same output as A we conclude that there exists some erroneous
computation of A ′ w.r.t. φ ′, and the first direction has been proven.

Now, for the other direction, assume that < A ′,φ ′ >∈ GBPV ER. For any com-
munication graph having a number of nodes not equal to k, φ ′ is true and A ′ always
stabilizes to the all-one output because of the A ′′ component. This means that the
erroneous computation of A ′ happens on the Gk. But for that graph, φ ′′ is always
false and A ′′ always stabilizes its corresponding component to the all-zero output.
Now φ ′ is true iff φ is true and A ′ outputs whatever A outputs. But there exists
some input and a computation for which A ′ does not stabilize to a configuration in
which all agents give the output value that φ ′ requires which implies that A does
not stabilize to a configuration in which all agents give the output value required by
φ . Since the latter holds for Gk, the theorem follows. ut

7.2.5 BBPI Verification

To show the inherent difficulty of the population protocol verification problem we
consider an even simpler special case, namely, the BBPIV ER problem (‘I’ standing
for “Input”, because an input assignment is additionally provided as part of the
algorithm’s input) that is defined as follows:

Problem 5 (BBPIV ER). Given a population protocol A for the basic model whose
input and output alphabets are binary (i.e. XA = YA = {0,1}), a two-variable first-
order logical formula φ in Presburger arithmetic representing the specifications of
A , and an input (assignment) x = (x0,x1), where x0 and x1 are nonnegative integers,
determine whether A conforms to its specifications for the complete digraph of
k = x0 + x1 nodes whenever its computation begins from the initial configuration
corresponding to x.

Let BBPIV ER′ denote the special case of BBPIV ER in which |< A > | ≥ k.

Theorem 11. BBPIV ER′ and BBPIV ER are coNP-hard.

Population Protocols and Related Models 43

Proof. The reduction is from HAMPAT H to BBPIV ER′, which proves that both
BBPIV ER and BBPIV ER′ are coNP-hard. In fact, the reduction is the same as in
Theorem 9, but here, together with the protocol (as described in the proof of The-
orem 9) and the always false specifications, we also return the input assignment
x = (1,n− 2) and do not return the integer k = n− 1. By looking carefully at the
reduction of Theorem 9 it won’t be difficult to see that if G has the desired hamilto-
nian path, then the protocol returned has an erroneous computation when beginning
from input x, and if G does not have the desired hamiltonian path, then, for any input
(x inclusive), the protocol is correct w.r.t. its specifications. ut

7.2.6 Alternative proof of Theorem 9

We have now arrived to an alternative proof that BBPV ER is NP-hard. The reduction
is from BBPIV ER′ to BBPV ER. Given an instance < A ,φ ,x = (x0,x1) > of the
former we do as follows (keep in mind that we return an instance of the latter of the
form < A ′,φ ′,k >). We set k = x0 +x1, φ ′ = φ ∨¬((N0 = x0)∧ (N1 = x1)), and A ′

is the union (w.r.t. the output functions) composition of A and A ′′ (as in Theorem
10), where A ′′ is a population protocol for the basic model that stably computes the
predicate ¬((N0 = x0)∧ (N1 = x1)). It is now easy to see (similarly to Theorem 10)
that the reduction is correct and can be performed in polynomial time.

7.3 An Efficiently Solvable Special Case

We are now seeking for efficiently solvable special cases of the general GBPV ER
problem. A population protocol A is called binary if its input alphabet, its output
alphabet, and its set of states are all equal to {0,1}. We consider now one of the most
trivial cases, which is the ALLBV ER problem: We are given a binary population
protocol A for the basic model and a formula φ representing its specifications. We
want again to determine whether A is always correct w.r.t. φ .

The first question that arises is what can φ be in this case. So we have to find
out first what is stably computable in this simplified model. If the output function
of A is defined as O(0) = O(1) = y, where y ∈ {0,1}, then any configuration of A
on any communication graph gives the all-y output. For example, if y = 0 then all
configurations correspond to the all-zero output, and if y = 1 then all configurations
correspond to the all-one output. So we have just shown that the trivial predicates
(those that are always true or always false) are stably computable. To seek for non-
trivial stably computable predicates we have to agree that O(0) = 0 and O(1) = 1
(this is w.l.o.g. since the case O(0) = 1 and O(1) = 0 is symmetric). Moreover, we
agree that (0,0)→ (0,0) and (1,1)→ (1,1) in the transition function δ . To see this,
notice that a nontrivial predicate is true for some inputs and false for others. This
means that a protocol for the predicate must be able to stabilize to both the all-zero
and the all-one output, and this cannot hold in the absence of the above rules.

44 Paul G. Spirakis

Now what about the input function I? Clearly, if I(0) = I(1) = q then the ini-
tial configuration is always the all-q configuration (all agents are in state q). For
example, if q = 0 then the initial configuration is for any input the all-zero config-
uration. But because of the rules (0,0)→ (0,0) and (1,1)→ (1,1) the population
can never escape from its initial configuration, and this case again corresponds to
trivial predicates. So, we again agree w.l.o.g. that I(0) = 0 and I(1) = 1.

It suffices to check the predicates that are stably computable by different com-
binations of right hand sides for the left hand sides (0,1) and (1,0) in δ . There are
only 42 such combinations so our job is easy. We have the following cases:

• Both δ (0,1) and δ (1,0) do not belong to {(0,0),(1,1)}. Assume that an input
assignment contains one 1 and all other agents get 0. In this case no interaction
can increase or decrease the number of 1s so the population forever remains to
an unstable configuration (not all agents agree on their output value). So there is
no additional stably computable predicate from this case.

• Only one of δ (0,1) and δ (1,0) belongs to {(0,0),(1,1)}. If one of them is
(0,0) then (since the other offers nothing) if there is at least one 0 in the ini-
tial configuration (which is identical to the input assignment, because I(0) = 0
and I(1) = 1) the protocol rejects, whereas if all inputs are 1 the protocol accepts.
We can call this the AND protocol corresponding to the stably computable pred-
icate ¬(N0 ≥ 1). Similarly, if one of them is (0,0) then we have one form of the
OR protocol (see e.g. [16]) and the stably computable predicate corresponding
to it is (N1 ≥ 1).

• Both δ (0,1) and δ (1,0) belong to {(0,0),(1,1)} and δ (0,1) 6= δ (1,0). In this
case the protocol is unstable. Imagine an initial configuration with exactly one 1
(all other agents get 0) and say that δ (0,1) = (0,0) and δ (1,0) = (1,1). If the
unique 1 interacts as the initiator with all other agents in state 0 (one after the
other), the protocol in each step replaces a 0 with a 1 and in N0 steps the popu-
lation stabilizes to the all-one output. One the other hand if 1 had interacted as
the responder with all other agents in the same way as before, then the popula-
tion would have stabilized to that all-zero output and the protocol is obviously
unstable.

• Both δ (0,1) and δ (1,0) belong to {(0,0),(1,1)} and δ (0,1) = δ (1,0). It is easy
to see that again we get alternative versions of the OR protocol and the AND
protocol, thus the stably computable predicates resulting from this (last) case are
again ¬(N0 ≥ 1) and (N1 ≥ 1).

So we have arrived to a complete characterization of the class of stably com-
putable predicates for the binary basic population protocol model. They are the
predicates: always-true, always-false, ¬(N0 ≥ 1), and (N1 ≥ 1).

So we require the specifications φ , in the ALLBV ER problem, to be a stably com-
putable predicate of the binary basic population protocol model, i.e. one of always-
true, always-false, ¬(N0 ≥ 1), and (N1 ≥ 1). Obviously, if a binary protocol A errs
on G2 (the complete graph of 2 nodes) w.r.t. φ then it errs in general. But we can
also prove that if it errs on some Gk where k > 2 then it must err also on G2 (an easy
way to get convinced is to check the statement for all possible classes of protocols

Population Protocols and Related Models 45

as outlined above). This indicates an obvious constant-time algorithm: The transi-
tion graph consists of 3 configurations. For every possible initial configuration find
all the final strongly connected components that are reachable from it. If all con-
figurations of those components give the correct output w.r.t. φ and this holds for
all possible initial configurations, then < A ,φ > belongs to ALLBV ER; otherwise
< A ,φ >/∈ ALLBV ER.

7.4 Algorithmic Solutions for BPV ER

Since Theorem 8 established the coNP-hardness of BPVER (Problem 3), our only
hope is to devise always-correct algorithms whose worst-case running-time will not
be bounded by a polynomial in the size of the input, or algorithms that are not always
correct, but are, in fact, correct most of the time (the notion of “approximation”
seems to be irrelevant here). Before proceeding, we strongly suggest that the reader
carefully revises the definitions from Subsection 7.1.

Our algorithms are search algorithms on the transition graph Gr. The general idea
is that a protocol A does not conform to its specifications φ on k agents, if one of
the following criteria is satisfied:

1. φ(c) =−1 for some c ∈CI .
2. ∃c,c′ ∈CI such that c ∗→ c′ and φ(c) 6= φ(c′).
3. ∃c ∈CI and c′ ∈CF such that c ∗→ c′ and O(c′) =−1.
4. ∃c ∈CI and c′ ∈CF such that c ∗→ c′ and φ(c) 6= O(c′).
5. ∃B′ ∈ FS such that O(B′) =−1.
6. ∃B ∈ IS and B′ ∈ FS such that B ∗→ B′ and φ(B) 6= O(B′) (possibly B = B′).

Note that any algorithm that correctly checks some of the above criteria is a
possibly non-complete verifier. Such a verifier guarantees that it can discover an
error of a specific kind, thus, we can always trust its “reject” answer (the protocol
has some error of this kind). On the other hand, an “accept” answer is a weaker
guarantee, in the sense that it only informs that the protocol does not have some
error of this specific kind. Of course, it is possible that the protocol has other errors,
violating criteria that are indetectable by this verifier. However, this is a first sign of
BPV ER’s parallelizability.

Theorem 12. Any algorithm that checks criteria 1, 5, and 6 decides BPV ER.

Exercise 15. Prove Theorem 12.

7.4.1 Constructing the Transition Graph

Let FindCI(A ,k) be a function that, given a PP A and an integer k ≥ 2, returns the
set CI of all initial configurations. This is not so hard to be implemented. FindCI

46 Paul G. Spirakis

simply iterates over the set of all input assignments X and for each x ∈X com-
putes I(x) and puts it in CI . Alternatively, computing CI is equivalent to finding all
distributions of indistinguishable objects (agents) into distinguishable slots (initial
states), and, thus, Fenichel’s algorithm [24] can be used for this purpose.

Algorithm 4 ConGr
Input: PP A and integer k ≥ 2.
Output: The transition graph Gr .

1: CI ←FindCI(A ,k)
2: Cr ← /0
3: Er ← /0
4: while CI 6= /0 do
5: Pick a c ∈CI , CI ←CI −{c}
6: Cr ←Cr ∪{c}
7: for all r ∈ ∆ for which ci ≥ r1,2(i) and all i ∈ [|Q|] for which qi ∈ {r1,r2} do
8: Compute the unique configuration c′ for which c r→ c′.
9: if c′ /∈Cr then

10: CI ←CI ∪{c′}
11: end if
12: Er ← Er ∪ (c,c′)
13: end for
14: end while
15: return (Cr,Er)

The transition graph Gr can be constructed by the procedure ConGr (Algorithm
4), that takes as input a population protocol A and the population size k, and returns
the transition graph Gr. The order in which configurations are put in and picked out
of CI determines whether BFS or DFS is used.

7.4.2 Non-complete Verifiers

Now, that we know how to construct the transition graph, we can begin constructing
some non-complete verifiers (which are the easiest). In particular, we present two
verifiers, SinkBFS and SinkDFS, that check all criteria but the last two. Both are pre-
sented via procedure SinkVER (Algorithm 5) and the order in which configurations
of Gr are visited determines again whether BFS or DFS is used.

7.4.3 SolveBPVER: A Complete Verifier

We now construct the procedure SolveBPVER (Algorithm 6) that checks criteria 1,
5, and 6 (and also 2 for some speedup) presented in the beginning of Subsection
7.4, and, thus, according to Theorem 12, it correctly solves BPV ER (i.e. it is a com-
plete verifier for basic population protocols, when the population size is provided

Population Protocols and Related Models 47

as part of the input). In particular, SolveBPVER takes as input a PP A , its specifi-
cations φ and an integer k ≥ 2, as outlined in the BPV ER problem description, and
returns “accept” if the protocol is correct w.r.t. its specifications on Gk and “reject”
otherwise.

Algorithm 5 SinkVER
Input: A population protocol A , a Presburger arithmetic formula φ , and an integer k ≥ 2.
Output: ACCEPT if A is correct w.r.t. its specifications and the criteria 1,2,3, and 4 on Gk and

REJECT otherwise.

1: CI ←FindCI(A ,k)
2: if there exists c ∈CI such that φ(c) =−1 then
3: return REJECT // Criterion 1 satisfied
4: end if
5: Gr ← ConGr(A , k)
6: for all c ∈CI do
7: Collect all c′ reachable from c in Gr by BFS or DFS.
8: while searching do
9: if one c′ is found such that c′ ∈CF and (O(c′) =−1 or φ(c) 6= O(c′)) then

10: return REJECT // Criterion 3 or 4 satisfied
11: end if
12: if one c′ is found such that c′ ∈CI and φ(c) 6= φ(c′) then
13: return REJECT // Criterion 2 satisfied
14: end if
15: end while
16: end for
17: return ACCEPT // Tests for criteria 1,2,3, and 4 passed

The algorithmic idea is based on the use of Tarjan’s [36] or Cheriyan-Mehlhorn’s
and Gabow’s [20, 25] (or any other) algorithm for finding the strongly connected
components of Gr. In this manner, we obtain a collection S, where each B ∈ S is a
strongly connected component of Gr, that is, B ⊆ Cr. Given S we can easily com-
press Gr w.r.t. its strongly connected components as follows. The compression of Gr
is a dag D = (S,A), where (B,B′)∈ A if and only if there exist c∈ B and c′ ∈ B′ such
that c→ c′ (that is, iff B→ B′). In words, the node set of D consists of the strongly
connected components of Gr and there is a directed edge between two components
of D if a configuration of the second component is reachable in one step from a
configuration in the first one.

48 Paul G. Spirakis

Algorithm 6 SolveBPVER
Input: A population protocol A , a Presburger arithmetic formula φ , and an integer k ≥ 2.
Output: ACCEPT if the protocol is correct w.r.t. its specifications on Gk and REJECT otherwise.

1: CI ←FindCI(A ,k)
2: if there exists c ∈CI such that φ(c) =−1 then
3: return REJECT
4: end if
5: Gr ← ConGr(A , k)
6: Run one of Tarjan’s or Gabow’s algorithms to compute the collection S of all strongly con-

nected components of the transition graph Gr .
7: Compute the dag D = (S,A), where (B,B′) ∈ A (where B 6= B′) if and only if B→ B′.
8: Compute the collection IS ⊆ S of all connected components B ∈ S that contain some initial

configuration c ∈CI and the collection FS ⊆ S of all connected components B ∈ S that have no
outgoing edges in A, that is, all final strongly connected components of Gr .

9: for all B ∈ FS do
10: if O(B) =−1 then
11: return REJECT
12: end if
13: // Otherwise, all configurations c ∈ B output the same value O(B) ∈ {0,1}.
14: end for
15: for all B ∈ IS do
16: if there exist initial configurations c,c′ ∈ B such that φ(c) 6= φ(c′) then
17: return REJECT
18: else
19: // all initial configurations c ∈ B expect the same output φ(B) ∈ {0,1}.
20: Run BFS or DFS from B in D and collect all B′ ∈FS s.t. B ∗→B′ (possibly including

B itself).
21: if there exists some reachable B′ ∈ FS for which O(B′) 6= φ(B) then
22: return REJECT
23: end if
24: end if
25: end for
26: return ACCEPT

8 Open Problems

The following are some open problems for the interested reader:

• What is the computational power of the variation of the population protocol
model in which the agents interact in groups of k > 2 agents and not in pairs?

• Recent (unpublished for the time being) research shows that SPACE(n) (that is,
LINSPACE) is a lower bound for the class of symmetric predicates that are sta-
bly computable by the basic MPP model, which may be possibly improved to
NSPACE(n) by exploiting the nondeterminism inherent in the interaction pat-
tern. On the other hand, as mentioned in Section 3, the best known upper bound is
NSPACE(m), and, since we are dealing with complete communication graphs, it
holds that m = O(n2), which, clearly, leaves a huge gap between the two bounds.
It is possible that NSPACE(n logn) is a better upper bound. But we do not expect

Population Protocols and Related Models 49

this to be easy, because it would require to prove that we can encode the O(n2)
sized configurations of MPP by new configurations of O(n logn) size whose tran-
sition graph is, in some sense, isomorphic to the old one (e.g. the new configura-
tions reach the same stable outputs). Thus, an exact characterization of this class
is still open.

• Is the mediated population protocol model fault-tolerant? What are the necessary
preconditions to obtain satisfactory fault tolerance?

• Is there an exact characterization of the class of decidable graph languages by
MPP in the weakly-connected case?

• Is the PALOMA model fault-tolerant? What are the necessary preconditions to
obtain satisfactory fault tolerance?

• Are there hierarchy theorems concerning all possible models of passively mobile
communicating devices? For example, what is the relationship between MPP’s
class of computable predicates and PLM?

• [12] revealed the need for population protocols to have adaptation capabilities
in order to keep working correctly and/or fast when natural modifications of the
mobility pattern occur. However, we do not know yet how to achieve adaptivity.

• Are there more efficient, possibly logic-based, verification solutions for pop-
ulation protocols? Verifying methods for MPPs, Community Protocols, and
PALOMA protocols are still totally unknown, although the ideas of Section 7
may also be applicable to these models.

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Stably computable
properties of network graphs. In Proc. Distributed Computing in Sensor Systems: 1st IEEE
International Conference, pages 63-74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks of
passively mobile finite-state sensors. Distributed Computing, 18(4): 235-253, 2006. Also in
23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 290-
299, New York, NY, USA, 2004. ACM.

3. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Urn automata. Technical
Report YALEU/DCS/TR-1280, Yale University Department of Computer Science, Nov. 2003.

4. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a
leader. Distributed Computing, 21(3): 183-199, Sept. 2008.

5. D. Angluin, J. Aspnes, and D. Eisenstat. Stably computable predicates are semilinear. In Proc.
25th Annual ACM Symposium on Principles of Distributed Computing, pages 292-299, 2006.

6. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population
protocols. Distributed Computing, 20(4): 279-304, November 2007.

7. J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 93:98-117, October 2007. Columns: Dis-
tributed Computing, Editor: M. Mavronicolas.

8. R. Bakhshi, F. Bonnet, W. Fokkink, and B. Haverkort. Formal analysis techniques for gos-
siping protocols. In ACM SIGOPS Operating Systems Review, 41(5):28-36, Special Issue on
Gossip-Based Networking, October, 2007.

9. J. Beauquier, J. Clement, S. Messika, L. Rosaz, and B. Rozoy. Self-stabilizing counting in
mobile sensor networks. Technical Report 1470, LRI, Université Paris-Sud 11, 2007.

50 Paul G. Spirakis

10. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In Formal Methods for the
Design of Real-Time Systems: Proc. 4th Int. School on Formal Methods for the Design of
Comput., Commun. and Software Syst. (SFM-RT 2004), number 3185 in LNCS, pages 200-
236, Springer, 2004.

11. O. Bournez, P. Chassaing, J. Cohen, L. Gerin, and X. Koegler. On the convergence of popu-
lation protocols when population goes to infinity. In Applied Mathematics and Computation,
215(4):1340-1350, 2009.

12. I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spirakis. Not all fair probabilis-
tic schedulers are equivalent. In 13th International Conference On Principles Of DIstributed
Systems (OPODIS), pages 33-47, Nimes, France, December 15-18, 2009.

13. I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G. Spirakis. Algorith-
mic verification of population protocols. FRONTS Technical Report FRONTS-TR-2010-12,
http://fronts.cti.gr/aigaion/?TR=148, Jan. 2010.

14. I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, and P. G. Spirakis. Passively
mobile communicating logarithmic space machines. FRONTS Technical Report FRONTS-
TR-2010-16, http://fronts.cti.gr/aigaion/?TR=154, Feb. 2010.

15. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Decidable graph languages by me-
diated population protocols. In 23rd International Symposium on Distributed Computing
(DISC), Elche, Spain, Sept. 2009. (Also FRONTS Technical Report FRONTS-TR-2009-16,
http://fronts.cti.gr/aigaion/?TR=80)

16. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Experimental verification and performance
study of extremely large sized population protocols. FRONTS Technical Report FRONTS-
TR-2009-3, http://fronts.cti.gr/aigaion/?TR=61, Jan. 2009.

17. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Mediated population protocols. In 36th
International Colloquium on Automata, Languages and Programming (ICALP), pages 363-
374, Rhodes, Greece, 2009.

18. I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Recent advances in population protocols. In
34th International Symposium on Mathematical Foundations of Computer Science (MFCS),
August 24-28, 2009, Novy Smokovec, High Tatras, Slovakia.

19. I. Chatzigiannakis and P. G. Spirakis. The dynamics of probabilistic population protocols. In
Distributed Computing, 22nd International Symposium, DISC, volume 5218 of Lecture Notes
in Computer Science, pages 498-499, 2008.

20. J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access
computer. Algorithmica, 15: 521-549, 1996.

21. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.
22. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When birds die: Mak-

ing population protocols fault-tolerant. In Proc. 2nd IEEE International Conference on Dis-
tributed Computing in Sensor Systems, pages 51-66, 2006.

23. Z. Diamadi and M. J. Fischer. A simple game for the study of trust in distributed systems.
Wuhan University Journal of Natural Sciences, 6(1-2):72-82, Mar. 2001. Also appears as Yale
Technical Report TR-1207, Jan. 2001.

24. R. Fenichel. Distribution of Indistinguishable Objects into Distinguishable Slots. Communi-
cations of the ACM, 11(6), page 430, June 1968.

25. H. N. Gabow. Path-based depth-first search for strong and biconnected components. Informa-
tion Processing Letters, 74: 107-114, 2000.

26. D. T. Gillespie. A rigorous derivation of the chemical master equation. Physica A, 188:404-
425, 1992.

27. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry, 81(25):2340-2361, 1977.

28. S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and languages. Pacific Jour-
nal of Mathematics, 16:285-296, 1966.

29. R. Guerraoui and E. Ruppert. Names trump malice: Tiny mobile agents can tolerate byzan-
tine failures. In 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 484-495, Rhodes, Greece, 2009.

Population Protocols and Related Models 51

30. A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic ver-
ification of probabilistic systems. In Proc. 2nd Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’06), volume 3920 of LNCS, pages 441-444.
Springer, 2006.

31. G. Holzmann. The Spin model checker, primer and reference manual. Addison-Wesley, 2003.
32. M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems.

Cambridge University Press, Cambridge, UK, 2004.
33. T. G. Kurtz. Approximation of population processes. Number 36 in CBMS-NSF Regional

Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics,
Philadelphia, 1981.

34. P.C. Olveczky and S. Thorvaldsen. Formal modeling and analysis of wireless sensor network
algorithms in Real-Time Maude. Parallel and Distributed Processing Symposium, Interna-
tional, pp. 157, Proceedings 20th IEEE International Parallel & Distributed Processing Sym-
posium, 2006.

35. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
36. R. Tarjan. Depth-first search and linear graph algorithms. In SIAM Journal on Computing, Vol.

1, No. 2, pages. 146-160, 1972.

