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Abstract. We consider a variant of the Complex Multiplication (CM)
method for constructing elliptic curves (ECs) of prime order with ad-
ditional security properties. Our variant uses Weber polynomials whose
discriminant D is congruent to 3 (mod 8), and is based on a new trans-
formation for converting roots of Weber polynomials to their Hilbert
counterparts. We also present a new theoretical estimate of the bit pre-
cision required for the construction of the Weber polynomials for these
values of D. We conduct a comparative experimental study investigating
the time and bit precision of using Weber polynomials against the (typi-
cal) use of Hilbert polynomials. We further investigate the time efficiency
of the new CM variant under four different implementations of a crucial
step of the variant and demonstrate the superiority of two of them.

1 Introduction

Elliptic Curve (EC) cryptography has proven to be an attractive alternative for
building fast and secure public key cryptosystems. One of the fundamental prob-
lems in EC cryptography is the generation of cryptographically secure ECs over
prime fields, suitable for use in various cryptographic applications. A typical
requirement of all such applications is that the order of the EC (number of ele-
ments in the algebraic structure induced by the EC) possesses certain properties
(e.g., robustness against known attacks [5], small prime factors [1], etc), which
gives rise to the problem of how such ECs can be generated.

A specific application domain that is our main concern in this work involves
implementations of EC-based cryptosystems in computing devices with limited
resources, or in systems operating under strict timing response constraints. Two
specific scenarios in this framework involve: (i) The development of a proactive
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cryptosystem approach (e.g., in the sense of [12]) in networks of resource lim-
ited hardware devices (e.g., microcontroller chips, smart dust clouds) working
for some highly critical – with respect to security – task and which for that
reason are frequently requested to refresh their security parameters. (ii) A wire-
less and web-based environment, as it is described in [11], in which millions of
(resource-limited) client devices connect to secure servers. Clients may be fre-
quently requested to choose different key sizes and EC parameters depending on
vendor preferences, security requirements, and processor capabilities.

A frequently employed approach for generating ECs whose order satisfies cer-
tain desirable properties is the so-called Complex Multiplication (CM) method.
This method was used by Atkin and Morain [1] for the construction of ellip-
tic curves with good properties in the context of primality proving, and since
then has been adapted to give rise to ECs with good security properties by
Spallek [24], and independently by Lay and Zimmer [18]. Furthermore, a number
of works appeared that compare variants of the CM method and also present
experimental results concerning the construction efficiency, such as the recent
works of Müller and Paulus [20], as well as the theses of Weng [26] and Baier [4].

In the case of prime fields, the CM method takes as input a given prime (the
field’s order) and determines a specific parameter, called the CM discriminant
D of the EC. The EC of the desirable order is generated by constructing certain
class field polynomials based on D and finding their roots. The construction and
the location of the roots (modulo the finite field’s order) is one of the most cru-
cial steps in the whole process. The most commonly used class field polynomials
are the Hilbert (original version of the CM method) and the Weber polynomi-
als. Their main differences are: (i) the coefficients of Hilbert polynomials grow
unboundedly large as D increases, while for the same D the Weber polynomials
have much smaller coefficients (although their coefficients also grow with D) and
thus are easier and faster to construct; (ii) the roots of the Hilbert polynomial
construct directly the EC, while the roots of the Weber polynomial have to be
transformed to the roots of its corresponding Hilbert polynomial to construct the
EC. For a general discussion and comparison on class field polynomials, see [9].

The use of Hilbert polynomials in the CM method requires high precision in
the arithmetic operations involved in their construction, resulting in considerable
increase in computing resource requirements. This makes them rather inappro-
priate for fast and frequent generation of ECs. To overcome these shortcomings
of Hilbert polynomials, two alternatives have been recently proposed: either to
compute them off-line in powerful machines, and store them for subsequent use
(see e.g., [22]), or to use Weber polynomials for certain values of D (see e.g.,
[2,4,15,17,18,25]) and produce the required Hilbert roots from them. The former
approach [22] tackles adequately the efficient construction of ECs, setting as a
sole requirement for cryptographic strength that the order of the EC is prime
which in turn implies that D ≡ 3 (mod 8) (a prime order is necessary in certain
situations – see e.g., [6]). However, there may still be problems with storing and
handling several Hilbert polynomials with huge coefficients on hardware devices
with limited resources. These problems are addressed by the second approach.
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Despite the space and time efficiency though, the known studies do not treat
the case of D ≡ 3 (mod 8) as these values of D give Weber polynomials with a
degree three times larger than that of their corresponding Hilbert polynomial.
For example, the case of D ≡ 7 (mod 8) and not divisible by 3 is treated in
[2,4,15,18], while the cases of D �≡ 3 (mod 8) and D �≡ 0 (mod 3) were treated
in [17,25]. In addition, there are works that consider the generation of prime or-
der ECs over extension fields, but either they use the CM method with Hilbert
polynomials [3], or they generate the EC parameters at random and use a point
counting algorithm to compute the order of the curve [21]. To the best of our
knowledge, the use of Weber polynomials within the CM method for the gener-
ation of prime order ECs along with the necessary transformation of the Weber
roots to their Hilbert counterparts for the case D ≡ 3 (mod 8) has not been
studied before.

The first contribution of this paper is a new transformation for converting
roots of Hilbert polynomials to roots of their corresponding Weber polynomials
(Section 5) for the case D ≡ 3 (mod 8), resulting in a new CM variant for
generating ECs of prime order (Section 3) and which also satisfies the three
conditions for cryptographic strength posed in [5, Sec. V.7]. We also investigate
the theoretical (Section 4) and experimental (Section 6) bit-precision for the
construction of Hilbert and Weber polynomials and present a new approximation
bound of the precision required for the construction of Weber polynomials in the
case D ≡ 3 (mod 8). Our experiments showed that the new approximate bound
is very close to the actual precision needed.

Another important step of the CM method is the determination of the order
p of the underlying prime field and the construction of the order m of the EC.
This step is independent of the computation of Hilbert or Weber polynomials
(a computation that can be performed off-line as we remarked above for various
values of the discriminant D). We consider four different ways for implementing
this step in the new CM variant (Section 3). The first method is similar to that
in [17] and uses the modified Cornacchia’s algorithm [8]. The second method
generates p and m at random as it is described in [22]. The third method is the
very efficient algorithm given in Baier’s PhD thesis [4, p. 68]. The fourth method,
which we introduce here, resembles the third one and constitutes a simpler and
more space-efficient alternative to it.

The second contribution of this paper is a comparative experimental study
(Section 6) regarding the four methods mentioned above for the computation of
p and m in the construction of an EC, as well as an investigation of the time
and bit precision requirements when constructing Weber polynomials on-line,
in comparison with their Hilbert counterparts. Such an investigation is consid-
erably important in resource-limited hardware systems which are requested to
frequently change their security parameters. Our experiments revealed that de-
spite the fact that Weber polynomials have a degree which is three times larger,
the new CM variant using any of the four methods for computing p and m is con-
siderably more space and time efficient than its counterpart which uses Hilbert
polynomials. Regarding now the comparison of the four methods for computing
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p and m, Baier’s method turns out to be the most time-efficient, followed very
closely by the new method we present here. Hence, the latter could be used as
a simpler, space-efficient, and easy-to-use alternative.

2 A Brief Overview of Elliptic Curve Theory

In this section we review some basic concepts and results of elliptic curve theory.
It is assumed that the reader has some familiarity with elementary number
theory. A detailed presentation of EC theory and its cryptographic significance
can be found in [5,23].

An elliptic curve over a finite field Fp, p a prime larger than 3, is denoted
by E(Fp) and it is comprised of all the points (x, y) ∈ Fp (in affine coordinates)
such that

y2 = x3 + ax + b, (1)

with a, b ∈ Fp satisfying 4a3 + 27b2 �= 0. These points, together with a special
point denoted by O (the point at infinity) and a properly defined addition oper-
ation form an Abelian group. This is the Elliptic Curve group and the point O
is its identity element (see [5,23] for more details on this group). Finally, let m
be the order of E(Fp), that is, the number of points in the group.

The difference between m and p is measured by the so-called Frobenius trace
t = p + 1 − m for which Hasse’s theorem (see e.g., [5,23]) states that |t| ≤ 2

√
p,

implying that
p + 1 − 2

√
p ≤ m ≤ p + 1 + 2

√
p. (2)

This is an important inequality that provides lower and upper bounds on the
number of points in an EC group.

If P ∈ E(Fp), then the order of the point P is the smallest positive integer
n for which nP = O. According to Langrange’s theorem the order of a point
P ∈ E(Fp) must divide the order of the EC group and, thus, mP = O for any
P ∈ E(Fp). This also implies that the order of a point is never larger than the
order of the EC.

Among the most important quantities defined for an EC E(Fp) given by
Eq. (1) are the curve discriminant ∆ and the j-invariant. These two quantities
are given by the equations ∆ = −16(4a3 + 27b2) and j = −1728(4a)3/∆.

For a specific j-invariant j0 ∈ Fp (where j0 �= 0, 1728) two ECs can be
readily constructed. Let k = j0/(1728 − j0) mod p. One EC is given by Eq. (1)
with a = 3k mod p and b = 2k mod p. The other, which is called the twist of the
first, is given by

y2 = x3 + ac2x + bc3 (3)

where c is any quadratic non-residue in Fp. If m1 and m2 are the orders of an
EC and its twist respectively, then m1 + m2 = 2p + 2. This implies that if one
of the curves has order p + 1− t, then its twist has order p + 1 + t, or vice versa
(see [5, Lemma VIII.3]).

EC cryptosystems base their security on the difficulty of solving efficiently the
discrete logarithm problem (DLP) on the EC group. To increase the difficulty of
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the solution of DLP (and hence the security of the EC cryptosystem), the order
m of the EC should obey certain conditions which guarantee resistance to all
known attacks [5, Sec. V.7]. An order m that satisfies these conditions is called
suitable. We would like to note that sometimes there exists a fourth security
requirement regarding the degree h of the class field polynomial. To the best
of our knowledge, such requirement is only posed by the German Information
Security Agency, which requires that h should be greater than 200. The reason
is that there are few ECs produced from class field polynomials with smaller
degrees and which may be amenable to specific attacks. However, no such attacks
are known to date and this requirement is not part of the security requirements
in any international security standard [2]. Despite this fact, we have taken into
consideration such large values of h in our experimental study.

3 CM Method and Variants

The main idea behind the CM method is as follows (see [5,13] for a detailed
discussion). According to Hasse’s theorem the quantity Z = 4p − (p + 1 − m)2

is positive. Thus, there is a unique factorization of Z of the form Dv2, with D a
square free positive integer. Consequently,

4p = u2 + Dv2 (4)

for some integer u satisfying

m = p + 1 ± u. (5)

The number D is called a CM discriminant for the prime p and the EC has a CM
by D. The CM method uses D to determine the j-invariant, and then constructs
an EC of order p + 1 − u or p + 1 + u.

The CM method requires as input a prime p. Then the smallest D is chosen
that along with integers u, v satisfy Eq. (4). The next step is to check whether
p + 1 − u and/or p + 1 + u is a suitable order. If none of them is suitable, then
the whole process is repeated with another prime p as input. If one, however, is
found to be suitable, then the Hilbert polynomial (see Section 4) is constructed
and its roots (modulo p) are computed. A root of the Hilbert polynomial is
the j-invariant we are seeking. Then, the EC and its twist are constructed as
explained in Section 2. Since only one of these ECs has the required suitable
order, it can be found using Langrange’s theorem by picking random points P
in each EC until a point is found in some curve for which mP �= O. Then, the
other curve is the one we are seeking.

The most time consuming part of the CM method is the construction of
the Hilbert polynomial, as it requires high precision floating point and complex
arithmetic. In order to overcome the high computational requirements of this
construction, a variant of the CM method was proposed in [22]. In contrast with
the CM method described above, this variant does not start with a specific p but
with a CM discriminant D ≡ 3 (mod 8), since it requires that the EC order m
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is prime (it is not hard to verify this justification for D). It then computes p and
the EC order m (the primality of m is the only requirement for cryptographic
strength set in [22]). The prime p is found by first picking randomly u and v
of appropriate sizes, and then checking if (u2 + Dv2)/4 is prime. An important
aspect of the variant concerns the computation of the Hilbert polynomials: since
they depend only on D (and not on p), they can be constructed in a preprocessing
phase and stored for later use. Hence, the burden of their construction can be
excluded from the generation of the EC.

In [17], another variant to the CM method was given which uses Weber poly-
nomials. This variant starts with a discriminant D �≡ 3 (mod 8) and a specific
prime p chosen at random, or from a set of prescribed primes. It then computes
u and v using Cornacchia’s algorithm [8] to solve Eq. (4), and requires that the
resulting EC order m is suitable (cf. Section 2) but not necessarily prime. More-
over, like in [22], the Weber polynomials can be constructed in a preprocessing
phase as they also depend only on D.

In the rest of the section, we shall describe yet another variant of the CM
method which shares similarities with those in [22,17], but also differentiates from
them in several aspects. The new variant generates ECs of prime and suitable
order, hence taking as input values of D which are congruent to 3 (mod 8), and
determines the pair (u, v) that specifies p using four alternative implementations.
Moreover, since Weber polynomials are used, which for these values of D have a
degree that is three times the degree of their corresponding Hilbert polynomials,
a new transformation is presented for transforming Weber roots to Hilbert roots
for this case (Section 5).

We are now ready to present the main steps of our variant. It starts with a CM
discriminant D ≡ 3 (mod 8) for the computation of the Weber polynomial5, and
then generates at random, or selects from a pool of precomputed good primes
(e.g., Mersenne primes), a prime p and computes odd integers u, v such that
4p = u2 + Dv2. Those odd integers u, v can be computed with four different
ways, which we will outline below. If no such numbers u and v can be found,
then take another prime p and repeat. Otherwise, proceed with the next steps,
which are similar to those of the original CM method.

We now turn to the four different methods for computing u and v. The first
is to use the modified Cornacchia’s algorithm [7] as in [17]. The second is to
generate them at random as it is done in [22]. The third method was proposed
in [4, p. 68] and uses some clever heuristic in order to speed up the discovery of
a suitable prime p. Despite its efficiency, this approach is quite complicated and
uses an auxiliary table and two sieving arrays. Motivated by this approach we
have developed a fourth method which is simpler and does not use any auxiliary
tables or sieving arrays. The method is outlined in the following paragraph.

From Eqs. (4) and (5) we know that if we compute u and v such that 4p =
u2 + Dv2, then the order m of the EC is given either by p + 1 − u or p + 1 + u
(recall that m is prime). We will denote the former by m− and the latter with

5 Although the variant defaults to the use of Weber polynomials, Hilbert polynomials
can be used as well.
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m+. Since m is prime, u and v must be odd. In addition, u and v should not have
common divisors because then p would not be a prime. With this observation in
mind, we start our method by randomly picking odd u and v of appropriate sizes
such that u = 210x + 1 and v = 210y + 105, where x, y are random numbers.
In this way, u and v do not have common divisors the numbers 3, 5 and 7
(3 · 5 · 7 = 105). Then, we check whether (u2 + Dv2)/4 is prime. If it is, then
we check for primality the quantities m− and m+. If (u2 + Dv2)/4 is not prime,
then we add to u an integer keeping the same value for v, we calculate a new
value for p, and repeat the whole process. An issue arises here as to what integer
we add to u. Note, that when u = 210x + 1 ≡ 1 (mod 3), then p ≡ 1 (mod 3),
m− ≡ 1 (mod 3) and m+ ≡ 0 (mod 3). Thus, only m− can be a prime. If u were
equal to u = 210x + 107 ≡ 2 (mod 3), then again p ≡ 1 (mod 3), but m− ≡ 0
(mod 3) and m+ ≡ 1 (mod 3). Therefore, at the first iteration of our method we
select u = 210x + 1, at the second u = 210x + 107, and so on, in order to check
for primality m− and m+ in tandem. In particular, if the choice u = 210x + 1
does not give primes p and m, then we add to u the number 106, in the next
iteration we add 104, and so on. In this way, u is at one step congruent to 1
(mod 3) and at the next step congruent to 2 (mod 3).

As mentioned earlier, the other most complicated part of the CM method is
the construction of the polynomials (Weber or Hilbert), which is addressed in
the next Section.

4 Hilbert and Weber Polynomials

The only input for the construction of the Hilbert or the Weber polynomials,
denoted by HD(x) and WD(x) respectively, is the CM discriminant D. They
both require complex floating point arithmetic. The Hilbert polynomial HD(x),
for a given positive value of D, is defined as

HD(x) =
∏

τ

(x − j(τ)) (6)

for a set of values of τ obtained by the expression τ = (−β +
√−D)/2α, for all

integers α, β, and γ that satisfy the following conditions: (i) β2 − 4αγ = −D,
(ii) |β| ≤ α ≤ √

D/3, (iii) α ≤ γ, (iv) gcd(α, β, γ) = 1, and (v) if |β| = α or
α = γ, then β ≥ 0. The 3-tuple of integers [α, β, γ] satisfying these conditions,
is a primitive, reduced quadratic form of −D, and τ is a root of the quadratic
equation αz2 + βz + γ = 0. It can be proved that the set of primitive reduced
quadratic forms of discriminant −D, denoted by H(−D), is finite. Moreover,
it is possible to define an operation that gives to H(−D) the structure of an
Abelian group whose neutral element is called the principal form. The principal
form is equal to [1, 0, D/4] if D ≡ 0 (mod 4) and [1,−1, (D + 1)/4] if D ≡ 3
(mod 4). This means that τ =

√−D/2 for the first principal form and τ =
(1+

√−D)/2 for the second. The quantity j(τ) in Eq. (6) is called class invariant
and is defined as follows. Let z = e2π

√−1τ and h(τ) = ∆(2τ)
∆(τ) , where ∆(τ) =

z
(
1 +

∑
n≥1 (−1)n

(
zn(3n−1)/2 + zn(3n+1)/2

))24

. Then, j(τ) = (256h(τ)+1)3

h(τ) .
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If h is the degree or class number of HD(x), the bit precision required for the
generation of HD(x) according to [18] is

H-Prec(D) ≈ ln 10
ln 2

(h/4 + 5) +
π
√

D

ln 2

∑

τ

1
α

where the sum runs over the same values of τ as the product in Eq. (6). Note
that this is much smaller than the precision given in [1,5].

The Weber polynomials are defined using the Weber functions (see [1,13]):

f(y) = q−1/48
∞∏

m=1

(1 + q(m−1)/2) f1(y) = q−1/48
∞∏

m=1

(1 − q(m−1)/2)

f2(y) =
√

2 q1/24
∞∏

m=1

(1 + qm) where q = e2πy
√−1.

Then, the Weber polynomial WD(x), which has degree 3h as D ≡ 3 (mod 8), is
defined as

WD(x) =
∏

�

(x − g(�)) (7)

where � = −b+
√−D
a satisfies the equation ay2 +2by+c = 0 for which 4b2−4ac =

−4d, where d = D/4 if D ≡ 0 (mod 4), and d = D if D ≡ 3 (mod 4). Let
ζ = eπ

√−1/24. The class invariant g(�) for WD(x) is defined by

g(�) =






ζb(c−a−a2c) · f(�) if 2 |/a and 2 |/c

−(−1)
a2−1

8 · ζb(ac2−a−2c) · f1(�) if 2 |/a and 2 | c

−(−1)
c2−1

8 · ζb(c−a−5ac2) · f2(�) if 2 | a and 2 |/c

(8)

if D �≡ 0 (mod 3), and

g(�) =






1
2ζ3b(c−a−a2c) · f3(�) if 2 |/a and 2 |/c

− 1
2 (−1)

3(a2−1)
8 · ζ3b(ac2−a−2c) · f3

1 (�) if 2 |/a and 2 | c

− 1
2 (−1)

3(c2−1)
8 · ζ3b(c−a−5ac2) · f3

2 (�) if 2 | a and 2 |/c

(9)

if D ≡ 0 (mod 3). In [25], an upper bound of v0 + π
√

D
ln 2

∑
�

1
a is given for the

precision required for the construction of WD(x), where the sum runs over the
same values of � as the product in Eq. (7) and v0 is a positive constant that
handles round-off errors (typically v0 = 33). In [18] a more accurate precision
estimate is given for the computation of Weber polynomials with discriminants
D ≡ 7 (mod 8). In particular, the bit precision in this case is given by

W-Prec(D) ≈ ln 10
ln 2

(
h/4 + 5 + π

√
D

ln 10

∑
τ

1
α

47
+ 1

)

where τ takes the same values as in the product in Eq. (6) for HD(x). This
precision estimate however, can not be used in the case D ≡ 3 (mod 8) which
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is of our concern. For this reason, we provide in the following lemma a new
precision estimate specifically for this case.

Lemma 1. The bit precision required for the construction of Weber polynomi-
als with discriminant D ≡ 3 (mod 8) and D �≡ 0 (mod 3) is approximately
3h + π

√
D

24 ln 2

∑
�

1
a , where the sum runs over the same values of � as the product

WD(x) =
∏

�(x − g(�)). For the case of D ≡ 3 (mod 8) and D ≡ 0 (mod 3) the
approximate precision becomes 3h + π

√
D

8 ln 2

∑
�

1
a .

Proof. From the proof of Proposition (B4.4) in [16], if the Weber polynomial
is written in the form WD(x) = x3h + w3h−1x

3h−1 + . . . + w1x + w0, then
|wi| ≤ 23hM , where M =

∏
� max(1, |g(�)|). This means that the bit precision

required for the coefficient wi of the polynomial is log2(|wi|) ≤ 3h + log2 M ≤
3h +

∑
� log2(|g(�)|). Therefore, the bit precision required for the construction

of the whole polynomial (i.e., the construction of its coefficients) is at most
3h +

∑
� log2(|g(�)|).

For the case D ≡ 3 (mod 8) and D �≡ 0 (mod 3), the precision required
by each g(�) is the same with the precision required by f(�), f1(�) or f2(�) as
it is evident from Eq. (8). In addition, it is known that j(z) = (f24(z)−16)3

f24(z) =
(f24

1 (z)+16)3

f24
1 (z)

= (f24
2 (z)+16)3

f24
2 (z)

. These equalities imply that the precision needed for
j(�) is approximately 48 times the precision needed for f(�), f1(�) or f2(�).
Using the expansion of j in terms of its Fourier series [5], we obtain that
|j(�)| ≈ |e−2π

√−1�| = e2π
√

D/a. Therefore, the bit precision that is required
for the computation of j(�) is log2 |j(�)| ≈ 2π

√
D

a ln 2 and, consequently, the preci-
sion required for g(�) is given by log2 |g(�)| ≈ 2π

√
D

48a ln 2 = π
√

D
24a ln 2 . This, in turn,

results in the total bit precision requirements for the computation of the Weber
polynomial: 3h + π

√
D

24 ln 2

∑
�

1
a .

In the case D ≡ 3 (mod 8) and D ≡ 0 (mod 3), the precision required by g(�)
is three times the precision required by f(�), f1(�) or f2(�) as it is evident from
Eq. (9). Using an analysis similar to the analysis used in the previous case, we
obtain that the bit precision requirements in this case is given by 3h+ π

√
D

8 ln 2

∑
�

1
a

which completes the proof of the lemma. �	

5 Transforming Weber Roots to Hilbert Roots

In this section we elaborate on the transformation of roots of Weber polynomi-
als to roots of the corresponding (generated from the same discriminant value
D) Hilbert polynomials. Note that for the particular case we consider (D ≡ 3
(mod 8)), the degree of the Weber polynomial is three times larger that the
degree of its Hilbert counterpart, and this introduces an additional difficulty.
We start with some basic relationships between the Weber functions and j(z)
(defined in the previous section). In particular,

f(z)f2

(
1 + z

2

)
= eπ

√−1/24
√

2 (10)
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j(z) =
(f24(z) − 16)3

f24(z)
=

(f24
1 (z) + 16)3

f24
1 (z)

=
(f24

2 (z) + 16)3

f24
2 (z)

. (11)

Hence, f24(z), −f24
1 (z), and −f24

2 (z) are the roots of the cubic equation (x −
16)3 − xj(z) = 0.

It can be proved that any transformation of a real root of a weber polynomial
to a real root of the corresponding Hilbert polynomial holds also for the roots
of the polynomials when taken (mod p). Suppose RW is a real root of WD(x)
to be transformed to the corresponding real root RH of HD(x). In addition,
RH = j(τ), where τ corresponds to the principal form. First, RW is transformed
into one of the quantities f24(τ), −f24

1 (τ) or −f24
2 (τ) (we will denote either of

these quantities by A) and we set RH = (A − 16)3/A. The most complex part
of the transformations is the first, which depends on the discriminant D. For
different values of D, different class invariants are used, which in turn, define
the relationship between RW and the Weber functions.

The class invariant for D ≡ 3 (mod 8) and D �≡ 0 (mod 3) is f(
√−D). That

is, RW = f(
√−D). The principal form for such discriminants is [1, 1, (D + 1)/4],

and hence one of the roots of Eq. (11) is f24(τ), −f24
1 (τ), or −f24

2 (τ), where
τ = (1 +

√−D)/2. According to Eq. (10)

f2(τ) = f2

(
1 +

√−D

2

)
= e

π
√−1
24

√
2f−1(

√−D) = e
π
√−1
24

√
2R−1

W .

Consequently, f24
2 (τ) = −212R−24

W and since A = −f24
2 (τ), we obtain

RH =
(A − 16)3

A
=

(212R−24
W − 16)3

212R−24
W

.

The class invariant for D ≡ 3 (mod 8) and D ≡ 0 (mod 3) is f3(
√−D)/2. That

is, RW = f3(
√−D)/2. The principal form is, again, [1, 1, (D + 1)/4] and one of

the roots of Eq. (11) is f24(τ), −f24
1 (τ), or −f24

2 (τ), where τ = (1+
√−D)/2. Fol-

lowing the same procedure as before we obtain that f24
2 (τ) = −212f−24(

√−D) =
−24R−8

W . Since A = −f24
2 (τ), then

RH =
(A − 16)3

A
=

(24R−8
W − 16)3

24R−8
W

.

6 Implementation and Experimental Results

As mentioned in the introduction, one of our main concerns was to investigate
the efficiency of implementing CM variants in resource-limited hardware devices
(e.g., embedded systems). For that reason and for reasons of proper compari-
son, we have made all of our implementations in a unified framework using the
same language and software libraries. Since the vast majority of language tools
developed for such devices are based on ANSI C, we have made all of our imple-
mentations in this language using the (ANSI C) GNUMP [10] library for high
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precision floating point arithmetic and also for the generation and manipula-
tion of integers of unlimited precision. Our goal was to boost portability as well
as adaptability to the development tools for resource-limited hardware devices.
Note that there are highly efficient and optimized C++ libraries (e.g., LiDIA [14])
which however result in executables of a few MB, since they call dynamically
linked libraries at run time. In contrast, our code does not call any such libraries
at runtime. In particular, we have carried out our implementations and experi-
ments on a Pentium III (933 MHz) running Linux and equipped with 256 MB
of main memory. The Weber (resp. Hilbert) version of our code had size 53KB
(resp. 49KB) including the code for the generation of the polynomials; exclusion
of the latter (i.e., when polynomials are computed off-line) reduces the code size
to 29KB if the modified Cornacchia’s algorithm is used, to 25KB if p and m are
selected at random as it is done in [22], to 28KB if Baier’s algorithm [4, p. 68]
is used, and to 26KB if the new method (described in Section 3) is used. All
reported experimental values are averages over 3000 ECs for each value of the
discriminant D. We considered two prime field sizes, 192 and 224 bits, which are
typically used in such experiments.

Our experiments first focused on the bit precision and the time requirements
needed for the construction of Hilbert and Weber class field polynomials. We
have considered various values of D and h and made several experiments. We
observed a big difference in favor of Weber polynomials both w.r.t. precision and
time. This was evident even for small values of D and h. Figure 1(left) illustrates
the actual and the approximate estimate of the bit precision for both Weber and
Hilbert polynomials.
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Fig. 1. Bit precision for the construction of Hilbert and Weber polynomials
(left), and for the construction of Weber polynomials only (right).

As it is evident from the figure, there is a large difference in the required
precision between the two types of polynomials. The difference grows consid-
erably larger for bigger values of D and h. We also observe (see Fig. 1(left))
that the approximate precision estimates are very close to the actual precision
used in the implementation. For Hilbert polynomials the approximation from
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Eq. (4) was used, while for Weber polynomials that of Lemma 1. Regarding the
precision requirements of Weber polynomials and their theoretical estimates, il-
lustrative results are reported in Figure 1(right). It is clear that the precision
required for the case of D ≡ 0 (mod 3) is bigger than the precision required
for D �≡ 0 (mod 3) for similar values of D and h. The approximate precision is
larger than the actual precision for all values of D. The difference in the pre-
cision requirements of Weber polynomials for the two cases of D (divisible or
not divisible by 3) is also reflected in the time requirements for their construc-
tion, shown in Figure 2(left). The degree h of the polynomials ranges from 50
to 150, while D ranges from 11299 to 69315 (for D = 69211 and h = 150 the
time for the construction of the polynomial is only 7.57 seconds). The difference
between these two cases can be readily explained from the EC theory: the class
invariants for such values of D are raised to the power of three, and since they
increase in magnitude the time requirements are expected to be much larger
than the requirements for Weber polynomials corresponding to other values of
the discriminant. This fact implies that values of D divisible by 3 should be
avoided.
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Fig. 2. Time in seconds for the construction of Weber polynomials (left) and for
the computation of p, and m in the 224-bit field (right).

We next turn to the four methods for the calculation of the prime order p
of the underlying field and the prime (and suitable) order m of the EC. We
shall refer to these methods as R (random choice used in [22]), C (modified
Cornacchia’s algorithm), B (Baier’s algorithm in [4, p. 68]), and N (new method).
We have made several experiments both in the 192-bit and in the 224-bit fields
with various values of D and h. We report on the most representative results
in Figures 2(right), and 3. Figure 2(right) presents the time requirements of the
four methods for various discriminants D in the 224-bit field. Clearly, C is by far
the slowest, even for small values of h (h ≤ 10 in Fig. 2(right)); this is due to its
time complexity which is O(log4 p). Hence, we do not consider C when reporting
results with larger values of D and h, and concentrate on the comparison among
methods R, B, and N. The difference in efficiency among these three methods can
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be seen in Figure 3. Figure 3(left) involves values of D ranging from 163 to 2099,
and values of h ranging from 10 to 20, while Figure 3(right) involves values of
(D, h) in {(125579, 200),(184091, 250),(223739, 300),(294971, 350),(428819, 400),
(539579, 450)}.

In either case, we observe a similar behavior in the relative efficiency among
the three methods: R is the most time consuming, while the most efficient is B.
The new method (N) is slightly slower than B, but it is simpler and uses less
memory. The difference between R, and B or N becomes more apparent as D and
h increase (cf. Fig. 3(right)). We would also like to note that the timings obtained
by our implementation of B using GNUMP are very close to those reported in
[4], which were based on a C++ implementation of B using the advanced C++
library LiDIA [14] and carried out on a similar machine.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Ti
me

 in
 se

cs

D

N method
B method
R method

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

100000 200000 300000 400000 500000 600000

Ti
me

 in
 se

cs

D

N method
R method
B method
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