The probabilistic analysis of a greedy
satisfiability algorithm*

Alexis C. Kaporis, Lefteris M. Kirousis { and Efthimios G. Lalas

University of Patras, Department of Computer Engineering and Informatics
University Campus, GR-265 04 Patras, Greece, {kaporis,kirousis,lalas} Qceid.upatras.gr

ABSTRACT

On input a random 3-CNF formula of clauses-to-variables ratio rs3 apply repeatedly the
following simple heuristic: Set to TRUE a literal that appears in the maximum number
of clauses, irrespectively of their size and the number of occurrences of the negation of
the literal (ties are broken randomly; 1-clauses when they appear get priority). We prove
that for rs < 3.42 this heuristic succeeds with probability asymptotically bounded away
from zero. Previously, heuristics of increasing sophistication were shown to succeed for
r3 < 3.26. We improve up to r3 < 3.52 by further exploiting the degree of the negation of
the evaluated to TRUE literal. © ??? John Wiley & Sons, Inc.

1. INTRODUCTION

Consider n Boolean variables V' = {x;,...,2,} and the corresponding set of 2n
literals L = {x1,Z1...,%n,Tpn}. Each x; € V may appear as positive literal z;
or as negative T; in a k-clause, k > 2. A k-clause is a disjunction of k literals of
distinct underlying variables. A random formula ¢, ,, in & Conjunctive Normal
Form (k-CNF) is the conjunction of m clauses, each selected uniformly and inde-
pendently amongst 2% (Z) possible clauses on n variables in V. The density 7 of

*Research supported by the University of Patras Research Committee under Project Carathéodory
contract no. 2445 and by the Research Academic Computer Technology Institute (RACTI). Also,
we thank the European Social Fund (ESF), Operational Program for Educational and Vocational
Training II (EPEAEK II), and particularly the program PYTHAGORAS I, for funding the above
work.

T Partially supported by Future and Emerging Technologies programme of the EU under EU
contract 001907 “Dynamically Evolving, Large Scale Information Systems (DELIS)”

Random Structures & Algorithms Vol. 77?7, (777?)
© 777 John Wiley & Sons, Inc. CCC 777

2 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

a k-CNF formula ¢, ., is the clauses to variables ratio m/n. A k-CNF formula
®n,|rn) 18 satisfiable if there exists an assignment of truth values to the variables
such that ¢y, |, evaluates to 1. We say that for a given density r almost all for-
mulas ¢y, |,,n| are (un)-satisfiable iff the the ratio of (un)-satisfiable to all possible
formulas approaches 1, as n — oo.

It is conjectured that for each k > 2 there exists a critical clauses to variables
ratio rj; such that almost all k-CNF formulas ¢y, |,,,| with ratio (r > rp) T <) are
(un)-satisfiable, as n — oo. Friedgut [32], proved that for each k > 2 there exists a
sequence of threshold values r}(n), depending on the number n of variables, such
that for any ¢ > 0 almost all k-CNF formulas (¢n7L(7';’;(n)+€)nJ) ¢n,_(r,’;(n)—e)n] are
(un)-satisfiable, as n — oco. However, the convergence lim,, . 7} (n) = 7} for each
k > 3 still remains open. Let

r;- = lim ri(n) = sup{ry, : Pr[¢y, |, n is satisfiable — 1]}

—n—00

and
it = lim,—oorp(n) = inf{ry : Pr[y, |0 is satisfiable — 0]}.

Therefore r;,~ < rj < TZ+7 if 7} exists.
Franco and Paull pioneered the study of random k-CNF formulas and proved
the general upper bound r;* < 2¥In2 in [31]. Then Chao and Franco established

k—2
the general lower bound % (%) 28 /k < ri” in [16]. These results suggested

the simple law 7~ =7} = 7"7:’ ~ 2FIn2. A series of experimental results come up
in favor of the threshold conjecture, see [20, 25, 58]. Monasson and Zecchina, using
the non rigorous replica method from statistical mechanics, predicted rj ~ 2k 1n2
in [61].

Chvétal and Reed in [17] proved the simple law $2%/k < r;~ and further proved
that 75~ = r3 = r3T = 1, also see [12, 17, 37, 67, 68]. Frieze and Suen improved
to 2,28 /k < r;~, where z;, = O(1) depending on k, as the best algorithmic lower
bound for general k-CNF formulas in [33].

Wilson in [70] proved that for each k > 2 the characteristic width of the phase
transition is at least ©(n'/2), contradicting a number of empirical results in [35,
48, 49, 62, 63]. The width denotes the amount of extra clauses needed to be added
in the random formula for the probability of satisfiability to drop from 1 — € to e.

In a recent advance, Frieze and Wormald [34] proved that 2¥In2 < r;~ as
k —log, n — oo, employing a second moment argument. Independently, Achlioptas
and Moore [6], also applied the second moment method to prove that % In2—z, <
r;~ for any fized value of k > 2, where 2z, > 0 is constant and depends on k.
Recently, Achlioptas and Peres refined this method proving 2F(In2 + o(1)) < Ty
in [8].

An important question concerns the complexity to compute a satisfying assign-
ment, or on the contrary, to prove that none exists near the conjectured threshold
value. To this end, Haken, Urquhardt and Chvétal, Szemerédi in [39, 66, 18] were
led to the conclusion that for k&-CNF formulas of density 7 > 2¥ In2 any resolution
proof of unsatisfiability contains at least (1 + €)™ clauses. Monasson et al, using
statistical mechanics, showed that the first-order phase transition correlates to the
running time until a satisfying truth assignment is returned, by heuristics that are

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 3

based on the Davis-Putnam simplification rule [62, 63]. Furthermore, Mézard et
al [55, 56] suggest a linear time algorithmic criterion that may improve the lower
bound on r;~. Achlioptas, Beame and Molloy in [3] proved a 22(") Jower bound
for the running time for the DPLL (for Davis, Putnam, Logemann and Loveland)
procedures GUC, UC and ORDERED-DLL, see [15, 16] and [21, 22]. Informally,
a DPLL procedure spits a formula into two sub-formulas by setting a variable to a
fixed value and recursively invokes itself on each sub-formula.

For the particular case k& = 3, upper bounds to r§+ have been proven using
probabilistic counting arguments [26, 27, 42, 44, 47, 50, 53], see the surveys [24, 51]
about the techniques employed. Dubois, Boufkhad and Mandler proved r§+ < 4.506
as the current best upper bound, in [27]. As a corollary of [32], to prove that
¢ < r; it suffices to prove that a random 3-CNF formula of density ¢ has a
satisfying truth assignment with probability of at least a positive constant. In
this vain, Davis-Putnam algorithms of increasing sophistication were rigorously
analyzed [1, 9, 14, 15, 17, 33], see the surveys [2, 30] describing in detail various
heuristics and techniques on their analysis. The best previous lower bound for the
satisfiability threshold thus obtained is 3.26 < r3~ by Achlioptas and Sorkin in [9].

2. CONTRIBUTION

Almost all above algorithms (with the exception of the Pure Literal algorithm
[29, 14, 59]) take into account only the clause size where the selected literal ap-
pears in. Due to this limited information exploited on selecting the next variable,
the simplified formula in each algorithmic step remains random conditional only
on the current numbers of 3;2-clauses and variables. However, selecting the next
variable only on the basis of the current numbers of 3;2-clauses, led to algorithms
of increasing sophistication that gave the lower bound 3.26 < r3™.

The first part of this paper concerns the analysis of a greedy Davis-Putnam al-
gorithm that exploits degree information (number of literal occurrences) to select
and set to TRUE a literal per free step (i.e. while there exist no 1-clauses), see
Section 4.4. The algorithm is simple: in each round evaluate to TRUE a literal 7 as
to satisfy the mazimum number of clauses, irrespectively of the occurrences of 7.
It succeeds for densities rg < 3.42 establishing that 3~ > 3.42. Its simplicity, con-
trasted with the improvement over the previously obtained lower bounds, suggests
the importance of analyzing heuristics that take into account degree information of
the reduced formula. A preliminary version of this paper appeared in [45].

In the second part of this paper we exploit the number of occurrences of the
negation 7 of the high degree literal 7 selected per free step, see Section 5. Consider
literals 71, ...,7s € L, all of the highest degree in the current formula. Then it seems
natural to give priority for satisfaction to literal 7,7 € {1,..., s}, whose negation
7T; occurs in the fewest clauses. Intuitively, obtaining control on complementary
literals 7,7 € L we maximize the number of satisfied clauses and minimize the gen-
eration of new 1-clauses increasing the probability of success of the algorithm. Our
heuristic succeeds for densities r3 < 3.52 establishing that 3.52 < r3~. However,
the ordering of selection of such pairs of literals is not trivial. Assume that 71 with
deg(t1) = A is the unique literal of currently maximum degree and deg(71) = 3.
Should we better select literal 7o with deg(m2) = A — 1 and deg(T2) = 27 Here,

4 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

each pair of complementary literals has discrepancy A — 3. We provide a frame-
work for analyzing algorithms that under an arbitrary rule Select & Set a pair of
complementary literals per free step, irrespectively of the clause sizes. By standard
techniques, our algorithm can be easily modified to run in linear time. Thus not
only the satisfiability threshold, but also the threshold (experimental again) where
the complexity of searching for satisfying truth assignments jumps from polynomial
to exponential is at least 3.52. This should be contrasted with the value 3.9 for
the complexity threshold given by theoretical (but not mathematically rigorous)
techniques of Statistical Physics [56, 55]. Hajiaghayi and Sorkin independently an-
alyzed heuristics similar to those of our paper and claim to have obtained the same
lower bound [38].

3. PLAN OF THE PAPER

The first part of this paper is Section 4. It concerns the probabilistic analysis of the
algorithm Greedy described in sub-Section 4.A. We define the notion of a round of
algorithm’s operation in sub-Section 4.B. We also point out the reason we use the
current number of rounds as the “time” parameter. Then we describe the model of
generating a random formula obtained at the end of each round of the algorithm
in sub-Section 4.C. Connections of this model to existing ones are presented in
sub-Section 4.D. Furthermore we initialize the degree sequence of the formula and
we prove useful statistical properties per round in sub-Section 4.E. A subcritical
Galton Watson process of polylogarithmic total size establishes that the sequence
of forced steps does not dominate any round in sub-Section 4.F. We also prove
a sufficient condition for positive probability of success for the algorithm. We
compute the expected change of each of (h+3) parameters given which the reduced
formula retains randomness in sub-Section 4.G. Then we show that a theorem of
Wormald applies in order to approximate within o(1) and probability 1 —o(1) each
of these (h+3) parameters in sub-Section 4.H. We write down the system of (h+3)
differential equations the solution of which approximates within o(1) the dynamics
of the algorithm per round in sub-Section 4.I. We employ a Theorem proved by
Wormald [72], that helps us to approximate the dynamics of the algorithm with
the solution of the system of differential equations, with high probability, see sub-
Section 4.H. We implement the d.e. until we reach a round where we can apply a
theorem by Cooper Frieze and Sorkin [19] and safely terminate the algorithm, see
sub-Section 4.J. Finally, numerical computations and experiments are presented in
sub-Section 4.K.

The second part of this paper is devoted to the study of the dynamics of the
algorithm CL, see Section 5. The randomness invariance of the reduced formula in
each round of the algorithm is retained by keeping track of an appropriate degree
sequence of (h+1)?+3 parameters, see the details in sub-Section 5.B. The statistical
properties of the reduced formula are presented in sub-Section 5.C. We introduce
the corresponding system of differential equations to keep track the parameters
given which the formula retains randomness in sub-Section 5.D. Finally, we apply
a criterion for the termination of the algorithm CL in sub-Section 5.F.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 5

4. NEGATION BLIND DEGREE SEQUENCE

A. Algorithm

The algorithm is applied to a random 3-CNF formula with n variables and density
r3. Let h be an a priori decided integer parameter, say h = 10. At a first phase, the
algorithm arbitrarily selects and sets to TRUE literals of degree at least h (during
free steps), until they are exhausted. At subsequent phases, it continues with literals
of degree exactly h—1 etc, in decreasing order of the degree. Unit clauses, whenever
they appear, are given priority (forced step). In the numerical computations, we
take h = 10 (a larger h gives a larger lower bound, but only with respect to its
second decimal digit). The degree or number of occurrences of a literal 7 in the
formula is denoted as deg(7) in the definition below.

Definition 4.1.
X;={reL|deg(r)= j},j=0,....,h—1,and X, ={r € L | deg(r) > h}.

If T € &), then we call T heavy, otherwise we call it light.
Del&Shrink(7) is the Davis-Putnam simplification rule: delete all clauses in the
current formula that contain literal 7, and delete 7 from all clauses it appears.

Algorithm: Greedy
begin:
J<h;
while unset literals exist do:
while X; # 0 do:
Select 7€ X; & Set 7=1;
Del&Shrink(7);
while 1-clauses exist do:
Select 7 in a 1-clause & Set 7 =1;
Del&Shrink(7);
end do;
end do;
J—i—1
end do;
if a 0-clause is generated then report failure;
else report success;
end;

In all Select commands above, the selection can be based on a deterministic
but otherwise arbitrary rule, e.g always select the object with the least index that
satisfies the corresponding requirements.

We prove that for h = 10 algorithm Greedy on input a random 3-CNF formula
of initial density r3 < 3.42, computes a satisfying truth assignment with probability
at least a positive constant. Therefore:

Theorem 4.2. The lower bound on 3~ is at least 3.42.

6 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

The crucial property, proved in [59], that the negation of a 0-degree literal is
a random literal, motivated us to work with arbitrary j-degree literals. Hence, in
each free step, we set to TRUE a j-degree literal, with j maximum, satisfying in
this way the maximum number of clauses while the number of shrinked clauses has
the same expectation as if we had to set to true a random literal.

We were motivated to give priority to large degrees from [2, 9], where the need
to capitalize on variable-degree information was pointed out and from [5], where,
in the context of the 3-coloring problem, the Brélaz heuristic [13] was analyzed.
According to [5], vertices of maximum degree are given priority, but only in case
they can be legally colored by 2 out of 3 possible colors.

Also in [36] Johnson’s heuristic [43] is evaluated experimentally. This heuristic
selects at each free step both a literal 7 and its negation 7 on the basis of their
corresponding degrees amongst 3,2-clauses. Algorithm Greedy is a simplification of
this heuristic, since in a free step it selects a literal 7 of the biggest degree in the
formula (irrespective of the clause sizes) while 7 is random.

Finally, we were motivated to put together all heavy literals from [14],([64]),
where pure literals (light vertices) are set to TRUE (deleted) in order to find a sat-
isfying truth assignment of a random formula (the k core of a graph), respectively.

B. Rounds

The algorithm proceeds in rounds. A round consists of one free step, i.e. a step
where a literal in X; is set to TRUE (j = h,...,0), followed by a number of forced
steps, i.e. steps where 1-clauses are satisfied (the steps of the inner loop in the
pseudo-code above). Of course, each of these steps is followed by the call of a
Del&Shrink procedure. At the end of the sequence of forced steps only 3, 2-clauses
exist, and we reach the same reduced formula irrespectively of the ordering that
the algorithm satisfies the 1-clauses.

As in [9], in the analysis of the evolution of the algorithm, we consider as discrete
time the number of rounds rather than the number of individual steps, which, for
distinction, are to be called atomic steps. To explain why this choice of time is
made, take into account that as the solution to the differential equations will show
(for r3 = 3.42 and h = 10), the expected number of unit clauses generated at any
atomic step is bounded below 1, see sub-Section 4.F.1. But then, during the course
of the algorithm the number of unit clauses is equal to 0 unboundedly many times.
This happens at the end of each round; all rounds have O(1) atomic steps, so there
are O(n) of them, assuming no contradiction appears, see sub-Section 4.F. As a
consequence, if time corresponds to atomic steps, the evolution of the number of
unit clauses cannot be analyzed by the method of differential equations. This is so
because to apply this method, the rate of change, from a current step to the next, of
the parameter under examination should be given by a smooth function (Lipschitz
continuous function, see [72]) of the current scaled value of the parameter. This is
not possible for the number of unit clauses, as its rate of change when there is at
least one unit clause is discontinuously different from its rate of change when there
is none (in the former case we deterministically delete one unit clause). See, for
more details, sub-Section 4.H. The technique of rounds, i.e. the change of the time
parameter to count the number of rounds, guarantees that Wormald’s theorem is

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 7

applicable for the study of the evolution of stochastic parameters by the use of
differential equations.

C. Randomness invariance of the formula in each round

We show that at the end of each round of the algorithm, the reduced formula is
uniformly at random distributed over the space of all formulas with a given degree
sequence, as the one in Definition 4.1 and with given number |C;| of i-clauses,
1=2,3.

Algorithm Greedy selects randomly a literal 7 that has specified degree (or that
appears in a 1-clause), during each free (or forced) step. It transforms the current
formula ¢ into the reduced ¢’, by deleting all clauses where 7 appears and deleting
all occurrences of 7, schematically: ¢’ « Del&Shrink(¢, 7).

Consider Procedures A and B below (and C'in Section 5.B), where Procedure A
corresponds to an atomic step of algorithm Greedy. We will show that B preserves
conditional randomness (as defined below). From this we will deduce that the
same is true for A. We refer by Model A (resp. Model B or C) to the processes
corresponding to Procedure A (or to Procedure B or C).

Procedure A

1. Select a literal occurrence 7 in a clause of length one, if any (forced
atomic step),

2. or select a literal 7 of specified degree (free atomic step),
3. ¢ « Del&Shrink(¢, 7).

In addition, consider the simpler Model B, under which atomic steps such as:
Procedure B

1. Select a literal occurrence 7 in a clause of length one, if any (forced
atomic step),

2. or select a literal 7 (free atomic step),
3. ¢’ « Del&Shrink(¢, 7),

can be expressed. Notice that it differs from Model A in that it is not possible to
select a literal of specified degree. Observe that Model B can not express each free
step of Greedy, while it expresses each forced one. However, studying its limitations
and modifying it accordingly, we finally construct Model A which is adequate to
express any atomic step of Greedy.

Lemma 4.3. At the end of each algorithmic operation according to Model B, the
reduced formula remains random conditional on its current number |C;| of i-clauses
and its current number |L| of literals, i = 2, 3.

Proof. A random formula conditional on the number |C;| of i-clauses and the
number |L| of literals is constructed by selecting uniformly at random i-clauses
from the space of all possible clauses on these literals, i = 2,3. Each of the 4
literal occurrences in an i-clause is selected uniformly at random over |L| possible
literals. This makes a total of 3|C3|+2|C2| clause occurrences that their underlying

8 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

literal is unexposed or secret. The fact that these literal occurrences are unexposed,
means that the corresponding clause places can be filled uniformly at random over
the |L| possible literals. We can interpret these 3|C3| 4 2|Cs| literal occurrences
as cards facing down, or registers with unexposed content. Also, let |L| unexposed
registers containing each of the literals available. Working analogously as in [46],
we can view each i-clause as an i-tuple of unexposed clause-registers, each register
containing a secret pointer to one of the |L| literal-registers of the literals available.
Similarly, each of the |L| literals can be seen as an unexposed literal-register with
secret pointers to all the i-tuples that contain registers pointing to this literal. Also,
each literal-register points to the unexposed literal-register of the negation of its
underlying literal.

All in all, the fact that the pointer of a clause-register is secret means that its
content can be specified uniformly at random amongst the |L| possible literals.
(Note that all these |L| literals need not appear in the formula.) In a symmetric
fashion, the content of each of the secret pointers in a literal-register can be specified
uniformly at random amongst the 3|Cs| + 2|Cs| possible literal occurrences. This is
done in an analogous manner as the content of a card is revealed in the expository
card game presented in [52].

Using Model B, we can Select & Set to TRUE a random literal (or a random literal
occurrence in a clause of specified length), amounting to model’s B 1st (or 2nd)
kind of permissible atomic steps. These are performed by the following operations:

1. Select uniformly at random a literal-register amongst the |L| possible (or
select a literal occurrence from a random i-tuple of clause-registers). Let 7
its underlying literal.

2. Delete the content of the literal-register of 7; delete the content of all the -
tuples of clause-registers that contain a clause-register pointed by the literal-
register of 7,7 = 2, 3; update the content of all the remaining registers. This
amounts to deleting 7 and deleting all clauses that it appears. Also delete the
content of the literal-register of 7; delete the content of all the clause-registers
it points to; update all the remaining registers. This amounts to deleting 7
and deleting all occurrences of 7.

Observe that we can not infer information about the current content of any register
which remains undeleted and unexposed. We should stress here, that we can not
infer information combining the knowledge exposed from the currently exposed reg-
isters and the ones that were exposed during previous algorithmic steps. Therefore
the reduced formula remains random conditional on the new numbers |C{| and |L/|
of i-tuples of clause-registers and literal-registers ¢ = 2, 3, respectively. -

Lemma 4.4. At the end of each algorithmic operation according to Model A,
the reduced formula remains random conditional on its current number |C;| of i-
clauses, i = 2,3; its number |L| of literals and the number of literals of degree
j=0,...,3|Cs| + 2|Cy.

Proof. Model A is now easily constructed by assuming that each literal-register
described in Model B, is adjacent to an exposed degree-register that contains an
integer equal to the degree of its underlying literal. In this way, an algorithm may
Select & Set to TRUE a random literal of specified degree, during each free step.
Once more we can not infer information about the content of unexposed registers,

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 9

as soon as the update of all the registers that remain undeleted is completed.
Therefore the reduced formula remains random conditional on its current number
of unexposed registers. -

Lemma 4.5. At the end of each algorithmic step of Greedy, the reduced formula
remains random conditional on its current number |C;| of i-clauses, i = 2,3; its
number |L| of literals and the number |X;|,j = 0,...,h, of literals (see Definition
4.1), where h is a sufficiently high integer, say h = 10. More precisely, the formula
18 random given the vector:

S: <€,03,02,x0,...,xh_1>, (41)

where { = |L|/n;¢; = |Cs|/n; x5 = |Xj|/n,j =0,...,h—1, and n is the number of
variables of the initial random formula.

Proof. The result follows easily by modifying slightly Model A described in the
proof of Lemma 4.4. In this case, each literal-register is adjacent to an exposed
degree-register which either contains the integer j = 0,...,h — 1, that equals the
exact degree of its underlying literal, or contains integer h if the corresponding
degree is at least h. That is, we have no information about the exact degree
of any literal with degree-register equal to h. During each algorithmic step, the
deletion of some clauses may cause some literals of current degree j > h to finally
get degree j < h. Although the degree content of such high degree-registers is
secret, to perform the corresponding updates, we need to know their exact degree
during the simplification step. However, as soon as all updates are completed, it
is not possible to infer the content of any unexposed register, from the combined
knowledge of current and previous information about the registers. -

D. Connection to other models of random formulas

In the previous literature concerning algorithms for the k-SAT [1, 2, 9, 15, 16,
17, 33], excluding Pure Literal [14, 29, 59], the models studied for generating
random formulas give only information about the total number of clauses and the
set of variables that a random formula can be constructed from.

The model which seems to capture all the computationally interesting aspects
of k-SAT is the following: Let V = {x1,...,2,} the set of variables and their
literals L = {1,Z1 ..., %pn,ZTn}. A k-clause is a disjunction of k literals of distinct
underlying variables. A random k-SAT formula ¢,, ,,, is the conjunction of a random
m-subset of distinct clauses, selected uniformly from the set of all 2% (Z) possible
clauses.

According to this model, no repetition of clauses is allowed to appear in the
random instance and no clause may contain multiple or complementary literals.
However, to simplify the probabilistic analysis, many papers have adopted slight
modifications of this model, which may allow repeated or complementary literals
in a clause and repetitions of clauses.

A popular model [2, 7, 14, 27, 34, 59], not restricted to the study of algorithmic
issues concerning k-SAT, is the following: We construct a random ¢,, ,,, by selecting,
for each of the km total clause positions in it, a literal in L uniformly at random

10 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

with replacement. Observe that multiplicities of clauses and literals may occur. An
interested reader may find in [7, 33] (Sections 4.1 and 8, respectively) explanatory
details why multiplicities of clauses or literals are irrelevant.

We adopt this model to construct the initial random formula, as it can be seen
in the proof of Lemma 4.3. Then we modify it accordingly in Lemmata 4.4, 4.5,
5.3 and 5.4, in order to handle degree information per step. We use the Principle
of Deferred Decisions [52] and give a simple proof of randomness of Lemma 4.3,
working as in [46, 52]. An interested reader may find early applications of this
method in the context of myopic algorithms for k-SAT in [2, 33] Sections 2.1 and
2, respectively.

Furthermore, a random formula as described in Lemmata 4.4, 4.5, 5.3 and 5.4,
were we need to handle degree information per algorithmic step, can be constructed
using the Configuration Model. For example, a random formula in view of Lemma
4.4 can be constructed as follows: create j copies of each literal of degree j =
0,...,3|Cs| + 2|Cs]. Fill each of the 3|C3| + 2|Cs| available clause positions of the
formula by selecting a literal copy uniformly with no replacement. Multiplicities of
literals in clauses and multiple clauses in the formula are insignificant, see also the
discussion below.

The Configuration Model was introduced by Bender and Canfield in [10] and re-
fined in [12, 73]. The problem of handling degree information of a random structure
has attracted a lot of interest lately. Of particular interest is the issue of generating
random r-regular graphs [71, 74]. In such a graph all n vertices have degree r, and
is constructed by creating r copies of each of the n vertices (or hanging semi-edges)
and choosing a random matching on these semi-edges. As long as no side effects
such as multiple edges or self-loops occur, the resulting graph is distributed uni-
formly at random. These side effects are of similar nature as repetitions of literals
or clauses, and are discussed in detail in the Introduction of [74]. Recently, the
Configuration Model was used for analyzing an algorithm in the context of coloring
a random graph [5].

We should stress here that Lemma 4.3, or even 4.4 and 4.5, might be possible to
prove via counting arguments as in [64]. However, enumerating all formulas with
an unbounded or even bounded negation dependent degree sequence, as Lemmata
5.3 and 5.4 require, would be quite complicated, we believe.

E. Statistics of the literals

Algorithm Greedy is initialized with a formula having the degree sequence defined
below:

Proposition 4.6. A random 3-SAT formula of density ¢ on n literals has w.h.p.
the typical single degree sequence:

h—1
zj =le N /jl+0(1), j=0,....,h—1, andxh:Kfoquo(l)
3=0

where X = 3¢/l is the expected degree of a random literal.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 11

Proof. Concerning 3-SAT random formulas, the basic idea for the proof of this
proposition can be found in [14], Lemma 4.3. In particular, Theorem 4.2 establishes
that the scaled number zq of 0-degree literals is sharply concentrated to its expected
value. In our paper we simply generalize this argument, from 0-degree to arbitrary
j-degree literals, 0 < j < h, where h is a given integer. Also, it is helpful to see
[54] where it is studied the analogous case of the degree sequence of the vertices
of a random graph. Finally, in the papers [27, 28], a similar argument was applied
to prove concentration results for the corresponding double degree sequence of the
complementary literals of a random formula and the vertices of a random graph,
see Proposition 5.5 in subsection 5.C.

We sketch here the basic lines of the proof. A random 3-SAT formula consisting
of c¢n 3-clauses over ¢n literals, can be constructed by a random balls into bins game.
We represent each of the 3cn clause positions of the formula as a distinct ball and
each of the /n literals as a distinct bin. Each ball (clause position) independently
lands into a bin (literal). The degree d; of an arbitrary literal corresponds to the
load of the underlying bin, i = 1,...,¢n. It follows that the joint distribution of
the d;’s is Multinomial(3cn; ﬁ, ol ﬁ)

Unfortunately the random variables d;’s are not independent, since the knowl-
edge that a particular d; = k (that is, the load of a specific bin is k) affects the
load distribution of any other d;, j # ¢ (since now there remain 3cn — k balls to be
distributed to the other bins).

However, consider the independent Poisson(A) random variables d’s with mean
X = 3¢// that equals the expected load of a random bin in the above process. Let
the random variable Ele id; = M. Then M is a Poisson(3cn) random variable
with the nice property of concentration of its probability mass to its expected value
3cn, that is,

Pr[M = 3cn] = poly(n) "

Given that M = 3cn (which corresponds to the total number of balls in a random
formula), then the d}’s are distributed as d;’s,

P?"[dl = kl,...,dgn = kgn] = P?"[dll = k17~-~,d2n = k@n | M = SCTL]
Prid} = ky,...,d), = ke,] - poly(n)~*,

by deconditioning on M = 3cn. Using the independence of d;’s, the number | X;| of
bins (literals) with load j is a Binomial(én, Poisson(); j)) random variable, where,

Poisson(\;j) = e *\)7/5!, j=0,...,3cn,

which is the probability that a particular bin receives j balls. Applying a Binomial
large-deviation inequality, we obtain that |X;| deviates by a constant factor from
its expectation E[|X;|] with exponentially small probability. Then we get that the
scaled, i.e. divided by n, number of literals of degree j is with high probability
equal to,

{C]: :fe)‘()\)j/]',jzo,.,h—l

12 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

Heuristics that Select & Set a literal without exploiting degree information enjoy
the property that the remaining unset literals obey the Poisson distribution and
the reduced formula is random given & = (¢, ¢3,c2). Any degree guided heuristic,
for example Pure Literal [14, 29, 59], violates this nice randomness property. In
this simple example, the formula is random given the vector: Sy = (¢, c3, xp), i.e.
we also need to keep track of the scaled number xg of pure (light) literals per step.
The following theorem that describes the distribution of literals in &} (the set of
literals with degree > 1), will be generalized in Theorem 4.8 part 1, which describes
the distribution of literals in &}, (the set of literals with degree > h), where h is an
appropriate constant, say 10.

Theorem 4.7. [Broder et al. [14], Mitzenmacher [59]] Let X be the set
of literals with degree k > 1, at the end of each step of the Pure Literal algorithm.
Each literal T € Xy follows a truncated at 0 Poisson probability distribution:

k
Py(u;k) = Prldeg(r) =k| 7€ X1] = W,k >1,
where 1 is the solution of the equation,

__pet
A1 — et—1> and7
Al = ?;%13, 1s the average load of a heavy bin.

Proof. The reduced formula at the end of each step of the algorithm Pure Literal
can be generated uniformly at random by using the model described in Lemma 4.5
and setting h = 1. According to this model, each of the 3csn clause-registers points
to one of the x1n literal-registers uniformly at random, such that each literal-register
is pointed by at least one clause-register. This is equivalent to throwing randomly
3cgn distinet balls into x1n distinct bins such that no bin remains empty. Then it is
well-known that the probability that a bin (literal) 7 € &} has load (degree) j > 1

is a truncated at 0 Poisson distribution: Parameter p is the solution of

)U'J
(er—1)4!"
the equation Ay = %, where A1 = 3¢3/x1 is the expected load of a heavy bin. g

A crucial observation, see also [59], is that the expected load of a random bin
(expected degree of a random literal) equals to the current density of the formula:
MG = 3% = p3. An important aspect of the algorithm Greedy is that at any
atomic step, the literal to be set to TRUE is selected on the basis of information
about itself and irrespective of properties of its negation. To describe this situation,
we say that literals are decoupled from their negation. As a consequence, the literal
set to FALSE at any atomic step is always uniformly random over all literals (the
restriction that it has to be different from the literal set to TRUE introduces an o(1)
discrepancy which is neglected). It is because of this that we can work with a degree
sequence based on literals and not, as it is usually the case, with a 2 dimensional
degree sequence that at each (7, j) gives the number of variables that have i positive
and j negative occurrences. From the fact that the literals that are set to FALSE
are uniformly random literals, it immediately follows that the expected number of
unit clauses generated at any atomic step is the expected number of occurrences
in 2-clauses of a random literal. This number is trivially the current density ps of
2-clauses at that atomic step.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 13

Theorem 4.8. Any literal 7 € L and any literal occurrence b in a formula which
is random given the vector S in (4.1) has the following properties:

k

Py(psk) = Prldeg(r) =k| 7€ X] = m% > h,
where 1 is the solution of the equation:
w(e-ias)
L. Ap = %‘)m, and A\ equals,
e“’zj:o v
eat2e2—y o juy .
A = J Z,L,f*‘) i.e. it is the average load of a heavy bin.
ST
2. Pr37: deg(t) >Inn| 7€ &) < e~ (tmo))nnininn,
3. Pr[reX]=2%,i<h.
h
Pr[Literal occurrence b € X;] = %,i <h,
4. . .
R 1 < h,
we define: (' = { A i=h
5. m = E[deg(b)| b is a literal occurrence] = 3ps + po.
e1 = Eldeg(b) in 2, 3-clauses| b appears in a 1-clause]
-1 T 2eh yper ST 52‘,‘3
6. _ Z:;O s2a, n h(“ +r ZS:O st 1

p _ h—1 ﬂ)
p(e“ Zj:o J!

Proof. 1. The proof is generalization from h = 1 to an arbitrar)y integer h of the
one given in Theorem 4.7. Now we have ppn = (3¢g + 2¢o — Z;:_g jxj)n distinct
balls that are thrown uniformly at random into zpn = (£— Z?;& xj)n distinct bins,
in a way that all bins receive at least h balls. Then the probability mass of the
number of literals of degree k, for any fixed integer k > h, follows a truncated at
(h — 1) Poisson distribution. This means that for any k& > h, the probability that
a heavy literal has degree k is:

Lk

h—1 pi ’
(6” — Zj:O T) k!

where p is the solution the equation:

h—2 p?
2 (6” - ijo ’;*v)

h = =1
_ w
et Zj:o Fil

and A\, = pp/xp, is the expected load of a heavy bin.

2. Inequality (4.2) of Theorem 4.2 in [14] applies verbatim for each heavy literal
in X}, therefore:

Pr[3 Literal with degree > Inn] < ¢~(17e())Inninlnn

14 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

i.e., we have sharp concentration to the expected load.

3. According to the model in Lemma (4.5), there are x;n literal-registers with
underlying literal into the set X;,4 = 0,...,h. The desired probability follows by
selecting uniformly at random one literal-register, amongst the ¢n possible literal-
registers.

4. Also, there are pn = (3¢3+2ca)n possible clause-registers, i.e. literal occurrences.
In case ¢ < h, amongst these clause-registers there are iz;n ones pointing to literal-
registers with underlying literals in &;. Selecting uniformly at random a clause-
register (literal occurrence) b we obtain:

1T;
Pr[b S XZ] =,
p
In case ¢ = h, consider a heavy literal 7 € A&},. From part 1 above, we have

that deg(7) = k > h with probability P}, (u; k). Therefore there are xp Py, (u; k)n
literals in A}, each of degree k > h. Since each such literal is pointed by k clause-
registers (literal occurrences), there are (Y 7o, kPy(p;k)) xzpn = Apapn clause-
registers, amongst pn possible, that point literal-registers with underlying literals in
Xj,. Notice here that by the definition of the expectation it holds: Y, , kP (u; k) =
An. Selecting uniformly at random a clause-register (literal occurrence) b we obtain:

A
Prlb € Xp] = 2ok
p

5. Selecting at random a literal occurrence b amounts to selecting at random a
clause-register. In turn, this points to the corresponding literal-register. This
literal-register is adjacent to an unexposed literal-register with underlying literal
b. Since the register in unexposed, this means that b is selected uniformly at ran-
dom amongst all literals. Then it has degree j with probability %, according to
part 3 above, j < h. As in [59], we obtain:

h—1
_ i 2
E[deg(b)| b is literal occurrence] = m =]E_ijg + Ah% = ?)CLZQ = %pg + po.

6. According to parts 1 and 4 above we have:

Prldeg(b b e lcl W s<h,
I‘[69()_ $ | € l-c a‘use] - sth;(p;s)’ s Z h.

Then the expectation equals to:

h—1

o = Z(S_l)sws +Z(8_1)sthh(u;S)

p S>h p

s=1

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 15

el . s
- Zs2i+ hh 1w 252&!7
s P p (e“ — ZFO %) s>h s

_ 2 h—1 s?u°
h—1 o (M el + pet — YT Sn)
S -1

h—1 pi
=1 P P (eu — =0 ITZ)

F. Inside a round

F.1 A Galton-Watson process Assume, for the moment, that the density py of
2-clauses remains constant during a round (we will elaborate on this point below).
Then the generation of the 1-clauses during the forced steps of the round follows
the pattern of a Galton-Watson branching process (see [23]). Such a process starts
with a pater familias or root (or alma mater) and then at every step, all individuals
born at the previous step generate a number of offspring. The number of offspring
in a Galton-Watson tree may follow an arbitrary fixed distribution whose mean is
known as the Malthus parameter p. It is known that if the Malthus parameter is
< 1 then, irrespective of other characteristics of the distribution of the offspring,
the population certainly becomes extinct, eventually. Formally this means that
with probability 1, the size of the Galton-Watson tree, i.e. the total number of
individuals of all generations, is finite. Such processes are called subcritical. For a
subcritical process, the expected size of the tree is equal to 1+u+u?+... = 1/(1—p).

In our case, each atomic step amounts to selecting a literal-register (or clause-
register) containing literal 7. According to Lemma 4.5, each such literal or clause-
register is adjacent to an unexposed literal-register which points to 7. Since this
literal-register is unexposed, 7 corresponds to a random literal. This means that
at each of these steps we choose a random literal. Therefore the expected number
of new 1-clauses during j-th atomic step may fluctuate since it equals the current
density pa(j) of 2-clauses. That is, if the total number |T'| of 1-clauses generated in
this round is large, this may affect the expected number of new 1-clauses, mainly
due to repetitions of some already selected literals into the same clause.

Consider the G-W tree with starting node a random literal 7 (bin). Its number
of offsprings is Poisson-like distributed with mean ps. Each child node corresponds
to a random literal 7/ whose number of offsprings has the same distribution. For
each node-literal of the tree of the above G-W process, mark with symbol x(—)
its neighboring occurrences amongst 2-clauses (3-clauses). Perform no deletion or
shrinking of clauses of the current formula. That is, symbol x(—) denote that
the marked clause position corresponds to 1-clauses (2-clauses). If the literal of
a new node has occurrence on a previously marked as — position then mark its
neighboring position with x. It is possible to mark multiply some clause positions
or for some clauses to receive more that one marks. However if we condition on |T,
such bad events occur with probability O(|T'|?/n), where |T| is the total number of
nodes of the G-W tree. Taking the expectation (removing the condition on |T'|) we
get that the expected length of the round is ﬁ +E[|T|)]/n = 1_1p2 +o(1), as it
follows by Proposition 4.9.

16 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

Proposition 4.9. Consider the G-W precess that corresponds to the generation
of 1-clauses. If the first moment E[] of the number of 1-clauses offsprings equals
p2 < 1 and the second moment E[£2] is O(1) then the first and second moment
E[|T|], E[|T|?] respectively, of the size |T| of the 1-clauses G-W tree are both O(1).
Proof. Let f(s) be the generating function of the number of offspring £ of the
above fictitious G-W process representing the evolution of 1-clauses. Also let y(s)
be the generating function of the size (total number of offspring) |T'| of the 1-clauses
of this process. In Theorem 5.8 in [23] it is proved that y(s) = sf(y(s)). From this,
by differentiation we can easily show that the second moment E[|T|?] = O(1) in
terms of the first E[¢] = pa < 1 and the second moment E[¢2] of the number of
offspring.
| |
Having on mind the above fictitious process, observe that on each forced step
during 41 round the conditional on S(¢) and |T'| expected change of each parameter
Y;,j=1,...,hin vector (4.1) is given by

E[Y](per forced step) | S(t), |T|] = f;(t/n, Yi(t)/n,...,Ya(t)/n) + |nﬂ7

where each f; is a Lipschitz continuous functions. Then during all |T| forced steps
during t 4+ 1 round we get

2

E[Y;(t+1) = Y;(t) [S@), T[] = f;(t/n,Yi(t)/n, ..., Ya(t)/n)|T| + %,
and averaging over |T'| we get that:

EY;(t+1) -Y;@) | SO] = £;(t/n Ya(t)/n,... . Ya(t)/n) fsz +o(1),

since E[|T|?]/n = o(1), by Proposition 4.9.

F.2 Positive probability of success At a fixed round again, conditional on the size
|T'| of the Galton-Watson tree, it is easy to see that the probability that both a
literal and its negation appear in the unit clauses is O(|T'|?/n) (the decoupling of a
literal from its negation is needed here). Therefore we immediately conclude that
the unconditional probability of contradiction during the round is O(E[|T|?]/n)
(when the tree is subcritical). Therefore, for all rounds, the probability that no
contradiction occurs is (1 —O(E[|T|?]/n))" = e~ OEITI’D = Q(1) > 0, according to
Proposition 4.9. Therefore the probability of success of the algorithm, as long as the
generation of unit clauses is subcritical, is bounded below by a positive constant.

Improper events are such as multiple occurrences of a literal in the same clause,
or the simultaneous occurrence of pairs of literals [, in the same clause. Given |T|
the probability for an improper event to occur is O(|T'|>/n), see sub-Section 4.F.1.
Then averaging over all possible |T'|’s during a round, we get that the probability
of at least one improper event is O(E[|T|?]/n) = o(1). Therefore improper events
introduce vanishing terms in each differential equation described in the sub-Section
4.1. In this way, we can safely discard such events, as n — oo.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 17

G. Expected changes per round

Let t € [0,1) denote the scaled number of rounds performed by the algorithm. We
partition “time” interval [0, 1) into subintervals [0, Tn] U (T}, Th—1]U (Th—1, Th—2] U
... U (Ty,T1], each sub-interval corresponding to a j-phase of the algorithm, j =
h,...,1. Initially the algorithm is in the h-phase while the current scaled number
of rounds ¢ € [0, T}]. During this phase the algorithm Selects&Sets to TRUE literals
from the set Xj. Let T, € [0,1) be the scaled number of rounds such that z,(T,) =
0.000005. Here T}, is the time instance that the scale number x; of literals with
degree > h has become insignificant. In the sequel, the algorithm enters (h — 1)-
phase and the current scaled number of rounds is ¢ € (Tj, Tr—1]. In this phase, it
Selects&Sets to TRUE literals from the set X},_1 until it reaches a round T},_; such
that xp_1(Th—1) = 0.000005. Similarly, it enters (h — 2)-phase and so on.

Lemma 4.10. Suppose that during round t € [0, 1) the algorithm Greedy has
entered the j-th phase, j = h,...,1. Then the expected change of each parameter
conditional on the current vector:

S = <€7 C3,C2, 0, - - - ,J)h_1>,
of the (h 4 3) scaled parameters such that pa < 1, are within o(1) equal to:

P2
_p27

_ g g (e e _p2
) BlALG] S| = -3 (S0 2) g (D, 2 P

(@) E[A[LN 8] = -2 -2

_ 3& _ 267 ¢q _ 3ﬁ _ 2e1¢9 _ P2
() E[A[IC:]]] 8] = 5 » p2 + < 9 » P2) T—py

(d) E[A[IX,[]] 8] = (6es + 20p) EHEp=ste i 22 5,

(s+1)xgq1—sxs Ts ST P
+((6es + 20y) ERmp=eey — gy o)

fors=0,...,h — 2

(€) EAIXy]| S] = (6es +2cp) = tnmt g 21t 5, iy

hyn—(h—1)zp_ p+L(h—1
((6C3+202) . (p2 Jon—1c, Ep)331%1) 1f2p27

where:

o 1 ifj=s, B B
0sj = {O otherwise, §=0,...,h—1,
_ J A ifj=h,

J g <h,

18 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

h
Thl

Yn = .
h—1 us
(en -0z &)

(a) In paragraph 4.F.1 we prove that the expected number of forced steps per
round is g f"’pQ. Therefore, (1 + 7 fzm) steps are expected per round, where in each
2 literals are set.

(b) — (¢) During each free (forced) step, it is selected a literal(clause)-register
which is adjacent to an unexposed literal-register which contains the negation of
this selected literal. Since this literal-register is unexposed, its negation is a random
literal. Therefore, it is expected in %ck = %pk k-clauses, k = 3,2, see also Lemma
4.8 part 4. In a free (forced) step of the round, the evaluated to TRUE literal 7
has expected degree €/(g1), see Lemma 4.8 part 6. Then, in the free step, each

occurrence of 7 (a ball) is expected in &/ k% k-clauses, while in each forced step it

kcg
them belong in k—cp&auses. Expected changes (b) — (c) are obtained by the expected
change of the free step plus the expected change of a single forced step multiplied
by the expected number of forced steps 1 fi)z.

(d) As above, in the free step, the evaluated to TRUE literal is expected to occur
in Ej% k-clauses deleting &/ %(k — 1) neighboring literal occurrences. In each

is expected in &1 k-clauses, k = 3,2, since the total of balls is pn and kcgn of

forced step, the evaluated to TRUE literal is expected in slkpﬂ k-clauses deleting
51%% — 1) neighboring occurrences, k = 3,2. Now, each of these occurrences has
degree s with probability sﬁs introducing a flow-out from the set X, and has degree

(s+1D)xsq1

s + 1 with probability introducing a flow-in to X5, s =0,...,h — 2. This
gives the expected change due to the deletion of the neighboring occurrences in the
satisfied and deleted clauses that the evaluated to TRUE literal appears per step. It
remains to compute the expected change in Xy due to the deletion of the evaluated
to TRUE literal and its negation per step. In each free/forced step the negation of
the selected literal is a random literal and is removed from X with probability .
In each forced step the 1-clause literal is a literal occurrence and is removed from
X with probability £2£=. Finally, in the free step we deterministically remove the
selected literal from & iff s = j. This is why we introduce the indicator variable
0s,j-

(e) Here the expected changes per step go verbatim as in (d). A subtle difference is
that x;, denotes the scaled number of literals of degree > h. However, to compute
the expected flow of literals into set Xj_1 we need the scaled expected number of
literals of degree exactly h. This number equals to y, = xp, Pry(u; h), see Theorem
4.8 part 1.

H. Wormald’s theorem

As we already pointed out, our analysis is based on the method of differential
equations. For an exposition of how the relevant Wormald’s theorem is applied
to the satisfiability problem see [2]. Roughly, the situation is as follows: suppose
that Y;,j = 1,...,a are stochastic parameters related to a formula, like e.g. the
number of clauses with a specified size, or the number of literals with a specified
degree. In our case, the Y;’s are the h + 3 parameters in S. We want to estimate

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 19

the evolution of the parameters Y; during the course of a Davis-Putnam algorithm.
The formula initially is a 3-CNF formula with n variables and is uniformly random
conditional on given initial values Y;(0),j7 = 1,...,a. These initial values in our
case are constant multiples of n (in general, they may be random numbers). As
the formula is random with respect to the names (labels) of the literals, we assume
that the Davis-Putnam algorithm selects at any atomic step the first literal (in some
arbitrary ordering of the labels) that is subject to the restrictions of the algorithm.
In other words, the algorithm is assumed to be deterministic and the sample space
is determined by the initial formula, only.

Suppose that the expected change of each Y;,j = 1,...,a, from time step ¢ to
t + 1, conditional on the values Y;(t),j = 1,...,a of the parameters at t, is, for all
possible values of the random parameters Y;(¢), is given by

E[Y;(t+1) = Y;(t) [Yi(t),..., Ya(®)] = f5(t/n, Yi(t) /1, ..., Ya(t)/n) + o(1),

and each f; : R*™! — R is Lipschitz continuous function, according to condition
(ii) and (iii) of Theorem 2 in [72]. Suppose also that the probability that |Y;(t+1)—
Y;(t)] > n'/% is at most o(n~3), i.e. the change of each parameter is concentrated
to its expected change per step. Then the solution of the system of differential
equations:

dy;(z)/dz = fij(x,y1(x),...,ya(2)),7=1,...,0a,

with the initial point y;(0) = Y;(0)/n, satisfies for all ¢ with probability 1 — o(1)
as n tends to infinity:

yi(t/n) = (1/m)Y;(t) +o(1),j =1,...,a.

In applications, an open, connected and bounded domain D that contains the
initial point (¥1(0)/n,...,Y,(0)/n) and a time interval [0,t;) are considered, and
it is assumed that the hypotheses of the theorem hold up to the last time instant
T < ty such that for all ¢t € [0,7T], (Yi(t)/n,...,Y,(t)/n) € D (T is a random
variable). Then the conclusion of the theorem holds, for large enough n, up to any
t < ty such that for all z € [0,¢/n], (y1(x),...,ya(z)) € D. In this context, it is
sufficient that the Lipschitz continuity of the f;’s holds over [0,¢;/n) x D. The
above is only a rough outline of Wormald’s theorem, not in its full generality, but
restricted to the purposes of our particular problem.

In our case, we can see that Wormald’s conditions hold for each expected change
(a)-(e) described in Lemma 4.10, as we demonstrate below:
e Each atomic step in a round is equivalent to the deletion of the content of balls
(literal occurrences) of a pair of bins (literals). Part 2 of Theorem 4.8 establishes
the Poisson-like tail bounds for the probability of the load of any bin exceeding In n.
Then during the fictitious G-W process, each unscaled parameter in vector (4.1) is
concentrated to its conditional expected change described in Equations (a)-(e) of
Lemma 4.10, as required from condition (i’) of Theorem 2 in [72].
e Observe that Equations (a) — (e) of Lemma 4.10 give the expected change of
the corresponding h + 3 unscaled parameters in vector (4.1) within an o(1) error,
as required from condition (ii) of Theorem 2 in [72]. This is due to the fact that

20 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

any unscaled parameter in vector (4.1) may change by at most O(In? n) during an
arbitrary round, with high probability. This may introduce at most o(1) fluctuation
per round from the corresponding expected change described in Equations (a) — (e)
of Lemma 4.10.

e Finally, according to condition (iii) of Theorem 2 in [72] the righthand side of
each differential equations (a) — () in Lemma 4.10 is Lipschitz continuous. Recall
that each parameter in vector (4.1) is strictly positive. Therefore, each fractional
term appearing in the free and forced part of each equation (a) — (e) is bounded
since it has denominator > 0, see Remark 4.11. Furthermore, during round ¢ we
condition upon a subcritical degree sequence S such that ps < 1 and the term
22 is bounded too. We conclude that for each equation (a) — (e) there exists an
absolute Lipschitz constant L;(p2) while ps remains < 1.

Notice that, a given subcritical degree sequence S(t) may yield a supercritical
S(t+1) one with ps > 1. Clearly, we can not apply Wormald’s theorem on S(t+1)
to compute S(t+2). However, the theorem remains true if we restrict its application
to a domain D = {(S(t),t) | such that py(t) < 1} € RP+3I+1 consisting only of
these [(h + 3) 4 1]-dimensional vectors that have the property ps < 1.

I. Differential equations

Wormald’s Theorem is described in sub-Section 4.H. Here we apply this theorem to
map the expected changes of Lemma 4.10, into a system of differential equations.
As a consequence, we obtain Lemma 4.12 which approximates within o(1) and with
probability 1 — o(1) the values of each scaled parameter of vector S.

Remark 4.11. FEach differential equation (a) — (e) consists of two parts. The
first part is the expected change of the parameter under consideration of the single
free step. The second part is the expected change in a single forced step multiplied

by the factor 1f2pz which is the expected number of forced steps.

Lemma 4.12. Suppose that the algorithm Greedy has entered the j-th phase,
j=nh,...,1. Then, in each round the h + 3 parameters in the vector:

S= <£7 C3,C2,T0,y- - - 7xh71>7

such that ps < 1, are approzimated within o(1) and with probability 1 — o(1) by the
solution of the following system of differential equations:

dl
(@) S =-2-2-72_
dt 1—p2

des eles p3 €1€3 p3 P2
DY (i B B i Y B
T <p+2 p 2)T—p

dea 3ps 2eicy (303 2e1c0) P2
e A e
L—p2

(c) a9 D

)

2

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 21

d-rs s+1)xsi1—STrs 4 Ts
(@) &= (R T e e

(+DTspr—sTs .z _ sz | _p2
+ ((603 +202) I &1 7 P T—pg’

fors=0,...,h—2,

dap— —\h=l)Th_1 _y4 Th—1
(e) ;t L= (6c5 + 2co) 100 (hpzl) bete) — 2l —

+ ((663 + 262) (hyh_(};ﬂ_l)xh7151 _ $h£71 - (h—l}))zh,1> 152/)27

where:

_ 1 if j=s, _ B
Osj = {O otherwise, §=0,....h—1,

g [wifi=h,
joafi<h
h

yn = —
(e - 320z &)

Initial conditions:

) —3c¢/2 3¢/2)8
{=2 c3=c, co=0, xs:e—gc/)’ fors=0,...,h—1.
s!
Proof. The fact that the conditions (i’)-(iii) of Theorem 2 in [72] hold for the
expected changes described in Lemma 4.10 is proved in sub-Section 4.H. -

J. Implementation and termination of the algorithm

Recall the definition of the j-th phase of the algorithm, j = h,...,0 that is given
in the beginning of sub-Section 4.I. A j-phase corresponds to the middle loop with
the constraint |X;| > 0.00005n, of the pseudo-code of the algorithm. Each j-phase
has length of Q(n) rounds and in each round exactly one literal is selected from X;.
The j-phase ends as soon as |X;| = z;n = 0.00005n = Q(n), i.e. when the scaled
number of literals with degree j becomes insignificant. In this way, each transition
from a j-phase to a (j — 1)-phase, j = h, ..., 1, satisfies condition (iii) of Theorem
1in [72]. As soon as the j-phase ends, the leftover quantity of j-degree literals is
insignificant. Furthermore, it introduces an expected change to the system of d.e.
that always diminishes as the process evolutes.

Observe that the system of d.e.’s is a non-stiff one. Each parameter in vector
(4.1) is a smooth function of time ¢. Matlab [57] employing a second-order Runge-
Kutta method can solve this system with arbitrary precision.

On input a random 3-CNF formula of initial density ¢ = 3.42, the Malthus
parameter ps remained < 1, during all rounds of Greedy. We simulated the system
of d.e.’s until we reached a round ¢* such that we could apply Lemma 4.14 and safely

22 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

terminate the algorithm. That is, the reduced random formula at the end of round
t is almost sure satisfiable and is easy to compute a satisfying truth assignment.
This lemma is a consequence of Theorem 1 in [19] which we describe in detail bellow
(Theorem 4.13).

Consider the set of 2-CNF formulas

Q4 = {¢: degree(x;) = d; A degree(z;) =d;, i =1,...,n},

such that the degree of each literal z;,Z; corresponds to a fized degree sequence
d=d,dy,...,d,,d, with d; +d; > 1 for each . Let Ay the maximum degree with
respect to d and,

D, = zn:(dz +d;) =2M >n, Dy = zn:dzdu
i—1

=1

where M is the number of the 2-clauses in ¢. A degree sequence d is A-proper if
(i) Ay < A and (i) Ay =2M.

Theorem 4.13. [Cooper, Frieze, Sorkin [17]] Let 0 < € < 1 be constant
and n — oo. Let d be any A-proper literal-degree sequence over n variables, with
A =nY1] and let ¢ be a uniform random simple formula with degree sequence d.

® If2Dy < (1 —¢€)D;y then P[¢ is satisfiable] — 1.

® If2Dy > (1+€)D; then Pl¢ is satisfiable] — 0.

Both limits are uniform in n (independent of d).
As a consequence we get the following lemma.

Lemma 4.14. A random formula given the degree sequence S in (4.1) is almost
sure satisfiable if there exists € > 0 such that: ps + p3 < 1 —e.

Proof. Consider a random formula ¢ given the current degree sequence S. From
part 2 of Theorem 4.8 it holds w.h.p. that the maximum degree A, of any literal
in § is at most Inn < n® « < 1/11. Since the current formula ¢ consists of 3;2-
clause-registers, delete exactly one random clause-register (literal occurrence) from
each 3-tuple of clause-registers. Such deletions are feasible, since the 3-tuples of
clause-registers are exposed, see Lemma 4.5. This results in a formula ¢’ consisting
of (c3 + c2)n 2-tuples of clause-registers (2-clauses) and therefore D1 = 2(cs +
co)n. Clearly, almost sure satisfiability of ¢’ implies almost sure satisfiability of ¢.
However, ¢’ is random given a new degree sequence S’. Furthermore, to compute
D5 we denote as ny (t*) the number of unset variables with x positive occurrences
and A negative occurrences, while n(t*) = £(t*)/2 is the total number of currently
unset variables. In this way:

D2 = Zdéyl = Z KA HHA(t*>. (42)
i=1

Ky

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 23

Also an arbitrary variable x has k positive occurrences and A negative occurrences
with probability

() (£) £(t)
20y 2

(4.3)

< nea(t’) =

Here, by abuse of the truncated on h notation, X, (t*) and z,(t*) denote the set
and the number of literals with arbitrary degree x at round t*, respectively. The
independence among complementary literals is crucial in establishing Equation (4.3)
above. From (4.3), Equation (4.2) becomes:

B a, (F)an () 0(t*) [0xo(t?) Kk, () 2 0(t)
Dy = Kz;/ﬁ/\ [2(15*) 5 —(g?t*) g(t*) —|—) 5

B (2@(75*) + 2(J3(t*))2 o)
N £(t%) 2

That is, according to Theorem 1 in [19], the resulting formula at the end of round
t* is satisfiable with high probability if it holds:

2e5(t*) + 2C3(t*)> o) (1 — €)(2e2(t*) + 2c5("))

o) 2
=4 Tg(t*) +T3(t*) < (1 — 6),6 > 0.

2D, < (1—6)D1<:>2<

K. Numerical Results

The simulation of the algorithm was implemented on C. For the generation of
random 3-CNF formulas, we made use of the code freely distributed at SAT-The
Satisfiability Library [65]. Our implementation was influenced and makes use of
the code for the implementation of GSAT, also available in the above site. The
simulation was implemented for 5 x 10° variables.

The simulation results for the parameters in S are very close to the corresponding
values obtained from the numerical solution of the differential equations as can be
seen from Table I in Appendix. In this table, each line initiated with “d.e.” contains
the vector solution of the system of differential equations while each following “sim.”
line contains the corresponding experimental values.

5. NEGATION DEPENDENT DEGREE SEQUENCE

The remainder of the paper is devoted to the analysis of the algorithm CL. Algorithm
CL is a modification of the algorithm Greedy presented in sub-Section 4.A. Recall

24 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

that Greedy sets to TRUE a literal of maximum degree per free step, irrespectively
of its negation. Therefore, it obtains no control on the number of new 2;1-clauses
generated per free step. This is a serious limitation since the probability of an 0-
clause generation (contradiction) increases significantly as 2;1-clauses accumulate.

The main contribution of CL is that it sets to TRUE a literal on the basis of
its degree and the degree of its negation per free step. Therefore, CL improves
significantly over algorithm Greedy on handling both deleted and shrunk clauses
per free step, by setting TRUE a literal 7 of high degree while 7 has low degree.

Notice that at the end of each round performed by Greedy, the simplified formula
remained random given the current number |X;| of literals with degree j =0,...,h
(see Lemma 4.5) and the number |C;| of i-clauses, ¢ = 2, 3. Now, for the probabilistic
analysis of CL, we additionally have to keep track on the current number |A&; ;| of
literals with degree ¢ = 0,...,h whose negation has degree j = 0,...,h. More
formally, we introduce the following negation dependent degree sequence, see also
the corresponding definition of the negation blind degree sequence for Greedy in the
Definition 4.1 in sub-Section 4.A.

Definition 5.1.
X, j={1€L|deg(r) =} i and deg(T) =1 j}, (i,5) € A=H0,..., h}2,

where we define the relation =, as:

) deg(t) =1,
deg(T) =n i & { deg(r) > I, i—h

If a literal T € L belongs in Xy 4,0 = 0,...,h is called heavy, otherwise is called
light.

Remark 5.2. If1 € X;; thenT € X;; and |X; ;| = |X;.|, ¥V (i,7) € A. Also, if
T E Xiﬂ‘ then T € Xiﬂ‘, 0<i<h.

A. Algorithm
In this section we describe algorithm CL:

Algorithm: CL
begin:
while unset literals exist do:
(s,t)<— Choose-Bucket;
Select 7€ X;; & Set 7=1;
Del&Shrink(7);
while 1-clauses exist do:
Select 7 in a 1-clause & Set 7 =1;
Del&Shrink(7);
end do;
end do;
end;

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 25

In all Select commands above, the selection can be based on a deterministic
but otherwise arbitrary rule, e.g always select the object with the least index that
satisfies the corresponding requirements.

Let mo(t) be the rate of generation of new 1-clauses during the round of forced
steps that follow a free step ¢ (¢ will denote both a step and the content of the step
counter before this step is taken) performed by algorithm CL. This rate remains
constant - a.a.s. and within o(1) - during the round. In other words, ma(t) is the
expected flow of shrunk 2-clauses into 1-clauses during the round of forced steps.

We will see that mo(t) is the expected number of occurrences in 2-clauses of
the negation of a random literal chosen among the literal-occurrences in 2-clauses,
just before the step t is taken. This will become clear in Theorem 5.6 part 5, in
sub-Section 5.C. So ma(t) does not depend on which particular literal is chosen
to be set true at free step ¢; it only depends on the distribution of literals in the
clauses just before step t¢.

It is worth reminding the reader at this point that choosing randomly a literal
is a different random process from choosing randomly a literal-occurence. If we
think of the literal-occurrences as balls thrown into bins that correspond to literals,
then choosing a random literal-occurrence corresponds to choosing a ball, whilst
choosing a literal corresponds to choosing a bin.

Of course, once a literal-occurrence is randomly chosen, then we can consider
the corresponding literal. So by the preceding paragraph, to compute mo(t), we
choose a random literal-occurrence among those in 2-clauses, we then consider the
corresponding literal, then we take its negation and we finally count the expected
number of occurrences in 2-clauses of the latter.

Let also ms(t) be the rate of generation of new 2-clauses during the round of
forced steps that follow ¢. This rate remains constant - a.a.s. and within o(1) -
during the round. In other words, mgs(t) is the expected flow of shrunk 3-clauses
into 2-clauses during the round of forced steps.

Similarly, we will show that mg3(t) is the expected number of occurrences in 3-
clauses of the negation of a random literal chosen among the literal-occurences in
2-clauses just before step t is taken. This will become clear in Theorem 5.6 part
5 of sub-Section 5.C. Again, mg3(t) does not depend on which particular literal is
chosen to be set true at step ¢; it only depends on the distribution of literals into
clauses just before step t¢.

Also if ¢ is a free step, let ¢’ be the step counter at the beginning of the next
round of forced steps, i.e. just before the next free step is taken (in other words,
t' — t is the number of forced steps that follow t). Notice again that ms(t') and
m3(t') do not depend on which literal is selected to be made true at the free step
t’, but certainly depend on which literal was selected to be made true at step t.

During a free step ¢, suppose that we set TRUE a literal 7 € X; ;. Then we define
the ratio

ma(t') — ma(t)
ms (tl) —ms (t)
Notice that this ratio counts the marginal increase in the flow of 2-clauses into
1-clauses between two consecutive rounds of forced steps, per unit of the marginal

decrease in the flow of 3-clauses into 2-clauses between the same two consecutive
rounds.

R(i,j) =

26 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

In the description of Algorithm CL below, at every free step the procedure
Choose-Bucket selects the next literal to be set to TRUE so that this ratio is
maximized. For more details about the implementation of this procedure see sub-
Section 5.F. Notice that the dependence of ma(t') and ms(t’) on the literal selected
at t but not on the literal selected at ¢, renders the above criterion as a well defined
one.

Because mg(t') —ms(t) is negative, this criterion minimizes the increase between
two consecutive rounds of forced steps of the flow of 2-clauses to 1-clauses per unit
of decrease of the flow of 3-clauses to 2-clauses. Intuitively, it makes good sense to
increase as little as possible the flow from 2-clauses to 1-clauses, while decreasing
as much as possible the rate of flow from 3-clauses to 2-clauses.

It is worth mentioning here that in [9] it is proved that this criterion of selecting
literals at the free steps of a DPLL heuristic is optimal among the ones that take
into account only the number of 2-clauses and 3-clauses present before a free step,
and not the degree distribution of the literals (such heuristics were called “myopic”
in [9]).

B. Randomness invariance of the formula in each round

Each atomic step of CL can be expressed as:
Procedure C

1. Either select a literal occurrence 7 in a clause of length one (forced
atomic step),

2. or select a literal 7 of degree ¢ whose complement has degree j (free
atomic step),

3. ¢ « Del&Shrink(¢, 7).

Lemma 5.3. At the end of each algorithmic operation according to Model C,
the reduced formula remains random conditional on the number |C;| of i-clauses,
i = 2,3 and the number of literals of degree i whose negation has degree j, with
i,j €{0,1,...,3|Cs| +2|Cal}.
Proof. Model C is easily constructed by assuming that each literal-register de-
scribed in Model A (see Lemma 4.4), is adjacent to an exposed degree-register that
contains an integer 7 equal to the degree of its underlying literal and also contains an
integer j equal to the degree of the negation of it, with ¢, 5 € {0,1, ..., 3|C5|+2|C2|}.
In this way, an algorithm may select and set to TRUE a random literal of specified
degree i whose negation has degree j, during each free step. Once more we can not
infer information about the content of unexposed registers, as soon as we complete
the update of all the registers that remain undeleted. Therefore the reduced formula
remains random conditional on its current number of unexposed registers. -
Now, we easily truncate all the high degree literals in the above model as follows:

Lemma 5.4. At the end of each algorithmic step of CL, the reduced formula re-
mains random conditional on the number |C;| of i-clauses, i = 2,3; the number
|X;. ;| of complementary literals (see Definition 5.1); where h is a sufficiently high

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 27

integer, say h = 10. More precisely, the formula is random given the vector:
S = (,¢3,C2,70,0,70,15 -+ TOhs+ > Th,05Th,1y -+ Th k) (5.1)

where { = |L|/n;c; = |Cs|/n; x5 = |X; | /n, 4,5 =0,...,h—1, and n is the number
of variables of the initial random formula.

Proof. The result follows easily by modifying slightly model C described in the
proof of Lemma 5.3. Here, each literal-register is adjacent to an exposed degree-
register which contains a pair of integers (i,7) € {0,...,h}%. In each such pair,
integer i gives information about the degree of the underlying literal of this literal-
register, while j gives information about the degree of the negation of it. If at
least one integer of (i, j) equals h then the corresponding literal has degree > h (no
information is given about its exact degree). On the contrary, each integer < h in
(i,4) denotes the exact degree of the corresponding literal.

During each algorithmic step, the deletion of some clauses may cause some literals
of initial degree > h to finally get degree j < h. Although the degree content of
such high degree-registers is secret, to perform the corresponding updates, we need
to know their exact degree during the simplification step. However, as soon as all
updates are completed, it is not possible to infer the content of any unexposed
register, from the combined knowledge of current and previous information about
the registers. -

C. Statistics of the literals

Algorithm CL is initialized with a formula having the degree-sequence defined below.

Proposition 5.5. A random 3-SAT formula of density ¢ has w.h.p. the typical
double degree sequence:

o (3e/0)iti
Ti; = 56—2(3°/‘)%+o(1)7 (i,7) € {0,...,h —1}%, i,j < h,

ilj!
Be/0 (| N (3¢/0)°
Tip = T =Le” G/OTL (1 — Z€(3C/£)> +0(1), i < h,
' ’ 7! — s!
h—1 h—1
Thp = €— Z Tsp—2 Z Tepn + o(1).
5,1>0 s=0
Proof. The proof is analogous to the one given in Proposition 4.6. -

Theorem 5.6. Any literal 7 € L and any literal occurrence b in a formula which
is random given the vector S in Definition 5.1 has the following properties:

28 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

k

. — —] = B 1
Ph(ﬂvk) = Pr[deg(T) = k| TE X}L,J] = (6“_2:;01 “T!s)k!yk' > h,j <h,
o)
An = BRI o U
1. ¢ j=0 J!
where u 1s the solution of the equation,
h—1
)\h = P (Zszo,t>s(s+t)y:’t+25=0(gxb‘h—i_gxs's)) and

oz
s=0 s,h

An is the average load of a heavy bin.

2. Pr37: deg(t) >Inn| 7€ &) ;] < e (meM)ninlnn i< p

3. Pr[re X] =" (i,)) € A%.
A Pr[Literal occurrence b € X; ;] = < 2” (i,5) € A?,

* . ~h Z., Z < h,

we define: (' = { A, i=h.

5 M= E[deg(5)| b is a literal occurrence] = %Z};tzo C¢hasy, and,

T omy; = mi&§=23.

P
e1 = Eldeg(b) in 2, 3-clauses| b is a literal occurrence in a 1- clause]
6. _ p2et s(s=Dp’ l)u
=]l) <ZZ—21 Z?:()(S - 1)151737,5 + ZZ:() Th,s e#zzh T a5 >
—0 s!

Proof. 1. The proof is generalization to an arbitrary integer h of the analogous
ones given in Theorems 4.7 and 4.8. We have

h—1 h—1
PR = (- < Z (s+t)zse + Z (szsn + Sz“)>> n

s=0,t>s s=0

distinct balls (representing clause-registers with the degree-register of their un-
derlying literal in the form (h,j),7 = 0,...,h) thrown uniformly at random into
Tpn = ZZ:O xp,sn distinct bins (representing literal-registers with their degree-
register in the form (h,j),7 = 0,...,h) such that each bin gets load at least h.
Then the probability mass of the number of literals of degree 7, for any fixed i > h,
follows a truncated at h — 1 Poisson distribution:

Py(u; k) = a : , k> h, where u is the solution the equation:

3

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 29

2. Inequality (4.2) of Theorem 4.2 in [14] applies verbatim in the balls into bins
game, therefore:

Pr[3 Heavy bin with load > Inn] < ¢~(17e())nninlnn

i.e., we have sharp concentration to the expected load.

8. Literal 7 € L corresponds to a random bin of ¢n possible and there are exactly
x; jn bins with underlying literals in the set X; ;, (i,7) € A%

4. Each literal occurrence b corresponds to a ball, from pn = (3c3 + 2¢2)n possible,
that w.a.r. lands to a bin. If ¢ < h, the bins with underlying literals in Aj ;
receive randomly iz, jn balls, amongst pn possible, j € {0,...,h}. Therefore the
probability that a random literal occurrence b belongs into &; ; is:

iXZ',j
D .

If i = h, consider a heavy literal 7 € A}, ;. From part 1 above, deg(t) = k >
h with probability Py (u; k). Therefore there are Pj,(u;k)zp jn literals (bins) in
Xn,; each having exact degree k > h. Their corresponding bins contain exactly
kP (u; k)xp jn balls. Then in the bins of A% ;, j € {0,...,h}, there are exactly
(> pe s, kPy(p; k) zp,jn = Apa; jn balls, amongst pn possible balls. In this case the
probability that a random literal occurrence b belongs into A}, ; is:

An&n
p

5. Suppose that during a forced step a random literal occurrence b is selected.
Observe that the degree k of b is dictated by the corresponding set X that the
random literal occurrence b may belong, j = 1,...,h. In this way, if & < h then

Prideg(b) = k] = Pr[b € X1, U... U X x]. Since the sets X;x,j = 1,...,h, are
disjoint, by part 4 above we get:

.]-xl,k + 2552,1@ +...+)\hxh,k

Pr(deg(b) = K] ’

, k<h. (5.2)

If £ > h then:

Pr[deg(b) = k] = Pr[deg(b) =k A (b€ X1 pU...UXp4)]

h
=) Prldeg(d) =k A be X, (5.3)
j=1
since the sets X;p,j = 1,...,h are disjoint. From part 4 we obtain:
— thxj,h

Prideg(b) =k N be X;;] =

Pr(p; k) (5.4)

30 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

Summing (5.4) over j = 1,...,h and plugging in (5.2) we obtain for all k:

B 1y, k4222, k+ A AR Th, B k<h
Pr[deg(b) = k] = 1z p+2xo, th Jr)\hl’h hP (I{;) k > h (55)
P ’ -

Using (5.5) we obtain:

E[deg(b)] = Z kPr[deg(b) = k] + Z k Pr[deg(b) = k]

1h 1 h .

= EZZM T+ — kah (s k Zchxz}h
k=0 i=1 i=1
(b=l h

= EZZM%ZH @Zc“hm—
k=0 i=1

6. First consider the case that the 1-clause literal occurrence b of total degree s
appears in the 3, 2-clauses exactly s — 1 times, with s < h (its occurrence in the
1-clause is subtracted). This happens iff b € X1 U ... U X, ;. These events are
disjoint. That means that, if s < h then b appears in s — 1 other clauses, excluding
its 1-clause, with probability Pr[b € Xs1]+ ...+ Pr[b € X,] = % Z?:o STg ¢, since
each literal in Xs¢,0 < ¢ < h, corresponds to a bin with exactly s balls. In this
case we obtain the term:

h—1 h

1ZZSfltasgt (5.6)

s=2 t=0

3

It remains to compute the expected occurrences of b in 3, 2-clauses excluding its
1-clause, that is to compute the expected deg(b) — 1, when b € Xp o U ... U &), 4.
Since the above events are disjoint, we obtain:

p?"(k —].) = Pl“[d (b) = (b S Xh’() u...u Xh,h)]

kA
=k AN b€ Xnol+...+Pr[deg(b) =k AN be Xy

Consider the event: {deg(b) =k A b € A} ;},0 < j < h. There are z, ; Pp(p; k)n
literals (bins) in A}, ; containing k > h balls each. Then b appears in these
;P (p; k)n bins of A, ; with probability %xhhjph(lu; k)k which equals to the prob-
ability Pr[deg(b) =k A b€ X} ;],0 < j < h. Therefore b appears in k — 1 other 3,
2-clauses with probability: pr(k—1) = %Ph(u; k)k Z?:O xp ;. Summing over k > h
we get:

oo o0

Z — 1)pr(k th’j Z — D)kPp(u; k)

k=h]0 k=h

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 31

h ,U/Qeﬂ . Zh—l s(s=1)p®

1 =2 [l
= =) ap, : - 5.7
pZ (5.7)

h—1 s
3=0 et — ZS:O st

Summing (5.6), (5.7) we get ;.

D. Expected changes per round

Lemma 5.7. Suppose that during round t € [0, 1) the algorithm CL selects a
pair of complementary literals (7,7) € X; ; and sets T to TRUE, with arbitrary fized
indices (i,7) € A%. Then the expected change of each parameter conditional on the
current vector:

S = <€7 C3,C2, 1'0,07 xO,l) LR -To,iu s 7mh,07 xh,17 e 7mh,h>7
of the (h + 1)% + 3 scaled parameters such that e= < 1, are within o(1) equal to:

(@) EA[L@[]S =-2(1+e5),

(0) E[A[C3(1)]] | S] = — (deg(T) + deg(T)) 3% —(e14+m) 3}%6?,

(c) E[A[C(t)]) | S] = deg(T)%2 — (deg(r) + deg(T)) %

+ (s = (o1 +m) 22) e,

(@) BIAIX ()])= deg(r)®esse G,) — 67
+ (=202 16, 5) — 906, 0) 752 e

V() € {0, h12\ (b B).

where:
er = de (*)L and p = 3¢s + 2¢
T ng(l*ng)’ p_ 3 2.

k

my = mﬁ, k=2,3, also:
p

B 1, i#j andi=deg(r),j = deg(T) ori=deg(T),j = deg(T),

60 = Q2 i=j=deg(r)=deg(T),
0, otherwise.
(i + 1)@ig1, 00 + (4 Vi j107 — (i + j)wiy, 4§ <h,

fG,5) = ¢ B+ DTpp1n — kxgn — hagnby_y, (i,j) € B,

hmh’he,}{_l — (h — 1)$h71,h — hl‘h,Lheﬁ_l, (’L,]) c G,
where: B = {(h, k), (k,h)}, k <h—2,
and: G ={(h—1,h),(h,h — 1)},

32 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

also: eh{Ph(/'L7h)7 SZh_l;

s 1, otherwise.
1+ 7, 0<1t,5<h—1,
g(i,j) = k+ An, (i,j) € B,
h—14 M\, (’i,j)GG.

Initial conditions:
=2, c3=c, ca =0.00005, and each x;;, (i,j) € A? is as in Proposition 5.5.

Proof. (a) During the free step deg(T) clauses are shrunk. Amongst them,
deg(?)% many correspond to 2-clauses that are shrunk to 1-clauses. Then, each
such 1-clause corresponds to the root of a Galton-Watson process that gives rise
to the subsequent offspring of 1-clauses, according to sub-Section 5.A. Each such
process has a Malthus parameter equal to mo, where this parameter is defined in
Theorem 5.6 part 5. Therefore, (1 + £7) steps are expected in the round, and 2
literals are set and thus deleted per step.

(b) = (¢) In the free step, the satisfied i-clauses are deg(7)ic;/p while the unsatisfied
are deg(T)ic;/p, in expectation, ¢ = 2,3. This follows from Lemma 5.4, since
each literal occurrence (ball) appears in an i-clause (deleting or shrinking it) with
probability ic;/p,i = 2,3. In each of the e+ expected forced steps, we select a literal
occurrence b that corresponds to a 1-clause. According to part 6 of Theorem 5.6,

ball b is expected to appear in &1 Z; other balls corresponding to i-clauses. From

part 5 of Theorem 5.6, its negation b is expected to appear in mi = m,; other

balls in i-clauses, ¢ = 2,3. So in the forced steps of the round we expect to loose

(e14+m) 3%5? 3-clauses and (mg — (e1+m) 2}%) e7 2-clauses.
(d) First we compute the expected change of X; ; with indices ¢,j < h. Consider
the deletion of the neighboring literal occurrences (balls) to the evaluated to TRUE
literal per step. In the free step, the evaluated to TRUE literal (a ball) is expected
in deg(T)k% k-clauses deleting deg(T)%(k— 1) neighboring balls, k = 3,2. In each
forced step, the selected literal is expected in 51% k-clauses deleting 51%@ -1)
neighboring balls, & = 3,2. Flow into X; ; is created by the deletion of balls that
belong into X;1; ; and X; j41 with corresponding probabilities (i + 1):5241,]»9?% and
G+ D)z j41 05%. Flow out from &; ; is created by the deletion of balls that belong
to &; ; and & ; with corresponding probabilities z‘xm% and jxmi. Now, consider
the deletion of the evaluated to TRUE literal 7 and its negation 7 per step. This
creates a flow out of X ; with probabilities (i + j)xi’j% =Prl[re X;; UT € &} ,].
Next we compute the expected change of &; ; with (,j) € B where we define
B = {(h,k),(k,h)},k < h — 1. Consider the deletion of the neighboring literal
occurrences (balls) to the evaluated to TRUE literal per step. For example, flow

into X p,k < h —1is created from X1, with probability (k + 1)xk+17h%. Flow
out from A}, 5, is created with probability (kkah + hxkvhﬁﬁ_l) %. Now, consider the
deletion of the evaluated to TRUE literal 7 and its negation per step. This creates
a flow out from X} j, with probabilities (k +)\h)xk,h% =Prir € X, UT € X 1]

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 33

Finally, we compute the expected change of X; ; with (i,5) € G where we de-
fine G = {(h — 1,h),(h,h — 1)}. First consider the deletion of the neighboring
literal occurrences (balls). For example, flow into Aj_1 is created from A p
with probability hxh,hez_li. Flow out from &}_;) is created with probability
((h - 1)xh—1,h — h‘rh—lﬁei};fl) % = Pr[neighboring ball € Xh—l,h] +
Pr{neighboring ball € X}j’ n_1)- Now, consider the deletion of the evaluated to TRUE
literal 7 and its negation per step. This creates a flow out from &} _1 j with prob-
abilities (h -1+)\h)xh_l,h% = PI‘[T € Xk,h Ure Xh,k]- =

E. Wormald’s theorem & Differential equations

We can show that the conditions (i')-(iii) of Theorem 2 in [72] hold working analo-
gously as in sub-Section 4.H. The proof is omitted. This allows us to approximate
within o(1) error and probability 1 — o(1) the trajectories of the expected changes
described in Lemma 5.7 by the solution of the following system of differential equa-
tions.

Lemma 5.8. Suppose that for O(n) rounds the algorithm CL selects pairs of com-
plementary literals (7,7) € X, ; and sets T to TRUE, with arbitrary fized indices
(i,) € A2.

Then the (h + 1)2 + 3 parameters in the vector:

S= <€7 C3,C2,20,0, 20,1, - ~-xO,hw--afh,Oaxh,17~--a1'h,h>7

are approximated within o(1) and with probability 1 — o(1) by the solution of the
following system of differential equations:

ot

S o 2(1+er
(a) 7 (1+e7),
d03 — 363 363
b)) —=-—(d d o e
(b) i (deg(7) + deg(7)) » (e1 +m) , &7,
dea _\ 3¢c3 29 20\
()~ = deg(T)) (deg(T) + deg(7T)) o (mg (e1 +m) .)577
dI’i- c [.. T c s L. i
(d) dtJ — dEQ(T)%f(ZJ) - 51‘,7]' + (51 %f(z,]) —g(i,7) m) e=,

Y (i,5) € {0,...,h}2\ (h, h).

262

- = deg(T)———2— and p = 3c3 + 2c».

5 eg(T)p(lfmg) and p = 3cs + 2¢9
k

my = mﬁ, k=2,3, also:
p

34 A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

B 1, i#j andi=deg(r),j =deg(T) ori=deg(T),j = deg(7),
60 = Q2 i=j=deg(r) = deg(T),
0, otherwise.
(i 4+ Daip1,;00 + (G + V)aij10) — (0 +)iy, 4,5 <h,
fi,3) = § (k+Dxgyn — kxgn — hagnby_y, (i,J) € B,
hannfi_y — (h—=V)xh_1n — han_1 by, (i,4) € G,
where: B = {(h, k), (k,h)}, k < h—2,
and: G ={(h—1,h),(h,h — 1)},
also: 9?: {fh(ﬂ?h)a s=h-—1,

, otherwise.

i+ 7, 0<ij<h-1
k+)\ha (Zaj)e
h_1+Ah7 (7’7.])6

)

9(i,5)

)

QW

Initial conditions:
0=2, c3 =c, co =0.00005, and each x;;, (4,j) € A% is as in Proposition 5.5.

Proof. We show that the conditions (i')-(iii) of Theorem 2 in [72] hold working
analogously as in sub-Section 4.H. .

F. Implementation & termination of the algorithm

We plugged into the system of d.e. of Lemma 5.8, initial conditions corresponding
to r3 = 3.52. At round 0 we computed mo(0) and m3(0). Recall from part 5 of
Theorem 5.6 that m;(t) equals the expected number of unsatisfied i-clauses in each
forced step during round ¢, i = 2, 3. For each (i,5) € A2, we performed ¢ = 1/100000
rounds (restarting from round 0 each time) and we computed the corresponding

Ry(i,j) = %. Let Ri(i1,71) be the maximum value. This preprocessing
step of computing R (i1,71) corresponds to the procedure Choose-Bucket of algo-
rithm CL and the pair of indices (i1, 1) is returned. Then we restarted from round
0 and for 71 = O(n) rounds we always set literals from Xj, ;,. Similarly, we per-

formed e rounds (this time starting from round 7 each time) and we computed the

corresponding Ry (i,7) = %, V(i,j) € A% Let Ra(is,j2) be the new
maximum value (see procedure Choose-Bucket). Now, we restarted from round Ty
and for T = O(n) rounds we always set literals from &j, ;,, etc. taking always into
account that each scaled parameter in S remains > 0. For initial density r3 = 3.52
the Malthus parameter msy remained always < 1. We simulated the differential
equations until we reached a round ¢* such that we could apply Lemma 5.9 and
safely terminate the algorithm. Applying Theorem 4.13 proved by Cooper Frieze
and Sorkin in [19] (which is included in sub-Section 4.J.), we end up with a proof
for Lemma 5.9. This Lemma is a generalization of Lemma 4.14.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 35

Lemma 5.9. A random formula given S in (4.1) is almost sure satisfiable if it
holds: 2Dy < (1 — €) D}, where D} = 2(co + c3)n and:

h—1 h—1
1
D2 = § Z St$s7t + 2)\}1 Z STh,s +)\%xh’h n.

5,t>0 s=0

Recall that Ay, defined in part 2 of Theorem 4.8, is the expected load of a heavy
bin.

Proof. Consider a random formula ¢ given the current degree sequence S. From
part 2 of Theorem 4.8 it holds w.h.p. that the maximum degree A, of any literal
in § is at most Inn < n® « < 1/13. Since the current formula ¢ consists of 3, 2-
clauses, delete exactly one random clause-register (literal occurrence) from each 3-
tuple clause-registers. Such deletions are feasible since clause-registers are exposed,
see Lemma 5.4. This results in a 2-SAT formula ¢’ with (c3 4+ c2)n 2-tuples of
clause-registers. Almost sure satisfiability of ¢’ implies almost sure satisfiability of
¢. ¢ is random given a new degree sequence S’. Since we delete literal occurrences,
then for each variable x; its new numbers of positive d; and negative 82 occurrences

are at most equal to its old d;,d;. That is, Dy = > did; > Djy = Y7 did’;.
The new total number of literal occurrences is D] = 2(cs + cz)n. Since Dy > D)

we obtain the following useful inequality:

/
Dy ,Di
Dy

25 2 (5.8)

that allows us to compute easily D instead of Dj.
To that end, we work as follows:

For t,s € N define: Vary, = [{z; € V | z; € Xﬂs}| where Xﬁs consists of literals
with degree exactly ¢ while their complements have degree s.

n h—1h—1 oo h—1
Dy = Z d;d; = Z stVarsy = Z Z stVars s + Z Z stVarg
i=1 st s=0 t=0 s=h t=0
h—1 oo 0o oo
+ Z Z stVars, + Z Z stVarsy. (5.9)
s=0t=h s=h t=h
If s,t < hand x; € V, then
Pr{s; € f } = Zot Vst oy Dot (5.10)
r{x; o= arg n. .
BT (1)2) T2

If s > h,t < h (by symmetry of indices the case s < h,t > h is similar) then

P (1 Varg
Pr(o € af,) = DtPhlss) _Vera oy,

xh+ Pr(p; s)
¢ €/2)n -

2

(5.11)

36

A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

It remains the case s > h,t > h:

T, P (s) Pu(pst) _ Varsy
Pr{z; € X},} = ; = W
P (p;8) P (st
PN VCL’I"&t _ Lh,h h(:u725) h(#a)Tl (512)

We plug (5.10), (5.11), (5.12) into the corresponding sums of (5.9). Notice that
the expectation > .-, sP,(u;s) of the truncated Poisson distribution equals to Aj.
Then we easily obtain D5 that appears in Lemma 5.9. -

ACKNOWLEDGMENT

Discussions of the second author with D. Achlioptas were crucial in developing
the ideas in this work. Also we want to thank two anonymous referees for their
comments that helped us to improve the presentation of this work.

REFERENCES

1]

Achlioptas, D.: Setting two variables at a time yields a new lower bound for random
3-SAT. Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC ’00)
28-37

Achlioptas, D.: Lower bounds for random 3-SAT via differential equations. Theoret-
ical Computer Science 265 (1-2) (2001) 159-185

Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity. Proc.
31st Annual ACM Symposium on Theory of Computing (STOC ’01) 337-346

Achlioptas, D., Molloy, M.: The analysis of a list-coloring algorithm on a random
graph. Proc. 38th Annual Symposium on Foundations of Computer Science (FOCS
'97) 204-212

Achlioptas, D., Moore, C.: Almost all graphs with average degree 4 are 3-colorable.
Proc. 34th Annual ACM Symposium on Theory of Computing (STOC ’02) 199-208

Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold.
Proc. 43rd Annual Symposium on Foundations of Computer Science (FOCS ’02)
779-788

Achlioptas, D., Moore, C.: Random k-SAT: Two Moments Suffice to Cross a Sharp
Threshold, submitted. Extended Abstract in FOCS’02, p. 779-788.

Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2*(In2 + o(1)). Proc.
35th Annual ACM Symposium on Theory of Computing (STOC ’03)

Achlioptas D., Sorkin G.B.: Optimal myopic algorithms for random 3-SAT. Proc.
41st Annual Symposium on Foundations of Computer Science (FOCS ’00) 590-600

Bender, E.A., Canfield, E.R.: The asynptotic number of labelled graphs with given
degree sequences. J. Combin. Theory Ser. A 24 (1978) 296-307

Bollobds, B.: Random Graphs, Academic Press, London-New York, 1985.

Bollobas, B., Borgs, C., Chayes, J.T, Kim, J.H., Wilson, D.B.: The scaling window
of the 2-SAT transition. Random Structures & Algorithms 18 (3) (2001) 201-256

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 37

[13]

[14]

[15]

[16]

Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22 (1979) 251-256

Broder, A., Frieze, A., Upfal, E.: On the satisfiability and maximum satisfiability of
random 3-CNF formulas. Proc. 4th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’93) 322-330

Chao, M.T., Franco, J.: Probabilistic analysis of two heuristics for the 3-satisfiability
problem. STAM J. of Comp. 15 (4) (1986) 1106-1118

Chao, M.T., Franco, J.: Probabilistic analysis of a generalization of the unit-clause
litteral selection heuristics for the k-satisfiability problem. Inform. Sci. 51 (1990)
289-314.

Chvétal, V., Reed, B.: Mick gets some (the odds are on his side). Proc. 33rd Annual
Symposium on the Foundation of Computer Science (FOCS ’92) 620-627

Chvétal, V. Szemerédi, E.: Many hard examples for resolution. Journal of the Asso-
ciation for Computing Machinery 35 (1988) 759-768.

Cooper, C., Frieze, A., Sorkin, G.B.: A note on random 2-SAT with prescribed
literal degrees. Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA
’02) 316-320

Crawford, M.J., Auton, L.D.: Experimental results on the crossover point in random
3-SAT. Artificial Intelligence 81 (1-2) (1996) 31-57

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM, 5 (1962) 394-397

Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of
the Association for Computing Machinery 7 (1960) 201-215

Devroye, L.: Branching processes and their applications in the analysis of tree struc-
tures and tree algorithms. In: Habib, M., McDiarmid, C., Alfonsin, R., Reed, B.
(eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Lecture Notes
in Computer Science, Vol. . Springer-Verlag, Berlin (1998) 249-314

Dubois, O.: Upper bounds on the satisfiability threshold. Theoretical Computer Sci-
ence 265 (2001) 187-197

Dubois, O., André, P., Boufkhad, Y., Carlier, J.: SAT versus UNSAT. In: Johnson,
D.S., Trick, M.A. (eds.): Second DIMACS Challenge. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS (1993) 415-436

Dubois, O., Boufkhad, Y.: A general upper bound for the satisfiability threshold of
random 7-SAT. J. of Algorithms 24 (1997) 395-420

Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-SAT formulae and the
satisfiability threshold.
Proc. 11th Symposium on Discrete Algorithms (SODA ’00) 126-127 Available at:
http://www.eccc.uni-trier.de/eccc-local/Lists/TR-2003.html

Dubois, O., Mandler, J.: On the 3-colourability of random graphs. Available at:
http://arxiv.org/abs/math.C0/0209087

J. Franco Probabilistic analysis of the pure literal heuristic for the satisfiability prob-
lem. Annals of Operations Research 1 (1984), 273 - 289.

Franco, J.: Results related to threshold phenomena research in satisfiability: Lower
Bounds. Theoretical Computer Science 265 (2001) 147-157.

Franco, J., Paull, M.: Probabilistic analysis of the Davis-Putnam procedure for solv-
ing the satisfiability problem. Discrete Applied Mathematics 5 (1983) 77-87

A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

Friedgut, E. (Appendix by Bourgain, J.): Sharp thresholds of graph properties, and
the k-SAT problem. J. AMS 12 (1997) 1017-1054

Frieze A., Suen S.: Analysis of two simple heuristics for random instances of k-SAT.
J. Algorithms. 20 (1996) 312-355

Frieze A., Wormald N.: k-SAT: a tight threshold for moderately growing k. Proc. 5th
International Symposium on the Theory and Applications of Satisfiability Testing
(2002) 1-6

Gent, I., Walsh, T.: The SAT phase transition. In Cohn, A. (edt.): 11th European
Conference on Artificial Intelligence. Wiley (1994)

Giannella, C.: On Extending Two Threshold Algorithms to Non-Threshold Algo-
rithms by Attaching the Unit Clause Rule, Master Thesis, University of Indiana,
(1999). Available at: http://www.cs.indiana.edu/~cgiannel/work.html

Goerdt, A.: A threshold for unsatisfiability. Journal of Computer and System Sciences
33 (1996) 469-486.

M.T. Hajiaghayi and G. Sorkin, personal communication, 2002.

Haken, A.: The intractability of resolution. Theoretical Computer Science 39 (2-3)
(1985) 297-308

Istrate, G.: Phase transitions and all that. Submitted. Available at:
http://www.satlive.org/satkwd. jsp?kwd=61

Janson, S., Luczak, T., Ruciniski, A.: Random Graphs. Wiley (2000)

Janson, S., Stamatiou, Y.C., Vamvakari, M.: Bounding the Unsatisfiability Threshold
of Random 3-SAT. Random Structures and Algorithms 17 (2000) 103-116

Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9 (1974) 256-278

Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. Random Structures and Algorithms 7 (1995)
59-80

Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy
satisfiability algorithm. In: Proc. 10th Annual European Symposium on Algorithms
(ESA 2002) Track A 574-585

Kaporis, A.C., Kirousis, L.M., Stamatiou, Y.C.: How to prove conditional ran-
domness using the Principle of Deferred Decisions. Special Volume on Com-
putational Complexity and Statistical Physics. Santa Fe Institute, Studies in
the Sciences of Complexity. Oxford University Press. To appear. Available at:
www.ceid.upatras.gr/faculty/kirousis/kks-pdd02.ps

Kaporis, A.C., Kirousis, L.M., Stamatiou, Y.C., Vamvakari, M., Zito, M.: The Un-
satisfiability Threshold Revisited. To appear in Discrete Mathematics

Kirkpatrick, S., Gyorgyi, G., Tishby, N., Troyansky, L. In: Cowan, J., Tesauro, G.,
Alspector, J. (eds.): The statistical mechanics of k-satisfaction. Advances in Neural
Information Processing Systems. Morgan Kaufmann Publishers 6 (1993) 439-446

Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean
expressions. Science 264 (1994) 1297-1301

Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the Un-
satisfiability Threshold of Random Formulas. Random Structures and Algorithms 12
(1998) 253-269

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 39

[51]

[52]

[61]

[62]

Kirousis, L.M., Stamatiou, Y.C., Zito, M.: The unsatisfiability threshold conjecture:
the techniques behind upper bound improvements. Special Volume on Computational
Complexity and Statistical Physics. Santa Fe Institute, Studies in the Sciences of
Complexity. Oxford University Press. To appear.

D.E. Knuth, Stable Marriage and its relation to other combinatorial problems: an
introduction to the mathematical analysis of algorithms (English edition: CRM Pro-
ceedings & Lecture Notes 10, American Mathematical Society, 1997; first French
edition: Les Presses de 'Université de Montréal, 1976). Also see: D. Knuth, R. Mot-
wani, and B. Pittel, “Stable husbands,” Random Structures and Algorithms 1 (1990),
pp. 1-14.

Maftouhi, M., Fernandez de la Vega, W.: On random 3-SAT. Combinatorics, Prob-
ability and Computing 4 (1995) 190-195

McKay, B., Wormald, N.C.: The degree sequence of a random graph. I. The models.
Random Structures and Algorithms 11(2) 97-117 (1997)

Mézard, Parisi, G., M., Zecchina, R.: Analytic and Algorithmic Solution of Random
Satisfiability Problems. Science 297 (812) (2002)

Mézard, M., Zecchina, R.: The random k-Satisfiability problem: from an analytic
solution to an efficient algorithm. Phys.Rev. E in press (2002)

http://www.mathworks.com/

Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of SAT problems.
Proc. 10th National Conference on Artificial Intelligence (AAAI ’92) 459-465

Mitzenmacher, M.: Tight thresholds for the pure literal rule. TR, Digital Equipment
Corporation, (1997) Available at: www.research.compaq.com/SRC/

Molloy, M.: The probabilistic method. In: Habib, M., McDiarmid, C., Alfonsin,
R., Reed, B. (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics.
Lecture Notes in Computer Science, Vol. . Springer-Verlag, Berlin (1998) 1-35

Monasson, R., Zecchina, R.: Statistical mechanics of the random k-Sat problem.
Phys. Rev. E 56 (1997) 1357-1361

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-
ing computational complexity from characteristic phase transitions. Nature, 400 (8)
(1999) 133-137

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2 + p-SAT
Relation of typical-case complexity to the nature of the phase transition. Random
Structures and Algorithms, 15 (3-4) (1999) 414-435

Pittel, B., Spencer, J., Wormald, N.C.: Sudden emergence of a giant k-core in a
random graph. J. Combinatorial Theory, Series B. 67 (1996) 111-151

SAT-The Satisfiability Library,
www.intellektik.informatik.tu-darmstadt.de/SATLIB/

Urquhart, A.: Hard examples for resolution. J. Assoc. Comput. Mach. 34 (1) (1987)
209-219

Fernandez de la Vega, W.: On random 2-SAT. Manuscript (1992)

Verhoeven, Y.: Random 2-SAT and unsatisfiability. Information Processing Letters
72 (1999) 119-123

Vitter, J.S., Flajolet, P.: Average-case analysis of algorithms and data structures.
In: J. van Leeuwen, (ed.): Algorithms and Complexity. Handbook of Theoretical
Computer Science A MIT Press, Amsterdam, (1990) 431-524

A.C. KAPORIS, L.M. KIROUSIS AND E.G. LALAS

Wilson, D.: On the critical exponents of random k-SAT. Random Structures and
Algorithms. To appear.

Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A.
(eds.): Surveys in Combinatorics London Mathematical Society Lecture Note Series.
Cambridge University Press Cambridge, 276 (1999) 239-298

Wormald, N.C.: Differential equations for random processes and random graphs. The
Annals of Applied Probability. 5 (4) (1995) 1217-1235

Wormald, N.C.: Some problems in the enumeration of labelled Graphs. Ph.D. Thesis,
Newcastle University (1978)

Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combina-
torics, Probab. and Comput. 8 (1999), 377-396.

THE PROBABILISTIC ANALYSIS OF A GREEDY SATISFIABILITY ALGORITHM 41

APPENDIX

Table 1.

Comparison of values obtained from the numerical solution of the
differential equations with the values given by the simulation.

d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.
sim.
d.e.

S1m.

t

.000000
.000000
.010000
.010000
.020000
.020000
.030000
.030000
.040000
.040000
.050000
.050000
.050510
.050510
.060000
.060000
.070000
.070000
076105
.076105
.080000
.080000
.090000
.090000
.104000
.104000
109955
109955
.120000
.120000
.130000
.130000
.140000
.140000
.150000
.150000
155000
.155000
.170000
.170000
171605
171605

l
2.000000
2.000000
1.979478
1.979436
1.957801
1.957622
1.934832
1.934700
1.910425
1.910484
1.884366
1.884208
1.882988
1.882800
1.856401
1.856256
1.826188
1.826040
1.806463
1.806744
1.793301
1.793068
1.757114
1.756488
1.669236
1.699116
1.671313
1.671960
1.617999
1.617592
1.553796
1.554480
1.470975
1.475280
1.346948
1.346224
1.235824
1.234012
.600820
.595608
.585324
.579056

p2

.000000
.000000
.051372
.051455
.102948
102767
154631
.154814
.206383
.206123
.258116
.258151
.260752
.260922
.310999
.311209
.364454
.364570
.397338
.396826
418885
419080
474996
475355
.555691
.556006
.590879
.590224
.654258
.654565
.721099
.720315
.793518
.789439
.880189
.880747
.936604
937041
.803173
797578
.782149
774584

p3
3.420000
3.420000
3.294281
3.294243
3.165518
3.165561
3.033612
3.033580
2.898391
2.898846
2.759672
2.759493
2.752500
2.752160
2.632164
2.631981
2.500700
2.500637
2.417882
2.418985
2.367798
2.367642
2.234567
2.233755
2.034841
2.035145
1.944219
1.946347
1.790959
1.790711
1.620394
1.622145
1.421630
1.430790
1.170968
1.169965
979773
.978266
222643
219674
207836
.203503

Zo

.011833
.012078
013127
.013392
.014615
.014962
.016330
016772
.018320
.018770
.020639
.021228
.020767
.021382
.022984
.023624
.025703
.026374
.027596
.028210
.028785
.029412
.032230
.032886
.038258
.038954
.041385
.042202
.047159
.047866
.054604
.055456
.064857
.065046
.080346
.080994
.094423
.095532
179484
179668
182467
183088

T

.060703
.060154
.065913
.065444
.071725
.071308
.078224
.077558
.085510
.084898
.093699
.092942
.094143
.093422
101647
.100960
110515
.109922
116482
115870
120138
119574
130388
.130000
147221
146628
.155450
154384
169702
169326
.186559
186224
207177
.206406
.232620
.232604
.249925
.249156
.225146
.223954
.221233
.219382

x2

155705
155992
165471
.165650
.176000
175780
187345
187116
.199558
.199070
.212686
.212402
213381
.213088
.224767
.224676
.237584
237944
.245831
.246294
.250699
.251230
.263740
.263852
.283259
.283420
.291943
.292072
.305322
.305842
.318659
.318190
.330796
.329776
.336419
.335538
.330070
.329176
137641
135280
.130492
127930

xrg

140772
.141078
131459
131904
121703
122222
111393
111658
.100470
.100874
.088941
.089040
.088338
.088480
077376
077812
.064064
.064476
.055433
.055834
.046740
.047058
027271
.027436
.006595
.006798
.000005
.000180
.000005
.000000
.000004
.000000
.000003
.000000
.000002
.000000
.000001
.000000
.000000
.000000
.000000
.000000

