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Abstract

We study here the effect of concurrent greedy moves of players in atomic congestion
games where n selfish agents (players) wish to select a resource each (out of m resources)
so that her selfish delay there is not much. The problem of “maintaining” global progress
while allowing concurrent play is exactly what is examined and answered here. We examine
two orthogonal settings : (i) A game where the players decide their moves without global
information, each acting “freely” by sampling resources randomly and locally deciding to
migrate (if the new resource is better) via a random experiment. Here, the resources can
have quite arbitrary latency that is load dependent. (ii) An “organised” setting where the
players are pre-partitioned into selfish groups (coalitions) and where each coalition does
an improving coalitional move. Our work considers concurrent selfish play for arbitrary
latencies for the first time. Also, this is the first time where fast coalitional convergence to
an approximate equilibrium is shown.

1 Introduction

Congestion games (CG) provide a natural model for non-cooperative resource allocation and
have been the subject of intensive research in algorithmic game theory. A congestion game is



a non-cooperative game where selfish players compete over a set of resources. The players’
strategies are subsets of resources. The cost of each player from selecting a particular resource
is given by a non-negative and non-decreasing latency function of the load (or congestion) of
the resource. The individual cost of a player is equal to the total cost for the resources in her
strategy. A natural solution concept is that of a pure Nash equilibrium (NE), a state where no
player can decrease his individual cost by unilaterally changing his strategy. In a classical paper,
Rosenthal [37] showed that pure Nash equilibria on atomic congestion games correspond to
local minima of a natural potential function. Twenty years later, Monderer and Shapley [32]
proved that congestion games are equivalent to potential games. Many recent contributions have
provided considerable insight into the structure and efficiency (e.g. [18, 2, 9, 21]) and tractability
[15, 1] of NE in congestion games.

Given the non-cooperative nature of congestion games, a natural question is whether the
players trying to improve their cost converge to a pure NE in a reasonable number of steps. The
potential function of Rosenthal [37] decreases every time a single player changes her strategy
and improves her individual cost. Hence every sequence of improving moves will eventually
converge to a pure Nash equilibrium. However, this may require an exponential number of steps,
since computing a pure Nash equilibrium of a congestion game is PLS-complete [15].

Nevertheless, there are many interesting classes of congestion games for which a pure Nash
equilibrium can be computed in polynomial time. For example, a pure Nash equilibrium of a
symmetric network atomic congestion game can be found by a min-cost flow computation [15].
Even better, for singleton CG (aka CG on parallel links), for CG with independent resources, and
for matroid CG, every sequence of improving moves reaches a pure Nash equilbrium in a poly-
nomial number of steps [25, 1]. An alternative approach to circumvent the PLS-completeness of
computing a pure Nash equilibrium is to seek an approximate NE (formally, an ε-NE), where no
player can improve her cost by a factor more than ε by unilaterally changing her strategy. [8]
considers symmetric congestion games with a weak restriction on latency functions (bounded-
jump latencies) and proves that several natural families of ε-moves converge to an ε-NE in time
polynomial in n and ε−1.

However, every family of sequential moves takes Ω(n) steps in the worst case to reach an
(approximate) NE and its implementation requires central coordination among the players. In the
view of the facts that the number of players is usually quite large and that central coordination
between them is difficult to achieve, a natural question is whether concurrent play can accelerate
the convergence to an approximate pure Nash equilibrium. In this work, we investigate the effect
of concurrent moves on the rate of convergence to approximate pure Nash equilibria. Our main
results concern two natural (and essentially orthogonal) settings where the rate of convergence is
quite fast and mostly determined by the logarithm of the initial potential value.
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1.1 Singleton Games with Myopic Players.

Related Work and Motivation. The Elementary Step System hypothesis, under which at most
one user performs an improving move in each round, greatly facilitates the analysis of [10, 14,
21, 22, 29, 30, 35]. However, a significant drawback of playing sequentially is that it requires
Ω(n) rounds in the worst-case until n users reach a NE, not to mention the negative result [15]
that holds on an atomic setting. Also, central control is imposed on moves. This is not an
appealing scenario to modern networking, where simple decentralized distributed protocols can
reflect better the essence of net’s liberal nature. In real-world networks it is unrealistic to assume
any player capable of monitoring the entire network per round. But even if a user can grasp the
whole picture, it is computationally demanding to decide her best move.

All the above manifest the importance of distributed protocols that allow an arbitrary number
of users to reroute per round, on the basis of selfish migration criteria. It is important that
migration rules are simple and myopic, while strong enough for the players to quickly reach
(learn) a stable state. Here, terms “simple” and “myopic” mean that any selfish decision is taken
by easy computations based on local info only, that is, the decision does not rely on global or
expensive information about the overall current state of resources.

This is an Evolutionary Game Theory [40] perspective, which studies conditions under which
a population of agents may (or may not) reach stable states, see also [38] with a current treatment
of both nonatomic games and of evolutionary dynamics.

In this setting, the main concern is on studying the replicator-dynamics, that is to model the
way that users revise their strategies throughout the process. Each user may revise her strategy by
performing action sampling (a new resource is drawn) or migration (a move to a new resource).
Sampling is further categorized as uniform (all resources are equally likely) or proportional (each
resource is selected with probability proportional to a parameter related to it, usually, but not
restricted to, the number of users on it). Uniform sampling is the cheapest way of searching
the available resources. However, it typically results to slow convergence time, since it does
not amplify highly appealing resources. On the contrary, proportional sampling, highly boosts
the speed of the process, since it injects vast amounts of users into most appealing resources at
hand. A word of caution, however, is that if the only sampling available is proportional to the
number of users per resource, then the process becomes trapped only to the loaded resources up
to now. A way out is to shift at an appropriate rate to uniform sampling, capable of exploring
even currently empty resources.

At this point we should stress that, unlike sequential moves, the lack of global info and the
fact that costs over resources may increase unboundedly on demand, it is possible that concurrent
migrations oscillate the game eternally away from NE. Intuitively, while user i finds appealing a
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given resource e, simultaneously many other users may opt for e, increasing e’s latency in a cost
that ruins the profit of user i. This is a major difficulty on proving concurrent convergence. Such
bad oscillation effects are known to Network and Telecommunications Community [26, 28, 36].

Let us first focus to the discrete concurrent setting. The work in [13] considers n players
concurrently sampling for a better link amongst m parallel links per round (singleton CG). Link
j has linear latency sjxj , where xj is the number of players and sj is the constant speed of the link
j. This is the KP model [27]. This migration protocol, although concurrent, is not completely
decentralized, since it uses global information in order to allow only proper subsets of users to
migrate. More precisely, on parallel, only users with latency exceeding the overall average link
latency Lt at round t are allowed with an appropriate probability to sample for a new link j. We
stress here that, for the case of multiple different links, this sampling for a link j is proportional
to dt(j) = nt(j) − sjLt, where nt(j) is the number of users on link j. Once more, this type of
proportional sampling exposes global info to amplify favorable links, in contrast to the myopic
scenario of sampling a random user, which in turn amplifies links proportionally to their load. All
in all, these criteria highly boost the convergence time, requiring expectedly O(log log n+log m)

rounds. On an experimental view, the work in [23] was prior to [13], were a series of similar
concurrent protocols were validated.

In [5] it was given the analysis of a concurrent protocol on identical links and players. Notice
here that the parallel links are identical, while the ones in [13] were related, but the important
aspect of the analysis in [5] is that no global information was given to the migrants. On parallel
during round t, each user b on resource ib with load Xib(t) selects a random resource jb and if
Xib(t) > Xjb

(t) then b migrates to jb with probability 1 − Xjb
(t)/Xib(t). Despite that users

perform only uniform sampling, this protocol quickly reaches an ε-NE in O(log log n), or an
exact NE in O(log log n + m4) rounds, in expectation.

The reason that proportional sampling turns out to be not so crucial here, is the fact that all
links are identical, so there is no need to inject many users to any particular speedy link. Thus,
an important question is to what extent such myopic distributed protocols can cope with links
that have large discrepancies amongst their latency functions.

Finally, we focus on the continuous concurrent setting. Powerful concurrent protocols have
been analyzed in a continuous setting with respect to the Wardrop model (nonatomic flows) on
general k commodities nets. The fact that each agent controls an infinitesimal amount of flow
facilitates the analysis, since any concurrent migration of a lower order population of players
causes almost no oscillation effect. However, a great difficulty that in turn arises here, is when
a significant order of the population concurrently migrates. The work in [39] gives a general
definition of nonatomic potential games, and shows convergence to Nash equilibrium in these
games, under a very broad class of evolutionary dynamics. A series of important papers [6,
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16] provide strong intuition on this subject. More precisely [16] shows the significance of the
relative slope parameter d for the replicator dynamics to eventually converge to a stable state.
Intuitively, a latency function ` has relative slope d if x`′(x) ≤ d`(x). Thus, parameter d is
a peak-measure of ` and convergence can not occur if a link latency grows arbitrarily large
with respect to flow fluctuations on it. The replication dynamics studied in [16] employs both
uniform and proportional sampling. On parallel each user on path P in commodity i, either
with probability β selects a uniformly random path Q in i, or with probability 1 − β selects a
path Q with probability proportional to its flow fQ. Then, if `Q < `P user migrates to sampled
Q with probability `P−`Q

d(`P +α)
, where parameter α is arbitrary. However, probability β is rather

cumbersome to tune, since it uses extensive information that concerns all latency functions and
their corresponding first derivatives: β ≤ minP∈P `P (0)+α

L maxe∈E maxx∈[0,β] `′e(x)
.

While the work in [16] studies specific replication policies designated to yield fast conver-
gence, in [6] it was shown a more general result. It stated that as along as all players concurrently
employ arbitrary no-regret policies, they will eventually achieve convergence. Quoting from [6]:
“any no-regret algorithm have the property that in any online, repeated game setting, their av-
erage loss per time step approaches that of the best fixed strategy in hindsight (or better) over
time”.

The work in [31, 17] remove the assumption of perfect information. In the sense that deci-
sions are taken on the basis of a bulletin board which does not depict the most “fresh” state. If
the info depicted on this board is too old and not regularly updated then oscillations occur. The
analysis tunes the rate of updating the bulletin for the system eventually to convergence, see also
[7, 12, 3]. More precisely, in [17] an arbitrary k commodity network is given with edge latency
functions. Each user, independently and according to a Poisson distribution decides to revise its
current strategy either performing uniform or proportional sampling with appropriate probabili-
ties. This was an important simplification of the classical assumptions that up to now were used
for proving convergence. However, the assumption of a bulletin board, implicitly makes use of
global info for important characteristics of the system. Such info usually is unavailable on large
scale networks as Internet. The main differences from [31] are the following. In [31] an infinite
number jobs are assigned to an infinite number of machines, while their ratio remains constant.
In [17] the resources are finite while the users are infinite. Also, in [31] agents exit from the
system as soon as they allocate their jobs.

Contribution. Our motivation is to investigate the advantages and the limitations of a simple
distributed protocol for congestion games on parallel resources under very general assumptions
on the latency functions. Hence we adopt a model of distributed computation allowing a limited
amount of global knowledge, where in parallel every player can only select a resource uniformly
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at random in each round and check its current latency. Migration decisions must be made con-
currently on the basis only of the current latency of the resource (departure-resource) to which
a player is assigned and the current latency of the resource to which the player is about to move
(destination-resource). Thus, our replicator dynamics are based solely on local information. Mi-
gration decisions take advantage of local coordination amongst the players currently assigned to
the same resource, since at most one player is allowed to depart per resource. The only global
information about the latency functions is that they have a bounded slope. More precisely, we
only assume that the latency functions satisfy the α latency jump bound (see also [8]).

Our notion of ε-approximate equilibrium ((ε, α)-EQ), in Def. 2, is dictated by the very lim-
ited information that our model extracts, and is a bit different from similar approximate notions
considered in previous work [8, 13] in an atomic setting, while it is close in nature to the stable
state defined in [16, Def. 4] for the Wardrop model. An (ε, α)-EQ is a state where at most εm

resources have latency either considerably larger or considerably smaller than the current average
latency. This definition relaxes the notion of exact pure NE and introduces a meaningful notion
of approximate (bicriteria) equilibria for our fully myopic model of migration described above.
In particular, an (ε, α)-EQ guarantees that unless a player uses an overloaded resource (i.e. a
resource with latency considerably larger than the average latency), the probability that she finds
(by uniform sampling) a resource to migrate and significantly improve her latency is at most
o(1). Furthermore, it is unlikely that any (ε, α)-EQ reached by our protocol assigns any number
of players to overloaded resources (even though this possibility is allowed by the definition of an
(ε, α)-EQ). As it will become clear from the analysis in Section 2.6, the reason that users do not
accumulate on overloaded resources, is that the number of players on such resources is a strong
super-martingale. Initially, with high probability, each resource has load O(log n). Then we get
that in expectedly O(log n) rounds the overloaded resources will drain from users.

We present (Sect. 2.3) a simple oblivious protocol for this restricted model of distributed
computation. According to our myopic protocol, in parallel each player selects a resource uni-
formly at random in each round and checks whether she can significantly decrease her latency
by moving to the chosen resource. If this is the case, the player becomes a potential migrant.
The protocol uses a simple local probabilistic rule that selects at most one (this is a local deci-
sion amongst users on the same resource) potential migrant to defect from each resource. We
prove (Th. 1) that if the number of players is Θ(m), the protocol reaches an almost-NE in
O(log(IE[Φ(0)]/Φmin)) time, where IE[Φ(0)] is Rosental’s expected potential value as the game
starts and Φmin is the corresponding value at a NE. The proof of convergence (Sec. 2.6) is tech-
nically involved and interesting and comprises the main technical merit of this work.

Our result significantly extends the results in [5, 13] in the sense that (i) we consider arbitrary
and unknown latency functions subject only to the α latency jump bound [8, Section 2], (ii) it
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requires no other global information. Also, the strategy space of player i may be extended to all
subsets of resources of cardinality ki such that

∑
i ki = O(m), see also independent resource CG

[25]. An interesting issue for further research is to extend its power by proportional sampling
with respect to parameters that will favor its speed.

1.2 Congestion Games with Coalitions

In many practical situations however, the competition for resources takes place among coalitions
of players instead of individuals. For a typical example, one may consider a telecommunication
network where antagonistic service providers seek to minimize their operational costs while
meeting their customers’ demands. In this and many other natural examples, the number of
coalitions (e.g. service providers) is rather small and essentially independent of the number of
players (e.g. users). In addition, the coalitions can be regarded as having a quite accurate picture
of the current state of the game and moving greedily and sequentially.

In such settings, it is important to know how the competition among coalitions affects the
rate of convergence to an (approximate) pure Nash equilibrium. Motivated by similar consider-
ations, [24, 19] proposed congestion games with coalitions as a natural model for investigating
the effects of non-cooperative resource allocation among static coalitions. In congestion games
with coalitions, the coalitions are static and the selfish cost of each coalition is the total delay
of its players. [24] mostly considers congestion games on parallel links with identical users and
convex latency functions. For this class of games, [24] establishes the existence and tractability
of pure NE, presents examples where coalition formation deteriorates the efficiency of NE, and
bounds the efficiency loss due to coalition formation. [19] presents a potential function for linear
congestion games with coalitions.

Contribution. In this setting, we present (Sec. 3) an upper bound (Th. 5) on the rate of (sequen-
tial) convergence to approximate NE in single-commodity linear congestion games with static
coalitions. The restriction to linear latencies is necessary because this is the only class of la-
tency functions for which congestion games with static coalitions is known to admit a potential
function and a pure NE. We consider sequences of ε-moves, i.e. selfish deviations that improve
the coalitions’ total delay by a factor greater than ε. Combining the approach of [8] with the
potential function of [19, Theorem 6], we show that if the coalition with the largest improvement
in its total delay moves in every round, an approximate NE is reached in a small number of steps.

More precisely, we prove (Th. 5) that for any initial configuration s0, every sequence of
largest improvement ε-moves reaches an approximate NE in at most kr(r+1)

ε(1−ε)
log Φ(s0) steps,

where k is the number of coalitions, r =
⌈
maxj∈[k]{nj}/ minj∈[k]{nj}

⌉
denotes the ratio be-

tween the size of the largest coalition and the size of the smallest coalition, and Φ(s0) is the
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initial potential. This bound holds even for coalitions of different size, in which case the game is
not symmetric. Since the results of [8] hold for symmetric games only, this is the first non-trivial
upper bound on the convergence rate to approximate NE for a natural class of non-symmetric
congestion games.

This bound implies that in network congestion games, where a coalition’s best response can
be computed in polynomial time by a min-cost flow computation [15, Theorem 2], an approxi-
mate Nash equilibrium can be computed in polynomial time. Moreover, in the special case that
the number of coalitions is constant and the coalitions are almost equisized, i.e. when k = Θ(1)

and r = Θ(1), the number of ε-moves to reach an approximate NE is logarithmic in the potential
of the initial state.

2 Concurrent atomic congestion games

2.1 Model

There is a finite set of n players N = {1, . . . , n} and a set of m edges (or resources) E =

{e1, . . . , em}, where n = O(m) and r = n/m = O(1). The strategy space Si of player i is E.
The game consists of a sequence of rounds t = 0, . . . , T ∗, T ∗ is the round they reach an (ε, α)-
EQ as Def. 2 for the first time. The strategy of player i ∈ N at round t is si(t) ⊆ E. We study
singleton games, i.e., |si(t)| = 1,∀i ∈ N . At round t the state s(t) = 〈s1(t), . . . , sn(t)〉 ∈ S1 ×
. . .×Sn of the game is a n-tuple of strategies over players. The number fe(t) of players on edge
e ∈ E is fe(t) = |{j : e ∈ sj(t)}|. Edge e has a latency `e(fe(t)) ≥ 0 measuring the common
delay of players on e at round t, increasing on load fe(t). The cost ci(t) of player i equals the sum
of latencies of all edges belonging in his current strategy si(t), that is ci(t) =

∑
e∈si(t)

`e(fe(t)).
Let the average latency of the resources be `(t) = 1

m

∑
e∈E `e(fe(t)). Consider the value of

Rosenthal’s potential [37] Φ(t) =
∑

e∈E

∑fe(t)
x=1 `e(x). We assume no latency-info other than the

α-latency jump bound:

Definition 1 [8] Let α = min{a| ∀x = 0, . . . , n, ∀e ∈ E it holds `e(x + 1) ≤ a`e(x)}. Then
each resource e ∈ E satisfies the α-latency jump bound.

This condition imposes a minor restriction on the increase-rate of the latency function `e() of any
resource e ∈ E. For example `e(x) = αx is α-bounded, which is also true for polynomials of
degree d ≤ α. Our definition of bicriteria equilibrium, reminiscent to [16, Def. 4], follows.
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2.2 Bicriteria equilibrium

Definition 2 An (ε, α)-EQUILIBRIUM ((ε, α)-EQ) is a state where≤ εm loaded resources have
latency > α`(t) and ≤ εm loaded resources have latency < 1

α
`(t), where α is the latency jump

bound.

Taking into account the very limited info that our protocol extracts per round, our analysis sug-
gests that an (ε, α)-EQ is a meaningful notion of a stable state that can be reached quickly. In
particular, the (ε, α)-EQ reached by our protocol is a relaxation of an exact NE where the prob-
ability that a significant number of players can find (by uniform sampling) resources to migrate
and significantly improve their cost is small.

More precisely, in an exact NE, no loaded resource has latency greater than α`(t) and no
resource with positive load has latency less than `(t)/α, while the definition of an (ε, α)-EQ
imposes the same requirements on all but εm resources. Hence the notion of an (ε, α)-EQ is
a relaxation of the notion of an exact NE. In addition, a player not assigned to an overloaded
resource (i.e. a resource with latency greater than α`(t)) can significantly decrease her cost (i.e.
by a factor greater than α2) only if she samples an underloaded resource (i.e. a resource with
latency less than `(t)/α). Therefore, in an (ε, α)-EQ, the probability that a player not assigned
to an overloaded resource samples a resource where she can migrate and significantly decrease
her cost is ≤ εm. Furthermore, it is unlikely that the (ε, α)-EQreached by our protocol assigns
a large number of players to overloaded resources 1.

2.3 Protocol Greedy

At t = 0, concurrently each player i selects a random strategy (resource) si(0) ∈ Si, while for
t > 0, each player updates her si(t) to si(t + 1) according to protocol Greedy illustrated below
(recall α in Def. 1):

During each round t ≥ 1, do in parallel ∀e ∈ E:

1. Select 1 player i from resource e at random, with latency `e(fe(t)).

2. Player i samples for a destination resource e′ u.a.r. over E, with latency `e′(fe′(t)).

3. If `e′(fe′(t))(α + δ) < `e(fe(t)), then move player i from e to e′ with probability ϑ.

1Due to the initial random allocation of the players to the resources, the overloaded resources (if any) receive
O(log n) players with high probability. Lemma 4 shows that the number of players on any overloaded resource is
a strong super-martingale during each round. Thus, such overloaded resources will drain from users in expectedly
O(log n) rounds.

9



We show that Greedy quickly (Th. 1) reaches an (ε, α)-EQ (Def. 2), where ϑ, δ are parameters
tuned in Theorem 1.

2.4 Greedy: insights from distributed computing and load balancing

In our work, there are quite a few points where our research draws from advances in other fields
of computing, beyond that of algorithmic game theory.

A key such point is the nature of the protocol that decides who migrates between resources
and how, as well as the extent to which such migrations effectively and efficiently achieve some
notion of optimality. The field that has been most influential in that respect is that of load balanc-
ing, where key results [11] suggest that migration protocols are realistic when they assume that
(now, we switch to the game nomenclature) a number of players moving from one resource at a
given time point (round) actually move to the same target, and are not distributed amongst more
than one target. This differentiation is described as the contrast between diffusion and dimension
exchange methods, where the latter impose that a resource will only communicate (sample) with
one potential target resource, to determine where to allow some of its migrants to move to (if at
all). It is important to note that this assumption improves the robustness of the migration proto-
col since, when considering which players to move out of a resource, we do not need to collect
expensive information (as is the case, for example, in [13]) from all available resources but we
just focus on sampling one potential target. To appreciate this robustness, consider what would
happen in a network where we might need to sample many resources, yet find that many of the
links seem to be broken, as is quite likely of course.

The justification for our protocols can be further seen in [20], where it is argued why a
resource cannot be expected to communicate in parallel with other resources, leading to the
observation that sequential communication means that all migrants from a source will all go to
the same target. Morever, also according to [20], we note that our protocol indeed realistically
assume that only local information is made available to the migrating candidates; note that, in
stark contrast to this recommendation, [13] assume that players have access to accurate global
statistics (like average load) to compute their next move.

A further justification for our protocol is the design pattern discussion in [4], where analogues
are drawn to several biological processes that have influenced the design of distributed computing
protocols and algorithms, and where a central recurring theme is the identification of processes
that rely on strictly local information yet manage to achieve some notion of effective global
behavior.
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2.5 Main results

Our main result is Theorem 1, establishing Greedy’s convergence to an (ε, α)-EQ (Def. 2).

Theorem 1 Greedy reaches an (ε, α)-EQ in expectedly O
(

4r
ϑεδ2 ln(2IE[Φ(0)]

Φmin
)
)

rounds, with ϑ =

ε
4α

, δ = ε(α−1)
2α

, Φmin the optimal potential, r = n/m, IE[Φ(0)] the average potential at round
t = 0, and α > 1 the latency jump bound (Def. 1).

Theorem 1 follows by inductive application of Theorem 2.

Theorem 2 IE[∆Φ(t)] ≤ −ϑεδ2

4r
× Θ(1) × IE[Φ(t)], for each round t not in an (ε, α)-EQ, with

ϑ = ε
4α

, δ = ε(α−1)
2α

, Φmin the optimal potential, r = n/m, IE[Φ(0)] the average potential at
round t = 0, and α > 1 the latency jump bound (Def. 1).

The proof is in Section 2.6.4. The line of thought is presented in Section 2.6.

2.6 Proof of convergence of Greedy - Overview

The idea behind main Theorem 1 is to show that, starting from IE[Φ(0)], per round t of Greedy
not in an (ε, α)-EQ, the expected IE[∆Φ(t)] potential drop is a positive portion of the potential
Φ(t) at hand. Since the minimum potential Φmin is a positive value, the total number of round
is at most logarithmic in IE[Φ(t)]

Φmin
. We present below how Sections 2.6.1, 2.6.2 and 2.6.3 will be

combined together towards showing that Greedy gives a large “bite” to the potential IE[Φ(t)]

at hand, per round not in an (ε, α)-EQ, and prove key Theorem 2. Section 2.6.1 shows that
IE[∆Φ(t)] is at most the total expected cost-drop

∑
i IE[∆ci(t)] of users allowed by Greedy

to migrate and proves that
∑

i IE[∆ci(t)] < 0, i.e. super-martingale [33, Def. 4.7]. Hence,
showing large potential drop per round not in an (ε, α)-EQ reduces to showing

∑
i IE[∆ci(t)]

equals a positive number times −IE[Φ(t)]. This is achieved in Sections 2.6.2 and 2.6.3 which
show that |∑i IE[∆ci(t)]| and IE[Φ(t)] are both closely related to IE[`(t)] × m, i.e. both are a
corresponding positive number times IE[`(t)] ×m. First, Section 2.6.2 shows that IE[Φ(t)] is a
portion of IE[`(t)] ×m. Having this, fast convergence reduces to showing

∑
i IE[∆ci(t)] equals

a positive number times −IE[`(t)]×m which is left to Section 2.6.3 & 2.6.4. At the end, Section
2.6.4 puts together Sections 2.6.1, 2.6.2 and 2.6.3 and completes the proof of our key Theorem
2.

2.6.1 Showing that IE[∆Φ(t)] ≤
∑

i∈A(t)

IE[∆ci(t)] ≤ 0

Let A(t) the migrants allowed in step (3) of Greedy in Section 2.3.
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Lemma 1 ∆[Φ(t)] ≤
∑

i∈A(t)

∆[ci(t)]. Equality holds if ∆[fe(t)] ≤ 1,∀e ∈ E.

Proof. It is helpful to construct the following directed graph G(t) = (V (t), E(t)) during round
t + 1. The vertices of G(t) are the resources V (t) = {e1, . . . , em} and G(t) has |A(t)| directed
edges. The directed edge ej → ek appears if a player moves from resource ej to ek during round
t+1. The in(out)-degree of a vertex is its number of in(out)coming edges, while its degree equals
in-degree+out-degree. That is, the edges E(t) of G(t) are the transactions made by players in
A(t) per round. According to Greedy each vertex has out-degree 1. On each vertex v ∈ V (t)

with degree ≥ 1 we assign a color ∈ {green, red, black} per round t + 1 such that:

• Red are all vertices with in-degree 0 and out-degree 1. Ar(t) contains the players in A(t)

that depart from a red vertex.

• Black are all vertices with in-degree ≥ 1 and out-degree 0.

• Green are all vertices with in-degree ≥ 1 and out-degree 1. Ag(t) contains the players in
A(t) that depart from a green vertex.

Observe that the contribution of terms in 4[Φ(t)] is only due to the colored vertices in G(t).
Specifically, red-vertices contribute to 4[Φ(t)] only negative terms, black-vertices contribute to
4[Φ(t)] only positive terms, green-vertices may contribute to 4[Φ(t)] only positive terms.

The negative terms in 4[Φ(t)] sum to:
∑

i∈A(t)

(−ci(t)) (1)

To see this, first observe that each red-vertex ej in G(t) contributes to 4[Φ(t)] the negative term
−`ej

(fej
(t)) = −ci(t), where i is the player migrating from resource ej during round t + 1.

Therefore, the transactions currently depicted in G(t) only contribute to 4[Φ(t)] the following
negative terms:

∑

i∈Ar(t)

(−ci(t)) =
∑

i∈A(t)

(−ci(t))−
∑

i∈Ag(t)

(−ci(t)) (2)

The crucial observation is that we can get our target (1) by plugging the missing terms
∑

i∈Ag(t)(−ci(t))

in (2) without affecting 4[Φ(t)] by the following trick: On each green resource we both add and
subtract the corresponding term −ci(t) of the player i ∈ Ag(t) migrating from it, that is:

4[Φ(t)] = 4[Φ(t)] +
∑

i∈Ag(t)

(−ci(t)) +
∑

i∈Ag(t)

ci(t) (3)

We conclude that we have shown our target (1) without changing 4[Φ(t)].
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The positive terms in 4[Φ(t)] sum to at most:
∑

i∈A(t)

ci(t + 1) (4)

This in turn can be shown as it follows. Each black vertex ej with in-degree k contributes to
4[Φ(t)]:

k∑
x=1

`ej

(
fej

(t) + x
) ≤ k`ej

(
fej

(t) + k
)

=
∑

i∈A(t):si(t+1)=ej

ci(t + 1) (5)

Each green vertex ej with in-degree k contributes to 4[Φ(t)]:

k−1∑
x=1

`ej

(
fej

(t) + x
)

(6)

plus the corresponding term `ej

(
fej

(t)
)

(added by trick) that appears in the rightmost summand
in (3). Then (6) becomes:

k−1∑
x=0

`ej

(
fej

(t) + x
) ≤ k`ej

(
fej

(t) + k − 1
)

=
∑

i∈A(t):si(t+1)=ej

ci(t + 1) (7)

Inequalities (5) and (7) show that (4) upper bounds the sum of positive terms in 4[Φ(t)] which
proves our lemma when combined with (1). ut

Lemma 1 and linearity of expectation yield IE[∆Φ(t)] ≤ ∑
i∈A(t) IE[∆ci(t)]. It remains to show

∑

i∈A(t)

IE[∆ci(t)] < 0

This follows by Lemma 2 & Corollary 1.

Lemma 2 If the migration probability2 of Greedy is ϑ ≤ min{ δ
α(α−1)

, 1} then

IE[`e(fe(t + 1))] ≤ (1 + δ/α)`e(fe(t) + 1) ≤ (α + δ)`e(fe(t)),∀δ > 0

Proof. For every resource, Greedy allows at most one player to migrate to a random resource
with probability ϑ. Hence, there are at most m candidate migrants and a resource receives a
migrant independently with probability ≤ ϑ/m. The distribution of the number of migrants in

2In Sec. 2.3 Greedy reaches an (ε, α)-EQ with migration probability ϑ = ε
4α and δ = ε(α−1)

2 , where α > 1 is
the latency jump bound (Def. 1).
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every resource e is dominated by the binomial distribution B(m, ϑ/m). Let e be an arbitrary
destination resource. Thus e receives some player, let it be player i. For every integer k =

0, . . . , m − 1, let Qk denote the probability that the destination resource e receives k additional
players other than i. Since the number of candidate migrants (excluding player i) is m− 1,

Qk ≤
(

m− 1

k

)(
ϑ

m

)k(
1− ϑ

m

)m−k

≤ ϑk

k!

(
1− 1

m

)k(
1− ϑ

m

)m−k

≤ ϑk

k!
e−k/me−ϑ(m−k)/m

≤ ϑk

k!
e−ϑ (8)

The first inequality holds because the distribution of the number of additional migrants in e

(other than player i) is dominated by the binomial distribution B(m − 1, ϑ/m). For the second
inequality, we use that

(
m−1

k

) ≤ (m−1)k

k!
. For the third inequality, we use that 1− x ≤ e−x twice.

For the last inequality, we use that e−k(1−ϑ)/m ≤ 1, since ϑ ≤ 1. Then the expected latency of
the destination resource e in the next round is bounded from above by:

IE[`e(fe(t + 1))] ≤
∞∑

k=0

Qk `e(fe(t) + 1 + k)

≤ `e(fe(t) + 1)
∞∑

k=0

Qk αk

≤ `e(fe(t) + 1)
∞∑

k=0

(ϑα)k

k!
e−ϑ

= eϑ(α−1)`e(fe(t) + 1)

The second inequality follows from the α latency jump bound (Def. 1) and the third inequality
follows from (8). Using ϑ ≤ δ

α(α−1)
, we obtain that eϑ(α−1) ≤ 1 + δ/α, which concludes the

proof of the lemma. ut

Corollary 1 If Greedy ’s migration probability is ϑ = ε
4α

then

IE[∆ci(t)| ci(t)] ≤ `e′(fe′(t))(α + δϑ)− ci(t) ≤ 0, with δϑ =
ε(α− 1)

2

∀ player i ∈ A(t) that moves from e to e′.
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Proof. ∀ player i ∈ A(t) that moves from e to e′, her current cost is ci(t) = `e(fe(t)). Then
IE[∆ci(t)| ci(t)] = IE[ci(t + 1)] − `e(fe(t)). The migration probability ϑ = ε

4α
and Lemma 2

yields ∀i ∈ A(t), IE[ci(t + 1)] ≤ `e′(fe′(t))(α + δϑ), with δϑ = ε(a−1)
2

. In Section 2.3, Greedy
moves a player only if it holds `e′(fe′(t))(α + δϑ)− `e(fe(t)) < 0. ut

2.6.2 Showing that IE[Φ(t)] ≤ Θ(1)× IE[`(t)]×m

The lemma bellow is a consequence of the strong tail bounds on the load of any resource at round
t = 0. Since, the initialization of Greedy in Section 2.3 implies that the load of any resource is
Binomially distributed.

Lemma 3 IE[Φ(0)] = Θ(1)× IE[`(0)]m

Proof. At round t = 0, the load fe(0) of a resource e is Binomial random variable. Thus:

IE[Φ(0)] = IE


∑

e∈E

fe(0)∑
x=1

`e(x)


 ≤

∑
e∈E

IE[fe(0)`e(fe(0))] =
∑
e∈E

n∑
i=0

Pr[i]i`e(i)

with Pr[i] =

(
n

i

)(
1

m

)i (
1− 1

m

)n−i

(9)

IE[`(0)]m = IE

[
1

m

∑
e∈E

`e(x)

]
m =

∑
e∈E

n∑
i=0

Pr[i]`e(i) (10)

From (9) and (10), to prove IE[Φ(0)] = O(1)× IE[`(0)]m reduces to show that

∀e ∈ E it holds
n∑

i=0

Pr[i]i`e(i)−
n∑

i=0

Pr[i]`e(i) = O(1) (11)

In turn, (11) equals:

n∑
i=0

Pr[i]`e(i)(i− 1) ≤
n∑

i=0

Pr[i]`e(i)i ≤
n∑

i=0

Pr[i]αii ≈ er(α−1)αr = O(1) (12)

ut

However, Greedy may affect badly the initial distribution of bins, thus Lemma 3 may not hold
for each t > 0.

It is helpful to consider the concurrent random process Blind (a simplified version of
Greedy). At t = 0 throw randomly n = O(m) users to m resources (Blind’s and Greedy’s
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initializations are identical). Initially, the load distribution has Binomial tail bounds from devi-
ating from expectation O(n/m) = O(1). During each round t > 0, Blind draws exactly 1
random user from each loaded resource (as Step 1 of Greedy). Let n(t) be the subset of users
drawn during round t. Round t ends by throwing at random these |n(t)| users back into the m

resources (then |n(t)| users allowed by Blind to migrate is at least the |A(t)| ones allowed by
Greedy, since no selfish criterion is required). Any resource is equally likely to receive any
user, thus, Blind preserves per round t > 0 strong tail bounds from deviating from the constant
expectation O(n/m) = O(1) reminiscent to ones for t = 0. Therefore, Lemma 3 holds for each
round t > 0 of Blind.

We show bellow that, as at round t = 0, similar strong tail bounds will hold for Greedy for
each t > 0 with respect to the resources L≥αν0 = {e ∈ E : `e(fe(t)) ≥ αν0}, with ν0 =d2re+1,
r = n

m
= O(1). Also let L<αν0 = E \ L≥αν0 .

Lemma 4 ∀t ≥ 0 and any resource e ∈ L≥αν0 it holds IE[fe(t + 1)] ≤ fe(t), with ν0 =

d2re+1, r = n
m

= O(1).

Proof. Let t ≥ 0 be any fixed round and let e be any fixed resource with `e(fe(t)) ≥ αν . We
observe:

IE[fe(t + 1)] = fe(t) + IE[#users coming in e in t]− IE[#users leaving e in t] (13)

To establish the lemma, we show that if ν ≥ ν0 the expected number of users leaving e in t is no
less than the expected number of users joining e in t.

Since `e(fe(t)) ≥ αν , the α latency jump bound (Def. 1) implies that e can receive users
only from resources in E≥ν+1(t) = {j ∈ E : fj(t) ≥ ν + 1}. In particular, resource e receives
at most one player from each resource in E≥ν+1(t) with probability ϑ/m. Therefore,

IE[#users coming in e in t] ≤ ϑ|E≥ν+1(t)|/m

On the other hand, since `e(fe(t)) ≥ αν , the α latency jump bound implies that every resource
in E≤ν−2(t) = {j ∈ E : fj(t) ≤ ν − 2} satisfies the condition in step (3) of Greedy 3 Hence a
user leaves e with probability at least ϑ|E≤ν−2(t)|/m. Therefore,

IE[#players leaving e in t] ≥ ϑ|E≤ν−2(t)|/m

By (13), it suffices to show that for every integer ν ≥ ν0 = d2n/me+1, |E≥ν+1(t)| −
|E≤ν−2(t)| ≤ 0. Observe |E≥ν+1(t)| ≤ |E≥ν−1(t)| and |E≤ν−2(t)| = m−|E≥ν−1(t)|. Moreover,

3For simplicity, we assume that the factor of α + δ in step (3) of Greedy does not exceed α2. In general, we
have to use E≤ν−k−1(t) (instead of E≤ν−2(t)) and ν ≥d2n/me+k, where k =dlogα(1 + δϑ)e.
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|E≥ν−1(t)| ≤ n/(ν − 1) by Markov’s inequality. Therefore,

|E≥ν+1(t)| − |E≤ν−2(t)| ≤ 2 |E≥ν−1(t)| −m ≤ 0 ,

where we use that |E≥ν−1(t)| ≤ m/2 for all integers ν ≥ ν0 =d2n/me+1. ut

Lemma 5 1
m

∑
e∈L≥αν0

IE[`e(fe(t))] = Θ(1) and 1
m

∑
e∈L≥αν0

IE[fe(t)`e(fe(t))] = Θ(1) with
ν0 =d2n/me+1.

Proof. Consider an arbitrary resource e, at round te > 0 not in an (ε, α)-EQ, that leaves L<αν0

and enters L≥αν0 . By L<αν0 ’s property, at round te−1, e’s latency was < αν0 . As e enters L≥αν0 ,
Lemma 2 & Cor. 1 bound e’s expected latency IE[`e(fe(te))] as αν0 × (α + δϑ) = O(1), with
δϑ = ε(α−1)

2
and α the latency jump bound (Def.1). At this point, the Delta Method [34] implies

that for IE[`e(fe(te))] = O(1) it holds

IE[`e(fe(te))] ≈ `e(IE[fe(te)]) + σ2 × d2`e(x)

dx2
|x=IE[fe(te)] (14)

with σ2 the variance of fe(te) during round te and d2`e(x)
dx2 |x=IE[fe(te)] the “curvature” of the latency

`e, which (by Def. 1) is ≤ αIE[fe(te)] ln2(α). Using this, we show that ∀t > te, IE[`e(fe(t))] will
not become significantly higher than IE[`e(fe(te))] < αν0 × (α + δϑ) = O(1) attained at round
te when e entered L≥αν0 . To see this, observe in (14) that Lemma 4 (since e ∈ L≥αν0 and `e

is increasing) gives: `e(IE[fe(te + 1)]) ≤ `e(fe(te)) and αIE[fe(te+1)] ln2(α) < αIE[fe(te)] ln2(α).
It only remains to show that during round te + 1 the variance σ2 of variable fe(te + 1) remains
O(1). To this end, observe that given fe(te) it holds: fe(te +1) = fe(te)+(]users coming in e)−
(]users leaving e) = fe(te)+ein−eout. As shown in the proof of Lemma 2, the newcomers ein to
e are statistically dominated by the binomial distribution B(|A(te+1)|, ϑ/m), with |A(te+1)| ≤
m. Thus, σ2

ein
= O(1). Also, according to Greedy (Sec. 2.1), each resource looses 1 user with

probability ≤ ϑ/m, and no user otherwise. Thus, for resource e we get σ2
eout

= O(1). We
conclude that during round te + 1 for e holds: σ2 ≤ σ2

ein
+ σ2

eout
= O(1). We conclude that

∀t > 0 it holds:

1

m

∑
e∈L≥αν0

IE[`e(fe(t))] ≤ IE[`(t)] = Θ(1) (15)

Working similarly, we can show:

1

m

∑
e∈L≥αν0

IE[fe(t)`e(fe(t))] ≤ IE[`(t)]×Θ(1) (16)

ut
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Lemma 6 IE[Φ(t)] = Θ(1)× IE[`(t)]m

Proof.

IE[`(t)] = IE

[
1

m

∑
e∈E

`e(x)

]
=

1

m

∑
e∈L<αν0

IE[`e(fe(t))] +
1

m

∑
e∈L≥αν0

IE[`e(fe(t))]

=
|L<αν0 |

m
αν0 + Θ(1) (17)

where the last equality is due to (15).

IE[Φ(t)] = IE


 ∑

e∈L<αν0

fe(t)∑
i=1

`e(i) +
∑

e∈L≥αν0

fe(t)∑
i=1

`e(i)




≤ nαν0 +
∑

e∈L≥αν0

IE[fe(t)`e(fe(t))] =


rαν0 +

1

m

∑
e∈L≥αν0

IE[fe(t)`e(fe(t))]


 m

= (rαν0 + Θ(1)) m (18)

where the last equality is due to (16).
The lemma follows by Expressions (17) and (18). ut

2.6.3 Showing that
∑

i∈A(t)

IE[∆ci(t)|`(t)] < − εϑγ2

4
× `(t)m

Sketch of Case 1 and 2 below. A round is not (Def. 2) an (ε, α)-EQ if ≥ εm resources have
latency ≥ α × `(t) or latency ≤ 1

α
× `(t), with `(t) the average latency (Sec. 2.1) and α > 1

the latency jump bound (Def. 1). These two options induce an expected potential drop studied
in the corresponding Case 1 & 2 below. In each case, we write

∑
i∈A(t) IE[∆ci(t)] as a portion of

−`(t)×m. The underlying idea is: each migrant from an overloaded to an underloaded resource
contributes to

∑
i∈A(t) IE[∆ci(t)] her little portion of `(t) gain at hand. Roughly, we show that

Ω(m) such migrations can boost the atomic gain `(t), when considered in the overall population
A(t) of migrants, up to an Ω(1) portion of `(t)×m.

Case 1.
Let Uγ(t) = {e ∈ E : `e(fe(t)) < (1 − γ)`(t)} the underloaded and O(t) = {e ∈ E :

`e(fe(t)) ≥ α`(t)} the overloaded resources at round t, with parameter γ ∈ (0, 1]. Assume that
|O(t)| ≥ εm, that is, the state is not an (ε, α)-EQ (Def. 2), ε ∈ (0, 1].

Fact 3 If |O(t)| ≥ εm then

1. |Uγ(t)| ≥ γm,
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2. Each move from O(t) to Uγ(t) induces expected cost-decrease ≥ γ
2
`(t),

3.
∑

i∈A(t) IE[∆ci(t)|`(t)] ≤ − εϑγ2

2
× `(t)m,

with γ = ε
2
(α − 1), ϑ = ε

4α
the migration probability of Greedy (Sec. 2.3), α > 1 the latency

jump bound (Def. 1), and `(t) the average latency (Sec. 2.1).

Proof. For simplicity of notation, let h = |O(t)|, l = |Uγ(t)|, and n = m− h− l the number of
resources 6∈ O(t) ∪ Uγ(t) with latency ∈ [(1− γ)`(t), α`(t)).

1. To reach a contradiction, assume h ≥ εm and l < γm, with γ = ε
2
(α − 1). Then

n > m− h− γm. The average latency (Sec. 2.1) becomes:

m`(t) =
∑

e∈E `e(fe(t)) > hα`(t) + (m− h− γm) (1− γ)`(t)

≥ εmα`(t) + (1− ε− γ)m (1− γ)`(t)

= m`(t)(1 + ε(α− 1)− γ(1− ε)− γ(1− γ)) ≥ m`(t),

a contradiction. The 2nd ineq. holds because α`(t) (h − εm) ≥ (1 − γ)`(t) (h − εm),
since h ≥ εm, α > 1, and γ > 0. The 3rd ineq. holds because γ = ε

2
(α − 1) yields

γ(1− ε) + γ(1− γ) ≤ ε(α− 1).

2. ∀ resource e ∈ O(t), a player migrates to e′ ∈ Uγ(t) with probability ≥ ϑγ (see step
(3) of Greedy-Sec. 2.3), where ϑ = ε/(4α) and γ = ε

2
(α − 1) as shown in Fact 3(1.).

In Lemma 2, set Greedy’s migration probability ϑ = ε/(4α) obtaining that the corre-
sponding δθ equals ε

4α
= δθ

α(α−1)
⇒ δθ = ε(α−1)

4
. The initial cost per user in O(t) is

≥ α`(t) and if she moves to Uγ(t), by Cor. 1, her expected cost will be ≤ (α + δθ) (1 −
γ)`(t) =

(
α + ε(α−1)

4

)(
1− ε(α−1)

2

)
`(t) =

(
α + ε(α−1)

4
− εα(α−1)

2
− ε2(α−1)2

8

)
`(t) <(

α + ε(α−1)
4

− εα(α−1)
2

)
`(t) =

(
α + ε(α−1)

2

(
1
2
− α

))
`(t) =

(
α + γ

(
1
2
− α

))
`(t) which

is <
(
α− γ

2

)
`(t) because γ

(
1
2
− α

)
< −γ

2
since α > 1 & γ ∈ (0, 1), implying a cost

decrease ≥ γ
2
`(t) per migrant, with γ = ε

2
(α− 1).

3. From Fact 3(2.), if k migrants switch fromO(t) to Uγ(t) they induce an expected cost-drop
≥ γ

2
`(t)×k. Let pO→Uγ [k|`(t)] the probability that k such migrants appear, given `(t). The

expectation
∑

k kpO→Uγ [k|`(t)] of such migrants is ≥ εϑγm, with ϑ = ε
4α

, γ = ε
2
(α − 1)

and α the latency jump bound (Def. 1). To see this, from each resource e ∈ O(t) with
|O(t)| ≥ εm, exactly 1 player (step (1-2) of Greedy-Sec.2.3 ) may find an appealing
resource e′ ∈ Uγ(t), with probability ≥ γ since |Uγ(t)| ≥ γm due to Fact 3(1.). Then,
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with probability ϑ she moves (step (3) of Greedy) to e′ ∈ Uγ(t). Unconditioning on k,
the expected cost-drop due to migrants switching from O(t) to Uγ(t) is

≥
∑

k≥0

γ
2
`(t)× kpO→Uγ [k|`(t)] ≥ γ

2
`(t)× εϑγm = εϑγ2

2
`(t)m (19)

By (19) we finally prove (for Case 1) the result of this section:
∑

i∈A(t)

IE[∆ci(t)|`(t)] ≤ − εϑγ2

2
× `(t)m (20)

ut

Case 2.
Let U(t) = {e ∈ E : `e(fe(t)) < 1

α
`(t)} the underloaded and Oγ(t) = {e ∈ E : `e(fe(t)) ≥

(1+γ)`(t)} the overloaded resources at round t, with parameter γ ∈ (0, 1]. Assume that |U(t)| ≥
εm, that is, the state is not an (ε, α)-EQ (Def. 2), ε ∈ (0, 1].

Fact 4 If |U(t)| ≥ εm then

1.
∑

e∈Oγ(t)

`e(fe(t)) > γ`(t)m,

2. Each move from Oγ(t) to U(t) induces expected cost-decrease ≥ γ
4
`e(fe(t)),

3.
∑

i∈A(t) IE[∆ci(t)] ≤ −ϑεγ2

4
×m`(t)

with γ = ε
2α

(α− 1), ϑ = ε
4α

the migration probability of Greedy (Sec. 2.3), δϑ = ε(a−1)
2α

, α > 1

the latency jump bound (Def. 1), and `(t) the average latency (Sec. 2.1).

Proof. The line of thought is analogous to Fact 3.

1. Similarly to Fact 3(1.), we get:
∑

e∈O(t) `e(fe(t)) > (1 − ε/α − (1− ε)(1 + γ)) `(t)m =

γ `(t)m, with γ = ε(α−1)
2α

.

2. In Lemma 2 set ϑ = ε
4α

obtaining that the corresponding δϑ equals ε
4α

= δθ

α(α−1)
⇒

δθ = ε(α−1)
4

. The initial cost per user on an edge e1 ∈ Oγ(t) is ≥ (1 + γ) `(t) =(
1 + ε(α−1)

2α

)
`(t), with γ = ε(α−1)

2α
. Each user in e1 ∈ Oγ(t) if she moves to e2 ∈

U(t), her expected latency becomes: ≤ `e2(fe2(t))(α + δϑ) = `e2(fe2(t))(α + αγ
2
) =

`e2(fe2(t))α
(
1 + γ

2

)
< `e2(fe2(t))α (1 + γ) < 1

α
`(t)α (1 + γ) = `(t) (1 + γ) ≤ `e1(fe1(t))

The 1st ineq. holds by Lemma 2. The 1st eq. stems by noticing δθ = α
2
γ. The 3rd. ineq.

is due to e2 ∈ U(t). The last ineq. follows from e1 ∈ Oγ(t). Therefore `e1(fe1(t)) ≥
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α(1 + γ)`e2(fe2(t)) ⇒ `e2(t) ≤ 1
α(1+γ)

`e1(t). Then, if user migrates to e2 its expected

latency will be ≤ α+δθ

α(1+γ)
`e1(t) =

α+α
2

γ

α(1+γ)
`e1(t) =

1+ γ
2

1+γ
`e1(t). Its expected cost decrease will

be
(
1− 1+ γ

2

1+γ

)
`e1(t) = γ

2(1+γ)
`e1(t) ≥ γ

4
`e1(t), since γ = ε(α−1)

2α
< 1.

3. Similarly to Fact 3(3.), since |U(t)| ≥ εm, any player on e ∈ Oγ(t) moves to e′ ∈ U(t)

with probability ≥ ϑε. Recall from Fact 4(2.), that such a move induces expected cost
decrease ≥ γ

4
`e(fe(t)), with γ = ε(α−1)

2α
. Combining this with Fact 4(1.), we obtain that

the overall expected cost-drop due to migrants leaving resources Oγ(t) and entering U(t)

in round t is at least:

ϑε× γ

4

∑

e∈O(t)

`e(fe(t)) > ϑε× γ

4
× γ `(t)m >

ϑεγ2

4
`(t)m (21)

By (21) we finally prove (for Case 2) the result of this section:
∑

i∈A(t)

IE[∆ci(t)|`(t)] ≤ −ϑεγ2

4
× `(t)m (22)

ut

2.6.4 Proof of Theorem 2.

Here we combine the results in Section 2.6.1, 2.6.2 and 2.6.3 and prove Theorem 2. From Section
2.6.1 we get IE[∆Φ(t)] ≤ ∑

i∈A(t) IE[∆ci(t)] ≤ 0. Fix an arbitrary average latency (Sec. 2.1)
`(t) where Greedy is not on an (ε, α)-EQ. Facts 3&4 in Sec. 2.6.3 yield:

IE[∆Φ(t)|`(t)] ≤
∑

i∈A(t)

IE[∆ci(t)|`(t)] < − εϑγ2

4
× `(t)m (23)

Consider the space of all realizations `(t) not in an (ε, α)-EQ. Let Pr[`(t)] the probability to
obtain such a realization `(t). Removing the conditional on `(t), Expression (23) becomes:

IE[∆Φ(t)] =
∑

`(t)

IE[∆Φ(t)|`(t)]p`(t) ≤
∑

`(t)


 ∑

i∈A(t)

IE[∆ci(t)|`(t)]

 p`(t)

≤
∑

`(t)

[
−ϑεδ2

4
× `(t)m

]
p`(t) = −ϑεδ2

4
× IE[`(t)]m

From Lemma 6 the above becomes: IE[∆Φ(t)] ≤ −ϑεδ2

4
×Θ(1)× IE[Φ(t)].
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3 Approximate Equilibria in Congestion Games with Coali-
tions

In this section, we investigate the rate of convergence to approximate pure NE in an “organised”
setting, where the players are pre-partitioned into static coalitions, and in each round, only the
coalition with the largest improvement in its total delay is allowed to move. Hence, we consider a
setting where selfish moves are coordinated and sequential. Nevertheless, each coalitional move
contains a certain amount of concurrency, since it may change the strategies of many players
simultaneously.

For single-commodity linear congestion games with static coalitions, we establish an up-
per bound on the rate of convergence to approximate NE that is polynomial in the number of
coalitions k and the ratio r of the largest coalition’s size to the smallest coalition’s size, and
logarithmic in the potential of the initial state. In the special case that the number of coalitions
is constant and the coalitions are almost equisized, we obtain a logarithmic upper bound on the
convergence time to approximate NE.

3.1 Model and Preliminaries

A congestion game with coalitions consists of a set of identical players N = [n]4 partitioned into
k coalitions {C1, . . . , Ck}, a set of resources E = {e1, . . . , em}, a strategy space Σi ⊆ 2E \ {∅}
for each player i ∈ N , and a non-negative and non-decreasing latency function `e : IN 7→ IR+

associated with every resource e. In the following, we restrict our attention to games with linear
latencies of the form `e(x) = aex+be, ae, be ≥ 0, and symmetric strategies (or single-commodity
congestion games), where all players share the same strategy space, denoted Σ.

The congestion game is played among the coalitions instead of the individual players. We let
nj denote the number of players in coalition Cj . The strategy space of coalition Cj is Σnj and
the strategy space of the game is Σn1 ×· · ·×Σnk . We should highlight that if the coalitions have
different sizes, the game is not symmetric. We let r ≡ ⌈

maxj∈[k]{|Cj|}/ minj∈[k]{|Cj|}
⌉

denote
the ratio of the largest coalition’s size to the smallest coalition’s size.

A pure strategy sj ∈ Σnj determines a (pure) strategy si
j ∈ Σ for every player i ∈ Cj . A

tuple s = (s1, . . . , sk) consisting of a pure strategy sj ∈ Σnj for every coalition Cj is a state of
the game. For every resource e ∈ E, the load of e due to Cj in sj is fe(sj) = |{i ∈ Cj : e ∈ si

j}|.
For every resource e ∈ E, the load of e in s is fe(s) =

∑k
j=1 fe(sj). The delay of a strategy

σ ∈ Σ in state s is `σ(s) =
∑

e∈σ `e(fe(s)).

4For every integer n ≥ 1, we let [n] ≡ {1, . . . , n}.

22



The individual cost of each coalition Cj in state s is given by the total delay of its players,
denoted τj(s). Formally,

τj(s) ≡
∑
i∈Cj

`si
j
(s) =

∑
e∈E

fe(sj)`e(fe(s))

Computing a coalition’s best response in a network congestion game can be performed by first
applying a transformation similar to that in [15, Theorem 2] and then computing a min-cost flow.

A state s is a pure Nash equilibrium if for every coalition Cj and every strategy s′j ∈ Σnj ,
τj(s) ≤ τj(s−j, s

′
j), i.e. the total delay of coalition Cj cannot decrease by Cj’s unilaterally

changing its strategy5. For some ε ∈ (0, 1), a state s is an ε-Nash equilibrium if for every
coalition Cj and every strategy s′j ∈ Σnj , (1− ε)τj(s) ≤ τj(s−j, s

′
j). An ε-move of coalition Cj

is a deviation from sj to s′j that decreases the total delay of Cj by more than ετj(s). Clearly, a
state s is an ε-Nash equilibrium iff no coalition has an ε-move available in s.

If the current state is not an ε-Nash equilibrium, there may be many coalitions with ε-moves
available. In the following, we consider the (sequential) largest improvement ε-Nash dynamics,
where the coalition that moves next is the one whose best response move is an ε-move and
results in the largest improvement in its total delay. Formally, for a state s that is not an ε-Nash
equilibrium, the coalition that moves next in the largest improvement ε-Nash dynamics, is a
coalition Cj such that (i) for any other coalition Ci,

max
s′j∈Σnj

{τj(s)− τj(s−j, s
′
j)} ≥ max

s′i∈Σni
{τi(s)− τi(s−i, s

′
i)} ,

and (ii) maxs′j∈Σnj {τj(s)− τj(s−j, s
′
j)} > ετj(s) (ties are resolved arbitrarily).

3.2 Convergence to Approximate Equilibria

To bound the convergence time of the largest improvement ε-Nash dynamics, we use the follow-
ing potential function:

Φ(s) = 1
2

∑
e∈E

[fe(s)`e(fe(s)) +
k∑

j=1

fe(sj)`e(fe(sj))] (24)

[19, Theorem 6] proves that Φ is an exact potential function for (even multi-commodity) conges-
tion games with static coalitions and linear latencies.

We prove that for single-commodity linear congestion games with static coalitions, the (se-
quential) largest improvement ε-Nash dynamics converges to an ε-Nash equilibrium in a number

5For a vector x = (x1, . . . , xn), we denote x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x
′
i) ≡

(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).
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of steps that is polynomial in k and r and logarithmic in the potential of the initial state. Hence
for network congestion games, where a coalition’s best response can be computed in polynomial
time by a min-cost flow computation, an ε-Nash equilibrium can be computed in polynomial
time. Furthermore, in the special case that the number of coalitions is constant and the coali-
tions are almost equisized, i.e. when k = Θ(1) and r = Θ(1), the largest improvement ε-Nash
dynamics converges in a logarithmic number of steps.

Theorem 5 In a single-commodity linear congestion game with n players divided into k coali-
tions, the sequential largest improvement ε-Nash dynamics starting from s0 reaches an ε-Nash
equilibrium in at most kr(r+1)

ε(1−ε)
log Φ(s0) steps, where r =

⌈
maxj∈[k]{nj}/ minj∈[k]{nj}

⌉
denotes

the ratio of the largest coalition’s size to the smallest coalition’s size.

Proof. The outline of the proof is similar to that of [8, Theorem 3.4], which holds for symmetric
congestion games only. However, coalitions may be of different size, in which case the game
is not symmetric. Hence, we have to extend the technique of [8] and bound the effect of coali-
tions of different size. On the other hand, our result holds for a more restricted class of latency
functions compared to that in [8].

Let {C1, . . . , Ck} be a set of coalitions, and let s = (sj)j∈[k] be a state that is not an ε-
Nash equilibrium. We prove that every ε-move dictated by the largest improvement dynamics
decreases the potential by at least ε(1−ε)

kr(r+1)
Φ(s). This implies the theorem, since the potential is

initially Φ(s0) and Φ is a non-negative integral function.
Since Φ(s) ≤ ∑k

j=1 τj(s), there is some coalition of total delay at least Φ(s)/k. Let Ci be a
coalition of maximum total delay in s. Clearly, τi(s) ≥ Φ(s)/k. Let s′i be the best response of
Ci to s−i. We distinguish between two cases depending on whether (1 − ε)τi(s) > τi(s−i, s

′
i),

i.e. Ci has an ε-move available in s, or not.
If Ci has an ε-move available, the next move decreases the potential by at least εΦ(s)/k.

More precisely, if Ci moves, then

Φ(s)− Φ(s−i, s
′
i) = τi(s)− τi(s−i, s

′
i) > ετi(s) ≥ ε Φ(s)/k

The equality holds because Φ is an exact potential (see also the proof of [19, Theorem 6]). The
first inequality follows from the hypothesis that Ci makes an ε-move. The last inequality follows
from the definition of Ci as a coalition of maximum total delay in s. If instead of Ci, some
other coalition Cj moves from sj to s′j , by the definition of the largest improvement dynamics,
τj(s)− τj(s−j, s

′
j) ≥ τi(s)− τi(s−i, s

′
i), and the potential decreases by at least ε Φ(s)/k.

If Ci does not have an ε-move available, let Cj be the coalition that moves from sj to s′j
and hence decreases the potential by ετj(s). We show that τj(s) ≥ (1−ε)

kr(r+1)
Φ(s). Therefore, the

potential decreases by at least ε(1−ε)
kr(r+1)

Φ(s).
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Let s̃j be the strategy of coalition Ci obtained by takingdni/nje copies of sj . More precisely,
s̃j is obtained by assigning at mostdni/nje players from Ci to each strategy sν

j , ν ∈ Cj , until all
players in Ci are assigned to some strategy in Σ. Then,

τi(s−i, s̃j) ≤
∑
e∈E

fe(s̃j) `e(fe(s) + fe(s̃j))

≤
∑
e∈E

dni/nje fe(sj) `e(fe(s−j) + (dni/nje+1)fe(sj))

≤ dni/nje(dni/nje+1)
∑
e∈E

fe(sj) `e(fe(s−j) + fe(sj))

≤ r(r + 1)τj(s)

The second inequality holds because by the definition of s̃j , fe(s̃j) ≤ dni/nje fe(sj) for every
resource e. The third inequality follows from the linearity of the latency functions. The last
inequality holds becausedni/nje ≤ r.

Therefore, τj(s) ≥ τi(s−i,s̃j)

r(r+1)
. Since Ci does not have an ε-move available, (1 − ε)τi(s) ≤

τi(s−i, s̃j), which implies that τi(s−i, s̃j) ≥ (1 − ε)Φ(s)/k and that τj(s) ≥ 1−ε
kr(r+1)

Φ(s). Thus,

as soon as Cj switches from sj to s′j , the potential decreases by at least ε(1−ε)
kr(r+1)

Φ(s). ut
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