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Abstract. A new dynamic Interpolation Search (IS) data structure is
presented that achieves O(log log n) search time with high probability
on unknown continuous or even discrete input distributions with mea-
surable probability of key collisions, including power law and Binomial
distributions. No such previous result holds for IS when the probabil-
ity of key collisions is measurable. Moreover, our data structure exhibits
O(1) expected search time with high probability for a wide class of in-
put distributions that contains all those for which o(log log n) expected
search time was previously known.

1 Introduction

The dynamic dictionary search problem is one of the fundamental problems in
computer science. In this problem we have to maintain a set of elements subject
to insertions and deletions such that given a query element y we can retrieve the
largest element in the set smaller or equal to y. Well known search methods use
an arbitrary rule to select a splitting element and split the stored set into two
subfiles; in binary search, each recursive split selects as splitting element, in a
“blind” manner, the middle (or a close to the middle) element of the current file.
Using this technique, known balanced search trees (e.g., (a, b)-trees [11]) support
search and update operations in O(log n) time when storing n elements. In the
Pointer Machine (PM) model of computation, the search time cannot be further
reduced, since the lower bound of Ω(n log n) for sorting n elements would be
violated. In the RAM model of computation, which we consider in this work, a
lower bound of Ω(

√
log n

log log n ) was proved by Beame and Fich [4]; a data structure
achieving this time bound has been presented by Andersson and Thorup [2].

The aforementioned lower bounds can be surpassed if we take into account the
input distribution of the keys and consider expected complexities; in this case,
the extra knowledge about the probabilistic nature of the keys stored in the file
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may lead to better selections of splitting elements. The main representative of
these techniques is the method of Interpolation Search (IS) introduced by Peter-
son [21], where the splitting element was selected close to the expected location
of the target key. Yao and Yao [28] proved a Θ(log log n) average search time for
stored elements that are uniformly distributed. In [9, 10, 18–20] several aspects of
IS are described and analyzed. Willard [26] proved the same search time for the
extended class of regular input distributions. The IS method was recently gener-
alized [5] to non-random input data that possess enough “pseudo-randomness”
for effective IS to be applied. The study of dynamic insertions of elements with
respect to the uniform distribution and random deletions was initiated in [8,
12]. In [8] an implicit data structure was presented supporting insertions and
deletions in O(nε), ε > 0, time and IS with expected time O(log log n). The
structure of [12] has expected insertion time O(log n), amortized insertion time
O(log2 n) and it is claimed, without rigorous proof, that it supports IS. Mehlhorn
and Tsakalidis [16] demonstrated a novel dynamic version of the IS method, the
Interpolation Search Tree (IST), with O(log log n) expected search and update
time for a larger class than the regular distributions. In particular, they consid-
ered µ-random insertions and random deletions3 by introducing the notion of a
(f1, f2)-smooth probability density µ, in order to control the distribution of the
elements in each subinterval dictated by an ID index. Informally, a distribution
defined over an interval I is smooth if the probability density over any subinterval
of I does not exceed a specific bound, however small this subinterval is (i.e., the
distribution does not contain sharp peaks). The class of smooth distributions is a
superset of uniform, bounded, and several non-uniform distributions (including
the class of regular distributions). The results in [16] hold for (nα,

√
n)-smooth

densities, where 1/2 ≤ α < 1. Andersson and Mattson [1], generalized and re-
fined the notion of smooth distributions, presenting a variant of the IST called
Augmented Sampled Forest extending the class of input distributions for which
Θ(log log n) search time is expected. In particular, the time complexities of their
structure holds for the larger class of ( n

(log log n)1+ε , nδ)-smooth densities, where
δ ∈ (0, 1), ε > 0. Moreover, their structure exhibited o(log log n) expected search
time for some classes of input distributions. Finally in [13], a finger search version
of these structures was presented.

The analysis of all the aforementioned IS structures was heavily based on
the assumption that the conditional distribution on the subinterval dictated by
an arbitrary interpolation step remains unaffected. In particular, in [1, 13, 16]
IS is performed on each node of a tree structure under the assumption that
all elements in the subtree dictated by the previous interpolation step remain
µ-random.

Our first contribution in this work (Section 2) is to show that the above
assumption is valid only when the produced elements are distinct (as indeed as-
sumed in [1, 9, 10, 13, 16, 19–21, 26, 28]), i.e., they are produced under some con-

3 An insertion is µ-random if the key to be inserted is drawn randomly with density
function µ; a deletion is random if every key present in the data structure is equally
likely to be deleted.



tinuous distribution where the probability of collision is zero; otherwise, it fails.
This means that the probabilistic analyses of previous dynamic interpolation
search data structures are inapplicable to sequences of non-distinct elements,
produced by discrete probability distributions with measurable (non-zero) prob-
ability of key collisions.

This lack of generalization does not have only theoretical, but also serious
practical implications. There exist applications where we need to store dupli-
cates, and thus the theoretically used density distribution modelling the input
process should not produce distinct elements. A classical example is the creation
of secondary indices in databases [15]. In a secondary index, duplicate values
correspond to different records and they should be stored as distinct entities.
There are also specific applications where interpolation search comes into play.
For instance, the case of searching tables with alphabetic keys (e.g., names, dic-
tionary entries) [18]. The keys in such tables follow a non-uniform, (unknown)
discrete probability distribution and collisions do occur. Other useful applica-
tions of interpolation search in non-uniform data are discussed in [3, 7, 18, 20,
22]. In these papers it has been empirically observed that interpolation search
has a very poor performance in such data. To alleviate this problem a series of
heuristics have been introduced in [3, 7, 18, 20, 22], but no rigorous performance
analyses have been provided. In [18, 19], it was suggested that such an analysis
would be possible if one considers the idea in [10] that translates any continuous
input distribution to a uniform one.

In Section 2, we also show that this idea of taking advantage of the cumulative
distribution [10, 18, 19] does not apply to discrete distributions with measurable
probability of key collisions (a fact that was indeed experimentally verified in
[18]). The above pluralism of efforts demonstrates the necessity to handle non-
uniform data generated by discrete distributions with measurable probability of
key collisions.

One could be tempted to argue that the inapplicability of the previous analy-
ses could be faced by simply storing duplicate elements once; moreover, in these
structures the main rebalancing tool is local/global rebuilding, which can be eas-
ily modified to produce input sequences with distinct elements. Both arguments
are wrong, however, since the new sequences of distinct elements are artificial se-
quences, different from the initial. Consequently, important statistical properties
of the elements are destroyed and the probabilistic analyses fail.

Our second contribution in this paper is a new dynamic interpolation search
data structure (Section 3) that overcomes the above problems, and in which
the elements stored in each subtree preserve the input distribution, conditioning
only on the interval that corresponds to the current subtree. The new structure
is quite simple, it exhibits similar expected O(log log n) search time as the previ-
ous dynamic interpolation structures [1, 9, 10, 16, 19–21, 26, 28]), its probabilistic
analysis is always valid irrespectively of the distinctness or not of the elements in
the input sequence (i.e., regardless of whether they are produced by a continuous
or a discrete distribution), it applies to the same classes of distributions as those
in [1, 16] and it holds with high probability, while those in [1, 9, 10, 16, 19–21, 26,



28]) did not grant such guarantee. Finally, as a by-product of our construction,
we get a dynamic search data structure with O(1) expected search time for a
wide class of input distributions (Section 3). This result significantly extends the
class of input distributions in [1] under which O(1) expected search time was
possible. In addition, this search time also holds with high probability, while
those in [1] did not grant such property.

Although the class of smooth distributions includes, for appropriate choices
of f1 and f2, any other probability distribution, the effective range of f1, f2 for
which O(log log n) IS time is achieved excludes distributions of major practical
importance; for instance, power law [17], Binomial, etc. We are able to show
(Section 3) that a slight modification of our data structure achieves O(log log n)
time with high probability for power law and Binomial distributions. No previ-
ous IS structure achieves such a time bound for these distributions (recall the
deterioration of IS that was experimentally observed in [3, 7, 18, 20, 22]).

Our data structure is robust (as those in [1, 13, 16, 26]), i.e., it remains efficient
without apriori knowledge of the particular continuous or discrete distribution.
Due to space limitations, several details and proofs are omitted and can be found
in the full version [14].

2 Probabilistic Analysis of the IS-tree Revisited

Consider an unknown continuous probability distribution over the interval [a, b]
with density function µ(x) = µ[a, b](x). Given two functions f1 and f2, then
µ(x) = µ[a, b](x) is (f1, f2)-smooth [1, 16] if there exists a constant β, such that
for all c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all integers n, it holds that

Pr[X ∈ [c2− c3 − c1

f1(n)
, c2] |c1 ≤ X ≤ c3] =

∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤ βf2(n)
n

(1)

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for
c1 ≤ x ≤ c3 where p =

∫ c3

c1
µ(x)dx. Similarly, for an unknown discrete probability

distribution of elements x1, . . . , xN spread over [a, b], with probability function
µ(xi) = µ[a, b](xi) we have

Pr[c2 − c3 − c1

f1(n)
≤ X ≤ c2|c1 ≤ X ≤ c3] =

c2∑

c2− c3−c1
f1(n)

µ[c1, c3](xi) ≤ βf2(n)
n

(2)

where µ[c1, c3](xi) = 0 for xi < c1 or xi > c3, and µ[c1, c3](xi) = µ(xi)/p
for xi ∈ [c1, c3] where p =

∑
xi∈[c1, c3]

µ(xi). Intuitively, function f1 parti-
tions an arbitrary subinterval [c1, c3] ⊆ [a, b] into f1 equal parts, each of length
c3−c1

f1
= O( 1

f1
); that is, f1 measures how fine is the partitioning of an arbitrary

subinterval. Function f2 guarantees that no part, of the f1 possible, gets more
probability mass than β·f2

n ; that is, f2 measures the sparseness of any subinterval
[c2 − c3−c1

f1
, c2] ⊆ [c1, c3]. The class of (f1, f2)-smooth distributions (for appro-

priate choices of f1 and f2) is a superset of both regular and uniform classes



of distributions, as well as of several non-uniform classes [1, 16]. Actually, any
probability distribution is (f1, Θ(n))-smooth, for a suitable choice of β.

Consider the random file S = {X1, . . . , Xn}, where each key Xi ∈ [a, b] ⊂ IR,
obeys an unknown (discrete or continuous) distribution µ, i = 1, . . . , n. Let P =
{X(1), . . . , X(n)} be an increasing ordering of file S. The goal is to find the largest
key X(j) ∈ P that precedes a target element y. We describe how the Augmented
Sampled Forest (ASF) [1], which is a generalization of the Interpolation Search
Tree (IST) [16], can be used to search for this target element y.

Assume that the (discrete or continuous) distribution µ is (I(n), n/R(n))-
smooth, where I(n), R(n) are two nondecreasing functions. The ASF is a two
level data structure; the top level is an ideal static IST [16] while the bottom level
is a sequence of buckets. The structure is maintained by using the global rebuild-
ing technique and its expected search time is dominated by the expected search
time at the top level. At the top level, the root node has R(n) children, and sim-
ilarly each child node has R( n

R(n) ) sub-children. The root node corresponds to
the ordered file P of size n. Each child corresponds to a part of file P of size n

R(n) .
That is, these R(n) children partition the ordered file P into R(n) equal subfiles
P1, . . . , PR(n), of the form {X(1), . . . , X( n

R(n) )
}, . . . , {X((R(n)−1) n

R(n)+1), . . . , X(n)}.
Each node of this tree contains a pair of arrays, namely ID and REP, that help
to locate the appropriate child eligible to contain the target element y. In the
root node the set of indices of the ID array is [1, . . . , I(n)] and the set of indices
of the REP array is [1, . . . , R(n)]. The role of the ID array of the root node is
to partition the interval [a, b] into I(n) equal parts, each of length b−a

I(n) . When
searching for an element y, the first interpolation step determines within O(1)
time the number j

j =
⌊

y − a

b− a
I(n)

⌋
+ 1 (3)

which denotes the j-th interval Ij of length b−a
I(n) that contains the target y:

Ij =
[
a + (j − 1)

b− a

I(n)
, a + j

b− a

I(n)

]
(4)

The role of the array REP[1, . . . , R(n)] of the root node is to partition the ordered
file P into R(n) equal subfiles, each of size n

R(n) . Index REP[i], i = 1, . . . , R(n),
points to the i-th subfile Pi, where Pi = {X ∈ P | X((i−1) n

R(n) )
< X ≤ X(i n

R(n) )
}.

Alternatively, REP[i] can be seen as the representative of the element X(i n
R(n) )

of Pi. The first interpolation step, provided by Eq. (3), determines within O(1)
time the subinterval Ij described in Eq. (4), where the target element y belongs.
If in this subinterval correspond O(1) REP indices, then within O(1) time we can
determine the unique REP index that corresponds to the subfile that element y
may belong. Hence, the search efficiency highly depends on the distribution of
the REP indices over each ID subinterval of [a, b]. In other words, each ID index
that corresponds to a dense subinterval of [a, b] causes a great slow-down of the



search speed. Most importantly, suppose that the second interpolation step now
yields REP[s − 1] < y ≤REP[s]. Then, y must be searched for into the subfile
Ps = {X((s−1) n

R(n) ), . . . , X(s n
R(n) )}. A crucial observation is that its endpoints

X((s−1) n
R(n) ), X(s n

R(n) ) may in general be neither µ-random nor smooth.

The analyses in [1, 13, 16] assume that the elements into an arbitrary sub-
file dictated by an interpolation step remain µ-randomly distributed conditioned
on the subinterval that all these elements belong, i.e., for a random element
X = λ in subfile Pv with endpoints a′ = X(v−1) n

R(n)
and b′ = Xv n

R(n)
, its

probability density is given by Expression (5). Also, the analyses in [10, 18,
19] ingeniously apply the cumulative distribution function F on the ordered
keys in P = {X(1), . . . , X(n)}, yielding PF = {F (X(1)), . . . , F (X(n))}. Now,
each F (X(i)) ∈ PF is uniformly distributed over [0, 1], since Pr[F (X(i)) ≤
t] = Pr[X(i) ≤ F−1(t)] = F (F−1(t)) = t (see [6, pp. 36-37]). Thus, file PF

is very suitable for applying IS on it; i.e., to search for target key y, split
PF on key F (X(jy)) ≈ y−F (X(1))

F (X(n))−F (X(1))
, and recursively apply IS to P−F =

{F (X(1)), . . . , F (X(jy))}, if y ≤ F (X(jy))n, otherwise to P+
F = PF \ P−F . How-

ever, this approach also tacitly assumes that the conditional distribution of the
keys in subfiles P−F , P+

F remains unaffected and obeys Expression (5) with a′, b′

the corresponding endpoints of the appropriate subfile P−F or P+
F .

In the following, we prove the validity of these assumptions under continuous
or discrete distributions with zero probability of element collisions, and we will
depict the subtle case of discrete distributions with measurable probability of
key-collisions where all the above assumptions fail.
Continuous or discrete distributions with zero probability of element
collisions. Consider the simple case of three stored elements (random variables)
X1, X2, X3 ∈ [a, b] drawn according to some µ-random smooth distribution (the
general case of n variables can be easily deduced from this case by a simple in-
duction argument). These elements are identically and independently distributed
and it is assumed that they take distinct values. Since the collision probability for
continuous distributions is 0, we concentrate our discussion to distinct elements.
The conditional, on the arbitrary interval with fixed endpoints (a′, b′] ⊆ [a, b],
probability density equals

Pr[X = λ | a′ < X ≤ b′] =
Pr[X = λ]

Pr[X ≤ b′]− Pr[X ≤ a′]
. (5)

According to definitions (1) and (2), Exp. (5) plays a crucial role in tuning the
probability mass in subinterval (a′, b′] using parameters f1, f2. For each i = 1, 2
the corresponding REP[i] is a new random variable defined as REP[1] ≡ X(1) =
min{X1, X2, X3}, REP[2] ≡ X(3) = max{X1, X2, X3}. We want to show that
the random element X that belongs into the subinterval [REP[1], REP[2]] is
µ-randomly distributed. We have

Pr[X = λ | REP[1] = a′ < X ≤ REP[2] = b′] = Pr[X = λ | X(1) = a′ ∩X(3) = b′]

=
Pr[X = λ ∩X(1) = a′ ∩X(3) = b′]

Pr[X(1) = a′ ∩X(3) = b′]
, (6)



where a′ < λ < b′. The event {X(1) = a′ ∩ X(3) = b′} occurs if at least one of
the following mutually disjoint events occur:

{X1 = a′, X2 = b′, a′ < X3 < b′}, {X2 = a′, X1 = b′, a′ < X3 < b′},
{X1 = a′, X3 = b′, a′ < X2 < b′}, {X3 = a′, X1 = b′, a′ < X2 < b′},
{X2 = a′, X3 = b′, a′ < X1 < b′}, {X3 = a′, X2 = b′, a′ < X1 < b′}. (7)

Hence, Pr[X(1) = a′∩X(3) = b′] = 6 Pr[X = a′] Pr[X = b′] Pr[a′ < X < b′] (8)

Similarly, the event {X = λ ∩ X(1) = a′ ∩ X(3) = b′}, with a′ < λ < b′, occurs
if one of the following mutually disjoint events occur:

{X2 = λ, X3 = a′, X1 = b′}, {X1 = λ, X2 = a′, X3 = b′},
{X3 = λ, X1 = a′, X2 = b′}, {X1 = λ, X3 = a′, X2 = b′},
{X3 = λ, X2 = a′, X1 = b′}, {X2 = λ,X1 = a′, X3 = b′}. (9)

Combining (8) and (9), the conditional probability (6) becomes

Pr[X = λ|X(1) = a′ ∩X(3) = b′] =
6Pr[X = λ] Pr[X = a′] Pr[X = b′]

6 Pr[X = a′] Pr[X = b′] Pr[a′ < X < b′]

=
Pr[X = λ]

Pr[a′ < X < b′]
(10)

where a ≤ a′ < λ < b′ ≤ b. This probability equals Exp. (5) and thus is µ-random
and consequently smooth (due to definitions (1) and (2)). Hence, we have shown
that in the case where the input elements have non measurable probability of
collisions, all previous analyses carry over correctly.
Discrete distributions with measurable probability of element colli-
sions. In this case, the event {X(1) = a′ ∩ X(3) = b′} occurs if, besides the
events listed in (7), at least one of the following mutually disjoint events occur:

{X1,2 = a′, X3 = b′}, {X1,2 = b′, X3 = a′}, {X1,3 = a′, X2 = b′},
{X1,3 = b′, X2 = a′}, {X2,3 = a′, X1 = b′}, {X2,3 = b′, X1 = a′} (11)

Hence, Pr[X(1) = a′ ∩X(3) = b′] = 3 Pr[X = a′]2 Pr[X = b′] +

3Pr[X = a′] Pr[X = b′]2 + 6 Pr[X = a′] Pr[X = b′] Pr[a′ < X < b′] (12)

If a ≤ a′ < λ < b′ ≤ b, by combining (11) and (12), now Expression (6) becomes

Pr[X = λ|X(1) = a′ ∩X(3) = b′] =
Pr[X = λ]

Pr[X=a′]+Pr[X=b′]
2 + Pr[a′ < X < b′]

(13)

and if λ = a′ or λ = b′, Expression (6) becomes the half of Expression (13).
Clearly, (13) is different from (5) and in general may be neither µ-random nor
smooth (see the full version of the paper [14] for more details). We conclude
that, when the probability of collisions is measurable, the net effect of choosing,
as endpoints of subintervals, not deterministically obtained values is to destroy
the smoothness of the distribution of the elements that belong in it.



3 The new IS data structure

Consider a dynamic file S containing O(n) elements drawn from the interval
[a, b], according to a continuous or discrete distribution µ, which is (f1, f2) =
(nα, nδ)-smooth with arbitrary α, δ ∈ (0, 1). Our structure consists of Layers
of bins. The 1st Layer partitions interval [a, b] into f1(n) equal-length bins. We
define4 as BIN(j1), the j1-th bin in the 1st Layer of bins, which corresponds
to the subinterval [a + (j1 − 1) b−a

f1(n) , a + j1
b−a

f1(n) ] = [aj1 , bj1 ] ⊂ [a, b], j1 =
1, . . . , f1(n). Any key X ∈ S is stored in BIN(j1), iff X is spread according to
µ into the subinterval [aj1 , bj1 ], j1 = 1, . . . , f1(n). This subfile Sj1 ⊆ S consists
of nj1 elements and is stored in BIN(j1), where n1 + . . . + nf1(n) = |S| = O(n),
and j1 = 1, . . . , f1(n) = nα.

The 2nd Layer of bins is constructed by recursively partitioning each BIN(j1)
of the 1st Layer into f1(nj1) equal-length bins, j1 = 1, . . . , f1(n), i.e., BIN(j1)
containing nj1 elements is partitioned into equal-length bins BIN(j1, j2), with
corresponding indices j1 = 1, . . . , f1(n) = nα and j2 = 1, . . . , f1(nj1) = (nj1)

α.
Now BIN(j1, j2) corresponds to the subinterval [aj1 + (j2 − 1) bj1−aj1

f1(nj1 ) , aj1 +

j2
bj1−aj1
f1(nj1 ) ] = [aj1,j2 , bj1,j2 ] ⊂ [aj1 , bj1 ] ⊂ [a, b]. An arbitrary element X ∈ S

is stored in BIN(j1, j2), iff X is spread according to µ into the subinterval
[aj1,j2 , bj1,j2 ], j2 = 1, . . . , f1(nj1) and j1 = 1, . . . , f1(n). The subfile Sj1,j2 ⊆ Sj1

consists of nj1,j2 elements stored in BIN(j1, j2), such that nj1,1+. . .+nj1,f1(nj1 ) =
|Sj1 | = nj1 .

We proceed recursively for the subsequent Layers of bins; however, no bin
with less than poly log n keys becomes further partitioned (n is the initial number
of keys in the structure), i.e., it becomes a leaf of the structure. Finally, the
elements associated with each leaf bin are stored as a q∗-heap. The q∗-heap [27]
is a search tree data structure having the following useful property: let M be
the current number of elements in the q∗-heap and let N be an upper bound on
the maximum number of elements ever stored in the q∗-heap. Then, insertion,
deletion and search operations are carried out in O(1 + log M/ log log N) worst-
case time after an O(N) preprocessing overhead. Choosing M = polylog(N), all
operations can be performed in O(1) time. Hence, by setting N to be n, the use
of q∗-heap at the leaves of the structure permits the manipulation of search and
update operations in the leaf bins in worst-case O(1) time.

In the above data structure, we can search for a target element y as follows.
Given that a bin containing y at the current Layer has been located, we perform
interpolation search on its offspring of bins to locate the particular bin of the
next Layer that y may belong. Since target y may belong in at most one bin
of each Layer, as the Layers evolve, this process highly prunes the size of the
search space (the occupancy number of the currently scanned bin).

The careful reader should have noticed that the endpoints selected as rep-
resentatives in each subtree are independent of the particular characteristics of
the input distribution µ, thus confronting the weakness of the constructions in

4 From now on, the subscript i of ji will denote the i-th Layer of bins.



all previous approaches. This crucial randomness invariance property of the new
data structure is given by Lemma 1 (whose proof is in [14]).

Lemma 1. Consider an arbitrary bin BIN(j1, . . . , ji) with corresponding subin-
terval [aj1,...,ji

, bj1,...,ji
] of the ith Layer of bins. Then, the nj1,...,ji

elements in
BIN(j1, . . . , ji) are µ-randomly distributed in the subinterval [aj1,...,ji

, bj1,...,ji
].

Theorem 1 below shows that w.h.p. each IS step prunes drastically the size
of the dictated subfile (its proof is in [14]), i.e., a child bin has size at most
f2(elements of father bin).

Theorem 1. Consider the bin BIN(j1, . . . , ji) of the i-th Layer of bins and let
nj1,...,ji be its number of balls at the end of the t-th insertion/deletion operation.
These balls are µ-randomly distributed in its subinterval [aj1,...,ji

, bj1,...,ji
]. Then,

Pr[∃ BIN(j1, . . . , ji, ji+1) : nj1,...,ji,ji+1 = ω(f2(nj1,...,ji
))] → 0, as n →∞,

where ji+1 = 1, . . . , f1(nj1,...,ji).

This in turn yields the search time bound in Lemma 2 below (its proof in [14]).

Lemma 2. For every target element y, the path from its leaf bin to the root of
the tree will have length not exceeding log log n with high probability.

Moreover, for every node v of the tree, the subtree of any of its children will
have at most half the size of the subtree of v, with high probability. We call
a tree with these properties ideal; our high probability bound implies that for
a given set of µ random elements with cardinality n, such a tree can be found
and be built in O(n) expected time. Moreover, by using the arguments in [16,
Lemma 2, p. 626], we can straightforwardly show that the space complexity of
the described data structure is linear.

Consequently, by embedding the ideal version of our new data structure as the
top level in the Augmented Sampled Forest (ASF) of [1] and by maintaining the
leaf bins as a q∗-heap [27], while keeping in parallel a worst-case data structure
[2] (in a manner e.g., similar to [13]), we get the following theorem.

Theorem 2. Consider a file with n (not necessarily distinct) elements that was
produced by a sequence of µ-random insertions and random deletions, where
µ is a (nα, nδ)-smooth density, for any arbitrary 0 < α, δ < 1. Then, there
exists a dynamic interpolation search tree with O(log log n) expected search time
with high probability; the space usage of the data structure is Θ(n), the worst-
case update time (position given) is O(1), and the worst-case search time is
O(

√
log n/ log log n).

Remark. It is easy to see that every part of our analysis remains valid if we
replace the function f1(n) = nα with the function f1(n) = n

(log log n)1+ε , where ε >

0. Hence, our structure can handle within the same time and space complexities,
as those mentioned in Theorem 2, the larger class of ( n

(log log n)1+ε , nδ)-smooth
densities.



The difference of our data structure with those in [1, 16] is in the absence of
REP arrays. These arrays guarantee that when we move to a child of a node
whose subtree contains N nodes, then this child node will be the root of a
subtree containing

√
N nodes. In our case, this is not guaranteed (it is easy

to come up with a setting where all elements are in a very small region and
thus the height of our tree structure is large). However, assuming that the input
elements are generated by a smooth distribution, it is very unlikely that this
bad scenario will happen, since we prove that the height of our tree structure
is doubly logarithmic with high probability. Our data structure is in a sense
“similar” to other data structures that partition the space (e.g., quadtrees).
Indeed, our structure partitions the universe until each region has a bounded
number of elements. On the contrary, the use of REP arrays allows for a partition
according to the number of elements (like e.g., in range trees), thus guaranteeing
that each partition has geometrically less elements.

O(1) search time with high probability. We study a random process of
rn insert (or delete) operations on this structure where in each operation, j =
1, . . . , rn, with probability p = (0, 1] a new element X ∈ [a, b] obeying an un-
known (f1(n), f2(n)) = ( n

g(n) , ln
O(1) n)-smooth distribution µ, is inserted, oth-

erwise a random existing key is deleted; here g(n) denotes a function which is
either constant or slowly growing with n (i.e., ln∗ n). The class (f1(n), f2(n)) =
( n

g(n) , ln
O(1) n)-smooth distributions includes that of bounded ((n, 1)-smooth)

densities, for which O(1) expected search time was known [1], as well as all
those for which a o(log log n) expected search time could be achieved [1]; for in-
stance, the density µ[0, 1](x) = − ln x is (n/(log∗ n)1+ε, log2 n)-smooth, and an
expected search time complexity of Θ(log∗ n) was given in [1]. Our result implies
O(1) search time with high probability for all the aforementioned densities.

The idea is as follows. We can prove (see [14]) that during each step j =
1, . . . , rn, there are O(n) elements stored. Then Theorem 1 establishes that dur-
ing each step j = 1, . . . , rn, no bin of the 1st Layer gets more than poly log n
elements (balls), with high probability. That is, the whole tree-structure reduces
to a single Layer. Since each BIN(j1), j1 = 1, . . . , f1(n), is implemented as a
q∗-heap, we can search for element y in it within O(1) time. Finally, we can de-
termine within O(1) time the bin BIN(j1) that y may belong using the Expr. (3).

Power Law Distributions. As shown in Section 2, the efficiency of an ar-
bitrary interpolation step dictating subtree p highly relies on how the total of
np elements belonging to subtree p are sparsely distributed in its associated
subinterval [ap, bp]. This sparsity fails for power laws, as we show next. Let the
discrete universe of possible keys be U = {1, 2, . . . , N}, with N arbitrarily large,
spread over interval I = [1, b] and listed in decreasing frequency. Each random
key X is drawn according to the power law distribution Pr[X ≥ x] = cx−β for
constants c, β > 0 [17, Sec. 2]. The probability mass accumulated on subinterval
I1 = [1, nα] containing the subset of keys {1, . . . , nα} ⊆ U equals:

Pr[X ∈ I1] = 1− Pr[X ≥ nα] = 1− c

(nα)β
= ω(

nδ

n
), δ < 1 (14)



which according to definition (2) means that subinterval I1 is not (f1(n), f2(n)) =
(nα, nδ)-smooth for any constant 0 < α < 1. This rules out any attempt to
employ IS on the whole interval I = [1, b]. However, I2 = I \I1 can be arbitrarily
sparse, as a function of α, since Pr[X ∈ I2] = Pr[X ≥ nα] = c

(nα)β and by setting

α = α(β) ≥ 1
β , we get Pr[X ∈ I2] = O( 1

n ) = O( f2(n)
n ), with f2(n) = poly log n.

That is, if we draw a random key X ∈ [1, b] according to power law Pr[X ≥ x] =
cx−β , it will belong to an arbitrary subinterval of I2 with probability O( f2(n)

n ) ≤
poly log n

n . The later implies that the power law distribution with parameters c, β,
if restricted to I2 remains (f1(n), poly log n)-smooth. Thus, if the target element
y ∈ I2, then Theorem 2 guarantees that IS on I2 takes O(1) search time with
high probability. On the other hand, observe that the discrete subuniverse of U ,
which is spread in [1, nα(β)], has cardinality |{1, . . . , nα(β)}| = O(nα(β)). That
is, if the target y belongs to I1, then it can be searched amongst nα(β) possible
keys, which is considerably smaller that the universe’s cardinality N = |U |.
Therefore, if y ∈ I1, we can employ the van Emde Boas structure [24, 25], which
yields a time complexity O

(
log log

(|{1, . . . , nα(β)}|)) = O
(
log log

(
nα(β)

))
=

O(log log n). The splitting key nα(β) yielding Pr[X ∈ I2] = O( 1
n ) = O( f2(n)

n ),
with f2(n) = poly log n, can be approximated by a key x∗ during the initialization
of the structure, without knowledge of the parameters (c, β) (details are given
in [14]).

Binomial Distributions. We can identify the dense subinterval I1 = [np −
∆,np + ∆] ⊆ [a, b] around the mean value np for any binomial distribution
B(n, p). Notice that |I1| = 2∆ and since we can safely set ∆ = o(n), we can sim-
ilarly apply a van Emde Boas structure on I1. Taking advantage of the binomial
sharp tail bounds, the remaining subinterval I2 = [a, b] \ I1 will remain sparse
enough to apply IS. The rest of the details follow similarly to those for power
law distributions.

Acknowledgment. We are indebted to Lefteris Kirousis for various helpful
discussions.
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