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Abstract

The problem of determining the unsatisfiability threshold for random 3-SAT formulas con-
sists in determining the clause to variable ratio that marks the experimentally observed
abrupt change from almost surely satisfiable formulas to almost surely unsatisfiable. Up to
now, there have been rigorously established increasingly better lower and upper bounds to
the actual threshold value. In this paper, we consider the problem of bounding the threshold
value from above using methods that, we believe, are of interest on their own right. More
specifically, we show how the method oflocal maximum satisfying truth assignmentscan
be combined with results for theoccupancy problemin schemes of random allocation of
balls into bins in order to achieve an upper bound for the unsatisfiability threshold less than
4.571. In order to obtain this value, we establish a bound on theq-binomial coefficients (a
generalization of the binomial coefficients). No such bound was previously known, despite
the extensive literature onq-binomial coefficients. Finally, to prove our result we had to
establish certain relations among the conditional probabilities of an event in various prob-
abilistic models for random formulas. It turned out that these relations were considerably
harder to prove than the corresponding ones for unconditional probabilities, which were
previously known.
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1 Introduction

Let φ be a random3-SAT formula constructed by selecting uniformly and with
replacementm clauses from the set of all possible clauses with three literals overn
variables. We call this model for constructing random formulas theGmm model; the
doublem in the subscript refers to the possibility of replacement. Also,letGm be
the probabilistic model where repetition of clauses is not allowed and letGp be
the model where each clause has independent probabilityp to be included in the
formula. More on the last two alternative models in Section 4. It has been observed
experimentally that as the numbersn,m of variables and clauses, respectively, tend
to infinity, while the ratiom/n remains equal to a constantr, the random formulas
exhibit a threshold behavior: ifr > 4.2 (approximately) then almost all random
formulas are unsatisfiable while the opposite is true ifr < 4.2. The constantr is
called thedensityof the formula. On the theoretical side, Friedgut [10] has proved
that there exists a sequenceγn such that for anyε > 0, if finally for all n, r ≤ γn−ε,
then the probability of a random formula being satisfiable approaches 1, while if
finally for all n, r ≥ γn + ε, then this probability approaches 0. It has not been
rigorously proved that the sequenceγn converges. Thus, proving that a threshold
value exists and if it actually exists finding itsexactvalue is still a major problem
in probability and complexity theory. Up to now, only upper and lower bounds
have been rigorously established for the threshold value (formally, for the terms
of the sequenceγn, as a threshold may not exist). The best lower bound has been
recently proved by D. Achlioptas and G. Sorkin in [1] and it is 3.26. Concerning
the upper bound, Dubois et al. in [6] announced that they have obtained the value
4.506. After the submission of our paper, a full proof for this upper bound was
provided by Dubois et al. in [7]. Previously, Janson et al. [12] had established the
value 4.596.

In this paper, we address the upper bound question for the unsatisfiability threshold
from a new perspective that combines the idea oflocal maximumsatisfying truth
assignments proposed by Kirousis et al. in [14] with the sharp probability estimates
for the occupancy problem in schemes of random allocation of balls into bins given
by Kamath et al. in [13] (for an excellent introduction to the occupancy problem
see [8,17]). With this approach, we obtain as an upper bound the number 4.571.
The last author, following a similar approach, gives in his Ph.D. thesis [23] a bound
of 4.5793 but without resorting toq-binomial coefficients (a generalization of the
binomial coefficients). To obtain the value of 4.571, we had to establish an upper
bound to theq-binomial coefficients. Despite the extensive literature onq-binomial
coefficients (see, e.g., [9,11,16]), no such bound was, to the best of our knowledge,
known.

Also, to obtain our result we had to carry the computation of a conditional prob-
ability in Gp . There are classical results (see e.g., [2]), supported by intuition,
that relate the unconditional probabilities of an event inGp andGm , respectively.
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It turned out that getting corresponding results for conditional probabilities was
harder, and moreover intuition offered no reliable guidance in this case. Section 4
contains these results. We consider them as a non-trivial part of this work.

2 The method of local maxima

In this section, we will state briefly the methodology followed in [14] and state an
inequality that bounds from above the probability that a random formula is satisfi-
able. This inequality will be the starting point of our considerations.

Let S be the class of all truth assignments ton variables andAn the (random) class
of truth assignments that satisfy a random formulaφ. For a givenA ∈ S, a single
flip sf is the change inA of exactly one specifiedFALSE value toTRUE. By Asf we
denote the truth assignment that results from this change. We define asA1

n ⊆ An

the random class of truth assignments with the following two properties:

• A |= φ,
• for every single flipsf , Asf 6|= φ.

A partial order can be defined onS: a truth assignmentA is smaller than a truth
assignmentA′ iff there exists ani such that bothA andA′ assign the same value to
the variablesxj, for all j < i, while A assignsFALSE to xi andA′ assignsTRUE to
it. The random classA1

n coincides with the set of satisfying truth assignments that
arelocal maximawith respect to the partial order defined above, among satisfying
truth assignments that differ in one bit.

A more restricted random class of truth assignments results fromA1
n if we extend

the scope of locality in obtaining a local maximum. Adouble flipis the change of
exactly two specified variablesxi andxj, with i < j, wherexi is changed from
FALSE to TRUE andxj from TRUE to FALSE. In analogy with single flips, byAdf

we denote the truth assignment that results fromA if we apply the double flipdf .
Let A2

n be defined as the set of truth of assignmentsA that have the following
properties:

• A |= φ,
• for all single flipssf , Asf 6|= φ,
• for all double flipsdf , Adf 6|= φ.

Our starting point is the following inequality:

LEMMA 1 [14]

Pr[φ is satisfiable] ≤ E[|A2
n|] =
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Pr[A |= φ]
∑

A∈S

(
Pr[A ∈ A1

n | A |= φ] · Pr[A ∈ A2
n | A ∈ A1

n]
)

=

(7/8)rn
∑

A∈S

(
Pr[A ∈ A1

n | A |= φ] · Pr[A ∈ A2
n | A ∈ A1

n]
)
. (1)

In order to find an upper bound for the unsatisfiability threshold, it suffices to find
the smallest possible value forr for which the right-hand side of (1) tends to 0.
Given a random formulaφ and a truth assignmentA, the probability that all single
flips of A falsify the random formulaφ, i.e., Pr[A ∈ A1

n | A |= φ], is called the
probability that the single flips ofA areblocked. Similarly, thePr[A ∈ A2

n | A ∈
A1

n] is called the conditional probability that the double flips are blocked. The con-
ditional in this case refers to the event that the single flips ofA are blocked. In Sec-
tion 3, we compute asymptotically the probability that the single flips are blocked.
In Section 4, we introduce some machinery for translating the conditional proba-
bility that the double flips are blocked from the modelGmm to the modelGp (these
models will formally defined in the same Section). InGp it is easier to handle the
correlations between the events that each particular double flip is blocked. In Sec-
tion 5, we establish an upper bound for the conditional probability that double flips
are blocked (inGmm). Finally, in Section 6, we compute an upper bound for the sum
in (1). For that, we prove an asymptotic formula for theq-binomial coefficients. We
then put everything together to establish the value 4.571.

3 Computation of the probability that the single flips are blocked

In this section, we will find an exact asymptotic expression forPr[A ∈ A1
n |A |= φ]

using a sharp estimate for the occupancy problem provided in [13]. The formula
obtained in [14] was not exact. Such an exact expression was given by Dubois
and Boufkhad [5] (who independently from [14] introduced the approach of single
flips), but they used a different approach. Later, Zito in his thesis [23] also found an
exact expression, with a method very similar to the one in this paper (he used the
game of coupon collecting).

REMARK 1 Notice that the conditionalA |= φ is satisfied if we assume that the
m = rn clauses selected to form the formula are chosen from the7

(
n
3

)
clauses

that are satisfied byA. As in the sequel we will always work under the conditional
A |= φ, for a given truth assignmentA, we assume for the rest of the paper that all
events are conditional onA |= φ and that all clauses are selected from those that
are satisfied byA. Also, for the rest of the paper, we will omit the conditionalA |=
φ, unless its omitting may cause confusion. Actually, since wea priori assume that
clauses are selected from the ones satisfied byA, the probabilities involved can be
considered as unconditional. Notice that we cannot do the same if the conditional
involved is that all single flips are blocked.
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Let φ be a formula considered as a multiset ofrn clauses. Given a set of clauses
B, the expressionφ ∩ B has the meaning of set intersection with the additional
requirement that a clause that appears in the intersection appears as many times as
it appears inφ.

Given a truth assignmentA and a variablex such thatA(x) = FALSE, the set of
blocking clausesof A for the variablex, denoted byB(A, x), is the set of clauses
that have a unique literal that is satisfied byA and this is¬x. Obviously, the single
flip of A on x falsifies a formulaφ iff φ ∩ B(A, x) 6= ∅. Let BA be the set of
blocking clauses ofA for all variables that areFALSE underA.

We partition the set of all formulasφ satisfiable byA with respect the number
l, l = 0, . . . , rn, of blocking clauses fromBA that are contained inφ. Also we
assume thatA hask FALSE variables. Then we have:

Pr[A ∈ A1
n ] =

rn∑

l=0

(
Pr[A ∈ A1

n | |φ ∩BA| = l] · Pr[|φ ∩BA| = l ]
)
. (2)

To computePr[A ∈ A1
n | |φ ∩ BA| = l], first observe that for every variablex

such thatA(x) = FALSE we have|B(A, x)| =
(

n−1
2

)
. Therefore, for anyx such

thatA(x) = FALSE, a clause inBA has uniform probability(n−1
2 )

k(n−1
2 )

= 1
k

to belong

to B(A, x). Also, for every pair of distinct variablesx, y such thatA(x) = A(y) =
FALSE, we haveB(A, x)∩B(A, y) = ∅. Therefore, if we view each of the mutually
disjoint subsetsB(A, x) as a bin and each clause inBA as a ball, the distribution
of the clauses inBA into the subsetsB(A, x), wherex is FALSE underA, can be
viewed as a uniform at random allocation of balls into bins. As a consequence, the
eventA ∈ A1

n, conditional on the event|φ ∩ BA| = l, is true iff after throwingl
balls uniformly at random intok bins, as described above, none of the bins remains
empty. This is an instance of theoccupancy problem.

Before we continue, let us describe the notation for asymptotics that we will use.
Given two functionsF andG of n, F ∼ G denotes thatlimn→∞

F (n)
G(n)

= 1 and
F ³ G denotes thatln(F ) ∼ ln(G).

The following theorem by Kamath et al. ([13]) gives a sharp estimate for the prob-
ability thatw bins remain empty:

Theorem 1 [13] Let W be the random variable that gives the number of empty
bins after the placement, uniformly and independently, ofl balls intok bins, where
bothl andk are constant multiples ofn. Letc = l

k
≥ 1. If we denote byH(l, k, w)

the probability thatW = w and if, in addition,|w − E[W ]| = Ω(k) then

H(l, k, w) ³ e−k(
∫ 1−w

k
0

ln( sw−x
1−x

)dx−c ln(sw)),
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wheresw is the solution of the equation

w = k(1− sw(1− e−c/sw)). (3)

For our purposes, since we require to have at least one blocking clause for each of
thek FALSE values ofA, or equivalently no bin to remain empty, we setw = 0.
Then we have:

|w − E[W ]| = |0− k(1− 1

k
)l| = Ω(k).

Let nowk, the number ofFALSE values ofA, beαn andl, the number of blocking
clauses, beβrn, for someα, β ∈ [0, 1] such thatβ ≥ α

r
. Thenc = βr

α
. From (3) we

get:

0 = k[1− s0(1− exp
− c

s0 )] ⇔ ln(s0 − 1) = ln(s0)− c

s0

.

It can be verified that because of the above equality

s0 =
c

c + W(−c exp(−c))
,

whereW is a special function known as LambertW function (for details about this
function see [4]). In addition it can be easily verified that:

1∫

0

ln(
s0 − x

1− x
)dx = s0 ln(s0)− s0 ln(s0 − 1) + ln(s0 − 1) = c + ln(s0 − 1).

Thus,
H(l, k, 0) ³ exp [−k(c + ln(s0 − 1)− c ln(s0))] .

Therefore:

Pr[A ∈ A1
n | |φ ∩BA| = l] = H(k, l, 0)

³ exp [−k(c + ln(s0 − 1)− c ln(s0))] . (4)

Now to computePr[|φ ∩ BA| = l ], i.e. the second probability appearing in the
right-hand side of (2), we consider the sequence of clause selections forφ, drawn
from the set of all clauses satisfied byA, as a sequence ofm = rn Bernoulli tri-
als. Success occurs whenever a clause belongs toBA, i.e. it is a blocking clause.

The probability of this event is equal to
k(n−1

2 )
7(n

3)
= 3k

7n
= 3α

7
. We have the follow-

ing asymptotic expansion of a Binomial distribution with constant probability of
success:

Pr[|φ ∩BA| = l |] =
(
rn

l

) (
3k

7n

)l (
1− 3k

7n

)rn−l

³
[
(3α)β(7− 3α)(1−β)

7ββ(1− β)(1−β)

]rn

, (5)
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where we used
(

rn
l

)
³

[
( rn

l
)

l
rn ( rn

rn−l
)(1− l

rn
)
]rn

. Let nowE(α, β, r) be given by

exp [−α(c + ln(s0 − 1)− c ln s0)]

(
(3α)β(7− 3α)1−β

7ββ(1− β)1−β

)r

. (6)

Combining (2), (4), (5) and (6), we obtain the following (recall thatα = k
n

and
β = l

rn
):

Theorem 2

Pr[A ∈ A1
n] ³

rn∑

l=k

(E(α, β, r))n . (7)

REMARK 2 The bound of the expectationE[|A2
n|] given in (1) contains factors

that are exponential inn functions. Therefore, to find the value ofr for which this
bound has limit zero, we may ignore polynomial and inverse polynomial factors.
In other words, we work within the scope of the “³” asymptotics. In the sequel,
sometimes we will omit to explicitly mention that an equality or inequality between
probabilities holds within a rational (i.e., fraction of polynomials) factor. Especially
if the fact that this assumption is made is obvious from the context.

4 Probability models for random formulas

Fix a truth assignmentA. Recall that we consider random formulas withm = rn
clauses that are uniformly at random and with replacement drawn from the set of
7
(

n
3

)
clauses satisfied byA. We call this model of random formulas theGmm model

(the doublem in the subscript is to remind that replacement is allowed). There are
alternatives to this model:

• Select them = rn clauses ofφ, drawing each clause uniformly and indepen-
dently from the set of clauses satisfied byA withoutreplacement (modelGm).

• Each of the clauses that are satisfied byA is independently chosen with proba-
bility p(n) for inclusion inφ (modelGp).

A random formula inGp has variable length, while inGmm andGm it has fixed
length equal tom = rn. Notice that ifp = rn

7(n
3)
∼ (6r)/(7n2), the expected length

of a random formula inGp ism = rn. Unless otherwise specified, we assume in the
sequel that whenever the modelGp is examined,p ∼ (6r)/(7n2). The probability
of an eventQ concerning a random formulaφ generated according to modelGm ,
Gmm or Gp is denoted byPrm[φ ∈ Q], Prmm[φ ∈ Q] andPrp[φ ∈ Q], respectively.
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Notice that the probabilities in (1) are all inGmm, since the model we considered
until now allows clause repetitions when forming a formula.

In [14] both the probability to block all single flips and the conditional probability
to block all double flips where computed inGp . To show that this is legitimate,
it was first observed in [14] that the product of these two probabilities is equal to
the unconditional probability that all flips (single and double) are blocked. Then
it was shown, by a fairly easy argument, that the transition fromGmm to Gp can
be legitimately performed for such an unconditional probability. Finally, the later
probability was again factored into the product of the probability that all single flips
are blocked with the conditional probability that all double flips are blocked, and
each factor was computed separately (inGp).

However, the probability inGp of an event that refers to the blocking of flips is in
general larger than the corresponding probability inGmm by an exponential factor.
So, the model change pays the price of getting a slightly larger upper bound to the
threshold. In the previous chapter we computed exactly (within a rational factor)
the probability that the single flips are blocked. Unfortunately, we were not able to
do the same for the conditional probability that the double flips are blocked. This
makes necessary to resort again to the modelGp . However, to retain the advan-
tageous computation of the probability for the single flips inGmm , the transition
from one model to the other for double flips has to be performed for the conditional
probability. That this transition of aconditionalprobability can be legitimately per-
formed (although again at some price) is the object of this Section.

We start with the easy part. We first establish the legitimacy of changing model
from Gmm to Gm , for a conditional probability. Actually we show that these two
models are equivalent, within a rational factor, for the events that interest us.

Let P be the event thatφ has no two clauses identical and letP̄ its complement.
Then, because the order of the number of all possible clauses isΘ(n3) and the
order of the number of the clauses contained inφ is Θ(n), limn→∞ Prmm[P̄ ] = 0.

Now letQ1 andQ2 be two arbitrary events such that the following two conditions,
which we callregularityconditions hold:

• For someε > 0 and finally for alln, ln (Prm[Q2|Q1]) < −ε, i.e.Prm[Q2|Q1] is
bounded away from 1.

• limn→∞ Prmm[P̄ |Q1, Q2] = limn→∞ Prmm[P̄ |Q1] = 0.

Under the above regularity conditions, we have that:

Prm[Q2|Q1] ³ Prmm[Q2|Q1]. (8)

Indeed,
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Prm[Q2 |Q1] = Prmm[Q2 |Q1, P ] =
Prmm[Q2 |Q1]− Prmm[Q2 ∧ P̄ |Q1]

1− Prmm[P̄ |Q1]

= Prmm[Q2 |Q1]
1− Prmm[P̄ |Q2, Q1]

1− Prmm[P̄ |Q1]
.

Now first taking logarithms, then dividing both sides withln (Prm[Q2|Q1]) and
finally letting n → ∞, we get the required (the regularity conditions are needed
in the computation of the limits). This concludes the proof thatGmm andGm are
equivalent.

WhenQ1 andQ2 are the eventsA ∈ A1
n andA ∈ A2

n, respectively, then the first
regularity condition is satisfied, as, according to the bound we compute in Sec-
tion 5 (Relation (17)),Prm[A ∈ A2

n | A ∈ A1
n] is exponentially small. Also,

the second regularity condition is true for this particular choice ofQ2 and Q1.
Indeed both these events and their conjunction are negatively correlated withP̄ ,
so Prmm[P̄ |Q1] ≤ Prmm[P̄ ] → 0 and similarly forPrmm[P̄ |Q1, Q2]. To prove
the negative correlation claim for, say,Q1 and P̄ , observe that the correlation
claim is equivalent toPrmm[Q1|P ] ≥ Prmm[Q1], which in turn is equivalent to
Prm[Q1] ≥ Prmm[Q1]. This last inequality is intuitively obvious (under the as-
sumption thatA |= φ), because the probability to get blocking clauses for allFALSE

values of the satisfying truth assignmentA increases when the clauses of the for-
mula are assumed to be different. For a formal proof of this for general increasing
and reducible properties (likeQ1 andQ2), we refer to [15].

We come now to the relation betweenGm andGp . Bollobás in [2] proves that for
an arbitrary eventQ, Prp[Q] ≥ Prm[Q] (within a polynomial factor—but in general
Prp[Q] may be exponentially larger thanPrm[Q]) if p andm are related so that the
expected length of a formula inGp is m. In our case, this means thatm = rn and
p = (6r)/(7n2). To get the analogous result for a conditional probability, assume
that we have a probability valuep′ not necessarily equal to(6r)/(7n2), but equal to
(6r′)/(7n2) for anr′ different, in general, from the value of the upper boundr we
are trying to compute. The value ofm is considered fixed and equal torn. We then
proceed as in [2]:

Prp′ [A ∈ A2
n |A ∈ A1

n] =

7(n
3)∑

i=0

(
Prp′ [|φ| = i |A ∈ A1

n] · Prp′ [A ∈ A2
n |A ∈ A1

n, |φ| = i]
)

=

7(n
3)∑

i=0

(
Prp′ [|φ| = i |A ∈ A1

n] · Pri[A ∈ A2
n |A ∈ A1

n]
)
≥

Prp′ [|φ| = m |A ∈ A1
n] · Prm[A ∈ A2

n |A ∈ A1
n].

(9)
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Above, the probabilities with subscriptp′ are in the variable formula-length model,
while all other probabilities are in the fixed formula-length model without repe-
titions. We now claim that for every given truth assignmentA, there exists ap-
propriate choice ofp′ < p (or equivalently a choice of anr′ < r), such that
Prp′ [|φ| = rn |A ∈ A1

n] = 1 (within a rational factor). The required value of
p′ is (as it is intuitively expected) that for which the expectation of the length of
the random formula conditional on the eventA ∈ A1

n, i.e. conditional on the event
that the single flips are blocked, in the modelGp′, is m = rn. Intuitively it is ex-
pected that this value ofp′ is smaller than(6r)/(7n2), because the conditional that
the single flips are blocked forces some clauses into the formula. This argument is
formalized in Appendix A, where we actually prove thatr andr′ are related by the
equality:

r = r′
(

3α

7(e3r′/7) + 1)
+ 1

)
, (10)

whereαn is the number of variables that are false underA.

Therefore we have that

Theorem 3 For r = m/n, there is anr′ < r implicitly defined by the relation (10)
above such that:

Prm[A ∈ A2
n |A ∈ A1

n] ≤ Prp′ [A ∈ A2
n |A ∈ A1

n], (11)

wherep = (6r)/(7n2), m = rn andp′ = (6r′)/(7n2).

NB Although we could not show that:

Prm[A ∈ A2
n |A ∈ A1

n] ≤ Prp[A ∈ A2
n |A ∈ A1

n],

for m = rn andp = (6r)/(7n2), still Theorem 3 above is sufficient to carry on
our proof. Also, althoughp′ < p the previous relation does not immediately follow
from (11), nor is it supported by intuition that

Prp′ [A ∈ A2
n |A ∈ A1

n] ≤ Prp[A ∈ A2
n |A ∈ A1

n],

because the probabilities involved are conditional; actually we conjecture that the
last two relations are wrong for certain values ofr.
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5 Computation of an upper bound for the conditional probability that the
double flips are blocked

By the first part of the previous Section,

Prmm[A ∈ A2
n |A ∈ A1

n] ³ Prm[A ∈ A2
n |A ∈ A1

n]. (12)

Now in [14], the following functions ofr were introduced:

u(r) = e−r/7,

z(r) =−6u6 ln(1/u)

1− u3
− 18u9 ln2(1/u)

(1− u3)2
·
W

(
−6u6 ln(1/u)

1−u3

)

6u6 ln(1/u)
1−u3

, (13)

Yn(r) = 1 + z(r)
1

n
+ o

(
1

n

)
(14)

and was proved that foranyr ∈ [3, 5] and forp = (6r)/(7n2):

Prp[A ∈ A2
n | A ∈ A1

n] ≤ (Yn(r))df(A) , (15)

wheredf(A) is the number of double flips ofA.

It is easy to check analytically (or, for the non-purist, using Maple) thatz(r) < 0
at least in the interval[3, 5] and thatz(r) is an increasingfunction ofr at least in
the interval[3.5, 5]. Also, from Relation (10) it follows that for anyr ∈ [4, 5] and
for any A, (0.9)r < r′ < r. Therefore, ifr is in the interval[4, 5] thenr′ is in
the interval[3.5, 5] (all these numerical values are far from being the best possible,
yet are sufficient for our purposes). So from the monotonicity ofz(r) in [3.5, 5]
and from the definition ofYn(r) (Relation (14)) we get that for anyr ∈ [4, 5], for
sufficiently largen and forr′ as is implicitly defined by (10),

0 < Yn(r′) < Yn(r) < 1. (16)

Using now Relation (11), Relation (15) applied tor′ andp′ = (6r′)/(7n2), and
finally Relation (16), we get that for anyr ∈ [4, 5]:

Prm[A ∈ A2
n | A ∈ A1

n] ≤ (Yn(r))df(A) , (17)

therefore, by Relation (12) we get:

Prmm[A ∈ A2
n | A ∈ A1

n] ≤ (Yn(r))df(A) , (18)
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wherem = rn andp = (6r)/(7n2). Therefore,

Pr[φ is satisfiable]≤E[|A2
n|]

≤ (7/8)rn
∑

A∈S

(
Prmm[A ∈ A1

n] · (Yn(r))df(A)
)
. (19)

In the next Section, we will bound the above sum.

6 Asymptotics

In the sequel, we establish an asymptotic upper bound for theq-binomial coeffi-
cients that will help us to estimate the summation in (19).

Let sf(A) = k = αn denote the number ofFALSE values assigned by the truth
assignmentA, i.e. the number of single flips ofA. Recall thatdf(A) denotes the
number of double flips ofA. For notational convenience, letz = z(r) andY =
Yn(r). Let also:

X(sf(A)) = Prmm[A ∈ A1
n |]. (20)

Therefore, using (20), Inequality (19) may be written as follows:

Prmm[φ is satisfiable] ≤ (7/8)rn
∑

A∈S
X(sf(A))Y df(A). (21)

Furthermore the following equality can be derived (see [14]) by induction onn:

∑
A∈S

X(sf(A))Y df(A) =
n∑

k=0

(
n

k

)

Y

X(k), (22)

where
(

n
k

)
q

denotes theq-binomialor Gaussiancoefficients (see [11]). From Rela-

tions (21) and (22) and Theorem 2, we obtain the following:

Prmm[φ is satisfiable] ≤
(

7

8

)rn n∑

k=0

rn∑

l=k

(
n

k

)

Y

(E(α, β, r))n . (23)

We will now consider an arbitrary term of the double sum that appears in (23) and
examine for which values ofr it converges to 0. If we find a condition onr that
forces all such terms to converge to 0, then the whole sum will converge to 0 since
it contains polynomially many terms, all of which vanish exponentially fast. This
technique, made known to us by D. Achlioptas, avoids the problem of finding a
closed-form upper bound for the sum itself. However, in order to handle an arbitrary
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term, we need an upper bound for theq-binomial coefficients. To establish such a
bound we need the following standard result:

LEMMA 2 [19] Let f(z) =
∑∞

i=0 fiz
i be the generating function for the sequence

fi, i ≥ 0. Then iff(z) is analytic in|z| < R and if fi ≥ 0 for all i ≥ 0, then for
anyt, 0 < t < R, and anyn ≥ 0, it holds thatfn ≤ t−nf(t).

Using this lemma, we can prove the following:

Theorem 4 Let
(

n
αn

)
q

denote the q-binomial coefficients forα, q ∈ (0, 1). Then the

following inequality holds:
(

n

αn

)

q

≤ 2q−(αn
2 )x−αn

0 e
1

ln q
[dilog(1+x0)−dilog(1+x0qn−1)], (24)

wherex0 = 1−qαn

qαn−qn−1 anddilog(x) =
∫ x
1

ln t
1−t

dt.

Proof. For the ordinary generating function ofq(
i
2)

(
n
i

)
q

the following holds [3, p.

118]:

n∑

i=0

q(
i
2)

(
n

i

)

q

xi =
n∏

i=1

(1 + xqi−1) = e
∑n

i=1
ln(1+xqi−1)

= (1 + x)e
∑n

i=2
ln(1+xqi−1).

Sinceln(1 + xqi−1) is decreasing ini,

n∑

i=0

q(
i
2)

(
n

i

)

q

xi≤ (1 + x)e
∫ n

1
ln(1+xqi−1)di

= (1 + x)e
1

ln q
[dilog(1+x)−dilog(1+xqn−1)].

Applying Lemma 2, we have that for allx ∈ (0, 1)

q(
i
2)

(
n

i

)

q

≤x−i(1 + x)e
1

ln q
[dilog(1+x)−dilog(1+xqn−1)]. (25)

The above inequality holds for any value ofx ∈ (0, 1). Therefore, we may optimize
it by choosing the valuex0 = 1−qi

qi−qn−1 that minimizes the expression on the right-
hand side of (25). The required inequality is then obtained by settingi = αn.

13



Settingq = Y = 1 + z/n in (24) and using the approximationln(1 + z/n) ∼ z/n,
asn →∞, the following can be derived:

(
n

αn

)

q

≤ 2
[(

1

x0

)α

· e−α2z
2

+ 1
z
[dilog(1+x0)−dilog(1+x0ez)]

]n

, (26)

wherex0 = 1−eαz

eαz−ez , which is expedient in the proof of the following:

Theorem 5 An arbitrary term of the double sum in (23) is asymptotically (ignoring
polynomial multiplicative factors) bounded from above by the following expression
F raised ton:

F = exp [−α(c + ln(s0 − 1)− c ln s0)]

(
(3α)β(7− 3α)1−β

8ββ(1− β)1−β

)r

×e−
α2z
2

+ 1
z
[dilog(1+x0)−dilog(1+x0ez)]

x0
α

,

where,α = k
n
, β = l

rn
, x0 = 1−eαz

eαz−ez , z as given in (13) ands0 = c
c+W(−ce−c)

, with

c = r β
α
.

An immediate consequence of this result is thatany value of r for which F is
smaller than 1 for allα, β in the domainD = {α, β ∈ [0, 1] andβr ≥ α} is an
upper bound for the unsatisfiability threshold. In other words, any value ofr for
which the maximum of the functionln(F ) overD is negative is an upper bound for
the threshold.

We finally claim that for any value ofr, the expressionln(F ) is an upwards convex
function ofα, β over the domainD. For a proof of this claim see Appendix B.

Since for any fixedr, ln(F ) is upwards convex and continuously differentiable,
there is a unique point inD whereln(F ) attains its maximum, and this point can
be computed by setting the partial derivatives ofln(F ) equal to 0. Due to the com-
plicated form of the expressionln(F ), we maximized it numerically overD for
r = 4.571 using a Maple [18] implementation ofDownhill Simplex. This imple-
mentation is based on the method and the code described in [20] and it is freely
distributed by F.J. Wright in his Web page [22]. Guided by the plot ofln(F ) given
by Maple, we chose as a starting set of values for downhill simplexα = 0.42 and
β = 0.21. We set the accuracy and the scale parameters equal to10−50. In addition,
we set theDigits parameter of Maple (accuracy of floating point numbers) equal to
100. We ran downhill simplex and it returned as the maximum value ofln(F ) over
D the number−0.0000884. We then computed all the partial derivatives ofln(F )
at the point ofD whereln(F ) takes the value−0.0000884. They were found to be
numerically equal to 0. As a final check, we generated 30000 random points close

14



to the point ofD whereln(F ) takes the value−0.0000884 and we confirmed that
at all these points, the value ofln(F ) is not greater than−0.0000884. All these con-
siderations show that the maximum ofln(F ) overD is negative forr = 4.571. (For
larger values ofr, the downhill simplex returns a positive maximum.) Thus, the
valuer = 4.571 is established as an upper bound to the unsatisfiability threshold.
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Appendix A

Proof of Theorem 3. We first show that there existsp′ = (6r′)/(7n2) < p =
(6r)/(7n2), such that:

Ep′ [|φ| | A ∈ A1
n] = rn.

Fix A (containingαn FALSE values). As we have seen in Section 3, the blocking
clauses ofA have cardinalityαn

(
n−1

2

)
. We call the remaining7

(
n
3

)
− αn

(
n−1

2

)

clausesnon-blocking. We shall now compute Ep′ [|φ| | A ∈ A1
n], as if the value of

p′ (or equivalentlyr′) was known. We work in the modelGp′. For a non-blocking
clausec, the event that it is contained in the random formula is independent from
the eventA ∈ A1

n. This is so because we work in a model where for each clause it is
independently decided to be included in the formula and moreover the conditional
A ∈ A1

n does not involve non-blocking clauses. So the expected number of non-
blocking clauses inφ, conditional onA ∈ A1

n, equals:

(
7

(
n

3

)
− αn

(
n− 1

2

))
6r′

7n2
∼ 7− 3α

7
r′n (27)

An arbitrary blocking clausec has probability to be selected that equals:

Prp′ [c ∈ φ | A ∈ A1
n] =

Prp′ [c ∈ φ]Prp′ [A ∈ A1
n | c ∈ φ]

Prp′ [A ∈ A1
n]

. (28)

In [14] it was shown that:

Prp′ [A ∈ A1
n] ∼ (1− e−

3r′
7 )αn. (29)

Since each blocking clausec forces exactly one single flip ofA to falsify φ and
since there are totallyαn single flips we obtain:

Prp′ [A ∈ A1
n | c ∈ φ] ∼ (1− e−

3r′
7 )αn−1. (30)

From (29) and (30), Equation (28) becomes:

Prp′ [c ∈ φ | A ∈ A1
n] ∼ 6r′

7n2
(1− e−

3r′
7 )−1. (31)

So the expected number of blocking clauses inφ, conditional onA ∈ A1
n, is:

αn

(
n− 1

2

)
Prp′ [c ∈ φ | A ∈ A1

n] ∼ 3α

7
(1− e−

3r′
7 )−1r′n. (32)
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From (27) and (32) we conclude:

Ep′ [|φ| | A ∈ A1
n] ∼

(
1 +

3α

7(e3r′/7 − 1)

)
r′n. (33)

We want to findr′ such that forp′ = (6r′)/7n2), Ep′ [|φ| | A ∈ A1
n] = rn. By (33),

r′ must satisfy:

r = r′
(

3α

7(e3r′/7 − 1)
+ 1

)
. (34)

It is easy to see that the last relation uniquely definesr′ < r.

Next we show that forp′ = (6r′)/(7n2), wherer′ is implicitly given by (34), we
have thatPrp′ [|φ| = rn |A ∈ A1

n] ³ 1. By the remarks preceding the state-
ment of Theorem 3, this will complete its proof. The basic idea to show this is
the following: it suffices to show that the probability distribution of|φ| in Gp′ is,
in some sense, sharply concentrated on its mean. To show the later it suffices to
show thatPrp′ [|φ| = i |A ∈ A1

n] ³ 1, wherei is a variable, can be expressed
as an exponential function inn whose base is a function ofi with a unique max-
imum. As this maximum then has to be 1, in order to have that the polynomially
many possible values fori have probabilities that add up to 1, and as all other bases
have to be less than 1, the sharp concentration follows. Actually, we will prove that
Prp′ [|φ| = i |A ∈ A1

n] ³ 1 is not an exponential function, but a sum of exponential
functions instead. This does not change the essence of our argument. We formalize
this argument below.

Fix r′ (recall thatA is also fixed and hask = αn FALSE values). Letγ > 0 be a
parameter and leti = γn. We start by computingPrp′ [|φ| = i |A ∈ A1

n]:

Prp′ [|φ| = i |A ∈ A1
n]

=
Prp′ [|φ| = i ∧ A ∈ A1

n]Prp′ [|φ| = i]

Prp′ [|φ| = i]Prp′ [A ∈ A1
n]

=
Prp′ [A ∈ A1

n | |φ| = i]Prp′ [|φ| = i]

Prp′ [A ∈ A1
n]

=
Pri[A ∈ A1

n]Prp′ [|φ| = i]

Prp′ [A ∈ A1
n]

(35)

The probabilities with subscriptp′ are in the variable formula-length model, while
the ones with subscripti are in the fixed formula-length model without repetitions.
It is easy to see that for some functionG1(γ), such thatln(G1(γ)) is upwards
convex,Prp′ [|φ| = i] ∼ (G1(γ))n . Also, for some constantC (depending onr′ and
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A), Prp′ [A ∈ A1
n] ∼ Cn (see Relation (29) above). Finally, by Theorem 2 and from

the equivalence of the modelsGmm andGm that we established in Section 4, we
conclude that if we letG2(β, γ) = E(α, β, γ) (α is fixed), then:

Pri[A ∈ A1
n] ³

i∑

l=k

(G2(β, γ))n ,

whereγ = i/n, β = l/i andα = k/n. By directly computing its Hessian, as we do
in the next Appendix for the functionln(E(r, α, β), but in terms of the variablesα
andβ, we can show thatln(G2(β, γ)) is upwards convex. Also, obviously there is
a large enough constantM such that

Mn∑

i=0

Prp′ [|φ| = i |A ∈ A1
n] ∼ 1.

Putting everything together, we conclude that there is a functionG(β, γ), where
ln(G(β, γ)) is upwards convex and such that:

Mn∑

i=0

Prp′ [|φ| = i |A ∈ A1
n] ³

Mn∑

i=0

i∑

l=k

(G(β, γ))n ³ 1.

We can immediately conclude that there are values ofβ andγ such thatG(β, γ) = 1
(otherwise we would have that polynomially many functions that are exponentially
zero sum up to 1). But becauseln(G) is convex,G has a unique maximum, so the
values ofβ andγ are unique. Therefore there is a uniqueγ = i/n such that

Prp′ [|φ| = i |A ∈ A1
n] ³

i∑

l=k

(G(β, γ))n ³ 1.

But then we should haveγ = r, otherwise we would contradict the fact that

Ep′ [|φ| | A ∈ A1
n] ∼ rn.

Appendix B

We establish the upwards convexity ofln(F ) for a any fixedr over the domain
D = {α, β ∈ [0, 1] and βr

α
≥ 1}.

ln(F ) =−α(c + ln(s0 − 1)− c ln s0)

− βr ln β − (1− β)r ln(1− β) + βr ln(3α)− r ln 8 + r(1− β) ln(7− 3α)
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+ α ln
1

x0

− α2 z

2
+

1

z
[dilog(1 + x0)− dilog(1 + x0e

z)].

A. The expression−βr ln β − (1 − β)r ln(1 − β) + βr ln(3α) − r ln 8 + r(1 −
β) ln(7− 3α) is an upwards convex function ofα, β. Indeed, the quadratic form of
its Hessian (see e.g. [21]) computed at an arbitrary vector(α′, β′) ∈ R2 is:

−(α′)2r

[
β

α2
+

9(1− β)

(7− 3α)2

]
+ 2α′β′r

[
1

α
+

3

7− 3α

]
− (β′)2r

[
1

β
+

1

1− β

]

= −(α′)2r

[
β(7− 3α)2 + 9(1− β)r

α2(7− 3α)2

]
+ 2α′β′r

[
7

α(7− 3α)

]
− (β′)2r

[
1

β(1− β)

]

≤ −(α′)2r

[
β(7− 3α)2 + 9(1− β)r

α2(7− 3α)2

]
+ 2α′β′r




√
β(7− 3α)2 + 9(1− β)α2

α(7− 3α)
√

β(1− β)




−(β′)2r

[
1

β(1− β)

]

= −

α′

√√√√r
β(7− 3α)2 + 9(1− β)r

α2(7− 3α)2
− β′

√
r

1

β(1− β)




2

.

Therefore, the Hessian is negative semi-definite and so the function−βr ln β−(1−
β)r ln(1− β) + βr ln(3α)− r ln 8 + r(1− β) ln(7− 3α) is upwards convex.

B. The expressionα ln 1
x0
− α2 z

2
+ 1

z
[dilog(1 + x0) − dilog(1 + x0e

z)], where
x0 = 1−eαz

eαz−ez , z < 0, is an upwards convex function ofα, β. Indeed, first ob-
serve that it is actually a function ofα alone since for fixedr, z is constant (recall
its definition in the beginning of Section 5) andx0 depends only onα. There-
fore, the quadratic form of its Hessian computed at an arbitrary(α′, β′) ∈ R2 is:
z

[
− (ez−1)eαz

(1−eαz)(eαz−ez)
− 1

]
(α′)2. Sincez < 0, in order to show that the last expression

is non-positive it suffices to show that (ez−1)eαz

(1−eαz)(eαz−ez)
< −1. Since(1− eαz)(eαz −

ez) > 0, it is sufficient to show that(ez − 1)eαz < −(1 − eαz)(eαz − ez) ⇔
ez−2eαzez +(eαz)2 > 0. But the last inequality holds, sinceez−2eαzez +(eαz)2 >
(ez)2 − 2eαzez + (eαz)2 = (ez − eαz)2 > 0.

C. Finally, let us consider the expressionM = −α(c + ln(s0 − 1) − c ln s0) as a
function ofα, β. The quadratic form of its Hessian computed at an arbitrary vector
(α′, β′) ∈ R2 is:

βre−βr/(αs0)

e−βr/(αs0) − α/(βr)

[
α′

α
− β′

β

]2

. (36)
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We prove (36) by the following steps: Using thatln(s0 − 1) = ln s0 − c
s0

, c = βr
α

ands0(1− e−c/s0) = 1, we first obtain:

M =−rβ − α ln s0 +
rβ

s0

+ rβ ln s0. (37)

Setting in Expression (37),s0 = c
x∗ , wherex∗ is an arbitrary positive variable, we

then obtain:

M =−rβ − α ln
rβ

α
+ α ln x∗ + αx∗ + rβ ln

rβ

α
− rβ ln x∗. (38)

Notice now that:

s0(1− e−c/s0) = 1 ⇔ 1− e−x∗ − α

rβ
x∗ = 0 ⇔ αex∗

ex∗ − 1
=

rβ

x∗
. (39)

Therefore the partial derivatives of Expression (38) are given by:

∂M
∂α

= x∗ + ln x∗ + ln α− rβ
α
− ln rβ, ∂M

∂β
= r ln rβ − r ln α− r ln x∗ .

∂2M
∂α2 = x∗+1

x∗
∂x∗
∂α

+ 1
α

+ rβ
α2 ,

∂2M
∂β2 = − r

x∗
∂x∗
∂β

+ r
β
, ∂2M

∂α∂β
= − r

x∗
∂x∗
∂α
− r

α
.

We then use once more Expression (39) in order to obtain:

∂x∗
∂α

= x∗
rβ

1
e−x∗−α/(rβ)

, ∂x∗
∂β

= −αx∗
rβ2

1
e−x∗−α/(rβ)

.

Using the partial derivatives above, we conclude that (36) holds.

Now using (39) again, we observe that

e−βr/(αs0) − α

βr
= e−x∗ − α

βr
=

1 + x∗ − ex∗

x∗ex∗ < 0,

since1 + x∗ < ex∗ . Therefore, expression (36) is non-positive and the proof of the
upwards convexity ofln(F ) overD is complete.
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