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Abstract

The problem of determining the unsatisfiability threshold for random 3-SAT formulas con-
sists in determining the clause to variable ratio that marks the experimentally observed
abrupt change from almost surely satisfiable formulas to almost surely unsatisfiable. Up to
now, there have been rigorously established increasingly better lower and upper bounds to
the actual threshold value. In this paper, we consider the problem of bounding the threshold
value from above using methods that, we believe, are of interest on their own right. More
specifically, we show how the method lotal maximum satisfying truth assignmenén

be combined with results for theccupancy problenm schemes of random allocation of
balls into bins in order to achieve an upper bound for the unsatisfiability threshold less than
4.571. In order to obtain this value, we establish a bound og-thiaomial coefficients (a
generalization of the binomial coefficients). No such bound was previously known, despite
the extensive literature ogrbinomial coefficients. Finally, to prove our result we had to
establish certain relations among the conditional probabilities of an event in various prob-
abilistic models for random formulas. It turned out that these relations were considerably
harder to prove than the corresponding ones for unconditional probabilities, which were
previously known.
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1 Introduction

Let ¢ be a randon8-SAT formula constructed by selecting uniformly and with
replacementn clauses from the set of all possible clauses with three literalsrover
variables. We call this model for constructing random formulagifg model; the
doublem in the subscript refers to the possibility of replacement. Alsd@;lgtbe

the probabilistic model where repetition of clauses is not allowed and'Jdte

the model where each clause has independent probagbildybe included in the
formula. More on the last two alternative models in Section 4. It has been observed
experimentally that as the numbersn of variables and clauses, respectively, tend
to infinity, while the ratiom /n remains equal to a constantthe random formulas
exhibit a threshold behavior: if > 4.2 (approximately) then almost all random
formulas are unsatisfiable while the opposite is true # 4.2. The constant is
called thedensityof the formula. On the theoretical side, Friedgut [10] has proved
that there exists a sequenggesuch that for any > 0, if finally for all n, r < ~,, —e,

then the probability of a random formula being satisfiable approaches 1, while if
finally for all n, » > ~, + ¢, then this probability approaches 0. It has not been
rigorously proved that the sequenge converges. Thus, proving that a threshold
value exists and if it actually exists finding gxactvalue is still a major problem

in probability and complexity theory. Up to now, only upper and lower bounds
have been rigorously established for the threshold value (formally, for the terms
of the sequence,,, as a threshold may not exist). The best lower bound has been
recently proved by D. Achlioptas and G. Sorkin in [1] and it is 3.26. Concerning
the upper bound, Dubois et al. in [6] announced that they have obtained the value
4.506. After the submission of our paper, a full proof for this upper bound was
provided by Dubois et al. in [7]. Previously, Janson et al. [12] had established the
value 4.596.

In this paper, we address the upper bound question for the unsatisfiability threshold
from a new perspective that combines the idedool maximunsatisfying truth
assignments proposed by Kirousis et al. in [14] with the sharp probability estimates
for the occupancy problem in schemes of random allocation of balls into bins given
by Kamath et al. in [13] (for an excellent introduction to the occupancy problem
see [8,17]). With this approach, we obtain as an upper bound the number 4.571.
The last author, following a similar approach, gives in his Ph.D. thesis [23] a bound
of 4.5793 but without resorting tg-binomial coefficients (a generalization of the
binomial coefficients). To obtain the value of 4.571, we had to establish an upper
bound to thej-binomial coefficients. Despite the extensive literature-dmnomial
coefficients (see, e.g., [9,11,16]), no such bound was, to the best of our knowledge,
known.

Also, to obtain our result we had to carry the computation of a conditional prob-
ability in G, . There are classical results (see e.g., [2]), supported by intuition,
that relate the unconditional probabilities of an eventzinandG,, , respectively.



It turned out that getting corresponding results for conditional probabilities was
harder, and moreover intuition offered no reliable guidance in this case. Section 4
contains these results. We consider them as a non-trivial part of this work.

2 The method of local maxima

In this section, we will state briefly the methodology followed in [14] and state an
inequality that bounds from above the probability that a random formula is satisfi-
able. This inequality will be the starting point of our considerations.

Let S be the class of all truth assignmentsitgariables and\ ,, the (random) class
of truth assignments that satisfy a random formpll&or a givenAd € S, asingle
flip s f is the change il of exactly one specifieBALSE value toTRUE. By A%/ we
denote the truth assignment that results from this change. We defihg asA,,
the random class of truth assignments with the following two properties:

« AE 0,
o for every single flips f, A%/ [~ ¢.

A partial order can be defined @1 a truth assignmentl is smaller than a truth
assignment’ iff there exists an such that botd and A" assign the same value to
the variables:;, for all j < ¢, while A assignsALSE to z; and A’ assignsTRUE to

it. The random clasd! coincides with the set of satisfying truth assignments that
arelocal maximawith respect to the partial order defined above, among satisfying
truth assignments that differ in one bit.

A more restricted random class of truth assignments results &nii we extend
the scope of locality in obtaining a local maximumdauble flipis the change of
exactly two specified variables andz;, with i < j, wherex; is changed from
FALSE to TRUE andz; from TRUE to FALSE. In analogy with single flips, byl
we denote the truth assignment that results fubmh we apply the double flipif.
Let A2 be defined as the set of truth of assignmeatthat have the following
properties:

e A0,

o for all single flipss f, A3/ [~ ¢,

o for all double flipsdf, AY [~ ¢.

Our starting point is the following inequality:

LEMMA 1 [14]

Pr[¢ is satisfiable< E[|AZ|] =



PrAE ¢y, ((PrlAc AL [Al=¢]-PrlAc A2 | Ac A)]) =
(7/8)"Y s (PrIA€ AL | A= g]-Pr[Ac A2 | A€ A}]). (1)

In order to find an upper bound for the unsatisfiability threshold, it suffices to find
the smallest possible value forfor which the right-hand side of (1) tends to O.
Given a random formula and a truth assignmeunt, the probability that all single
flips of A falsify the random formula, i.e.,Pr[A € Al | A = ¢], is called the
probability that the single flips afl areblocked Similarly, thePr[A € A2 | A €
Allis called the conditional probability that the double flips are blocked. The con-
ditional in this case refers to the event that the single flipd afe blocked. In Sec-

tion 3, we compute asymptotically the probability that the single flips are blocked.
In Section 4, we introduce some machinery for translating the conditional proba-
bility that the double flips are blocked from the modg},,,, to the model~,, (these
models will formally defined in the same Section).dy it is easier to handle the
correlations between the events that each particular double flip is blocked. In Sec-
tion 5, we establish an upper bound for the conditional probability that double flips
are blocked (irz,,.,,,). Finally, in Section 6, we compute an upper bound for the sum
in (1). For that, we prove an asymptotic formula for thkinomial coefficients. We
then put everything together to establish the value 4.571.

3 Computation of the probability that the single flips are blocked

In this section, we will find an exact asymptotic expressiorPigid € Al | A | ¢

using a sharp estimate for the occupancy problem provided in [13]. The formula
obtained in [14] was not exact. Such an exact expression was given by Dubois
and Boufkhad [5] (who independently from [14] introduced the approach of single
flips), but they used a different approach. Later, Zito in his thesis [23] also found an
exact expression, with a method very similar to the one in this paper (he used the
game of coupon collecting).

REMARK 1 Notice that the conditionall |= ¢ is satisfied if we assume that the

m = rn clauses selected to form the formula are chosen fronitfje clauses

that are satisfied byl. As in the sequel we will always work under the conditional
A E ¢, for a given truth assignment, we assume for the rest of the paper that all
events are conditional oA | ¢ and that all clauses are selected from those that
are satisfied byA. Also, for the rest of the paper, we will omit the conditiodal=

¢, unless its omitting may cause confusion. Actually, since weori assume that
clauses are selected from the ones satisfied e probabilities involved can be
considered as unconditional. Notice that we cannot do the same if the conditional
involved is that all single flips are blocked.



Let ¢ be a formula considered as a multisetrefclauses. Given a set of clauses

B, the expressio N B has the meaning of set intersection with the additional
requirement that a clause that appears in the intersection appears as many times as
it appears inp.

Given a truth assignmemt and a variabler such thatA(z) = FALSE, the set of

blocking clausesf A for the variabler, denoted byB(A, z), is the set of clauses
that have a unique literal that is satisfied #ynd this is—z. Obviously, the single
flip of A on z falsifies a formulap iff ¢ N B(A,x) # 0. Let B, be the set of

blocking clauses ofi for all variables that areALSE underA.

We partition the set of all formulag satisfiable byA with respect the number
[,l = 0,...,rn, of blocking clauses fronB, that are contained ip. Also we
assume thatl hask FALSE variables. Then we have:

™™m

Priac Al =Y (PAc AL|lonBA =1 PlonBa =1]). @)
=0

To computePr[A € Al | |¢ N B4| = ], first observe that for every variable
such thatA(z) = FALSE we have|B(A,x)| = (”;1). Therefore, for anyr such

that A(z) = FALSE, a clause irB 4 has uniform probability]% = 1 to belong

2
to B(A, z). Also, for every pair of distinct variables y such thatd(z) = A(y) =
FALSE, we haveB(A, x)NB(A, y) = 0. Therefore, if we view each of the mutually
disjoint subset®( A, x) as a bin and each clauseBy as a ball, the distribution
of the clauses iB 4 into the subset8(A, x), wherex is FALSE underA, can be
viewed as a uniform at random allocation of balls into bins. As a consequence, the
eventA € Al, conditional on the event) N B4| = [, is true iff after throwingl
balls uniformly at random inté bins, as described above, none of the bins remains
empty. This is an instance of tlecupancy problem

Before we continue, let us describe the notation for asymptotics that we will use.

Given two functionsF andG of n, F ~ G denotes thatim,, ., £ — 1 and

G(n)
F = G denotes thaiin(F) ~ In(G).

The following theorem by Kamath et al. ([13]) gives a sharp estimate for the prob-
ability thatw bins remain empty:

Theorem1 [13] Let W be the random variable that gives the number of empty
bins after the placement, uniformly and independently fails into k& bins, where
both/ andk are constant multiples of. Letc = £ > 1. If we denote by7 (1, k, w)

the probability thati’” = w and if, in addition,|w — E[W]| = Q(k) then

1—w

H(l, kw) = e "y * (35)de—cin(sw))

9



wheres,, is the solution of the equation

w = k(1 — s,(1 —e~/*»)). (3)

For our purposes, since we require to have at least one blocking clause for each of
the k FALSE values ofA, or equivalently no bin to remain empty, we set= 0.
Then we have: .
[ — EIW][ = [0 = k(1 =)' = Q(k).

Let nowk, the number ofALSE values ofA, bean andl, the number of blocking
clauses, b&rn, for somea, 3 € [0, 1] such that? > 2. Thenc = %. From (3) we
get:

0= &L — so(1 — exp )] & In(sy — 1) = In(sg) — 83

0

It can be verified that because of the above equality

¢+ W(—cexp(—c))’

So —

whereW is a special function known as Lamb#&vt function (for details about this
function see [4]). In addition it can be easily verified that:

1

/ln(slo__;:)da: = soln(sg) —soln(sp — 1) +In(sp — 1) = ¢+ In(sg — 1).
0

Thus,

H(l,k,0) < exp[—k(c+1In(sg — 1) — cln(sp))] .
Therefore:

PriA € AL | [N Ba| = 1| = H(k,1,0)
=exp [—k(c+1In(sg — 1) — cln(sp))] . 4)
Now to computePr|[|¢ N B4| = [ ], i.e. the second probability appearing in the
right-hand side of (2), we consider the sequence of clause selectiopsdoawn

from the set of all clauses satisfied Hy as a sequence of = rn Bernoulli tri-
als. Success occurs whenever a clause belonﬁgtd.e. it is a blocking clause.

The probability of this event is equal &F = 3“ . We have the follow-

ing asymptotic expansion of a Blnomlal dlstrlbutlon W|th constant probability of
success:

woni1-) (5 -2

_[Ba)f(7 = 3a)0-A7"™"
“TEa—pe |

(5)



where we usetérl") = [(%)#(ﬂ)(l—#)}m. Let nowE(a, 3,7) be given by

(T — 3018\ "
(32)°(7 - 30) ) ©

exp [—a(c+ In(sg — 1) — cln sp)] ( 765(1 — B)1—P

Combining (2), (4), (5) and (6), we obtain the following (recall that= % and

5=
Theorem 2
Pr[A € A}] < i (E(a, 8,7))". (7)

l=k

REMARK 2 The bound of the expectatidf{|A2|] given in (1) contains factors
that are exponential im functions. Therefore, to find the valuerofor which this
bound has limit zero, we may ignore polynomial and inverse polynomial factors.
In other words, we work within the scope of the’™ asymptotics. In the sequel,
sometimes we will omit to explicitly mention that an equality or inequality between
probabilities holds within a rational (i.e., fraction of polynomials) factor. Especially
if the fact that this assumption is made is obvious from the context.

4 Probability models for random formulas

Fix a truth assignment. Recall that we consider random formulas with= rn
clauses that are uniformly at random and with replacement drawn from the set of
7(7) clauses satisfied by. We call this model of random formulas tti&,,,, model

(the doublem in the subscript is to remind that replacement is allowed). There are
alternatives to this model:

e Select then = rn clauses ofp, drawing each clause uniformly and indepen-
dently from the set of clauses satisfied Ayvithoutreplacement (modeF,,).

e Each of the clauses that are satisfied4is independently chosen with proba-
bility p(n) for inclusion ing (modelG,,).

A random formula inGG,, has variable length, while igr,,,,, andG,, it has fixed
length equal ton = rn. Notice that ifp = 722) ~ (6r)/(7n?), the expected length
of arandom formula id7, is m = rn. Unless otherwise specified, we assume in the
sequel that whenever the modg} is examinedp ~ (6r)/(7n?). The probability

of an event) concerning a random formutagenerated according to modg|,, ,

G OF G, is denoted byPr,,[¢ € Q], Pr,m[é € Q] andPr,[¢ € Q], respectively.




Notice that the probabilities in (1) are all @,,..,,, since the model we considered
until now allows clause repetitions when forming a formula.

In [14] both the probability to block all single flips and the conditional probability
to block all double flips where computed @, . To show that this is legitimate,

it was first observed in [14] that the product of these two probabilities is equal to
the unconditional probability that all flips (single and double) are blocked. Then
it was shown, by a fairly easy argument, that the transition fem, to G, can

be legitimately performed for such an unconditional probability. Finally, the later
probability was again factored into the product of the probability that all single flips
are blocked with the conditional probability that all double flips are blocked, and
each factor was computed separately(i).

However, the probability irfz, of an event that refers to the blocking of flips is in
general larger than the corresponding probabilitg-ip,, by an exponential factor.

So, the model change pays the price of getting a slightly larger upper bound to the
threshold. In the previous chapter we computed exactly (within a rational factor)
the probability that the single flips are blocked. Unfortunately, we were not able to
do the same for the conditional probability that the double flips are blocked. This
makes necessary to resort again to the maégel However, to retain the advan-
tageous computation of the probability for the single flipg-in,, , the transition
from one model to the other for double flips has to be performed for the conditional
probability. That this transition of @onditionalprobability can be legitimately per-
formed (although again at some price) is the object of this Section.

We start with the easy part. We first establish the legitimacy of changing model
from G,.,, to GG,,, , for a conditional probability. Actually we show that these two
models are equivalent, within a rational factor, for the events that interest us.

Let P be the event that has no two clauses identical and Ietits complement.
Then, because the order of the number of all possible claus@éniy) and the

order of the number of the clauses contained is ©(n), lim,, .o Pry,,»[P] = 0.

Now let @, and(@), be two arbitrary events such that the following two conditions,
which we callregularity conditions hold:

e For some: > 0 and finally for alln, In (Pr,,[Q2|Q1]) < —¢, i.e.Pr,,,[Q2|Q1] IS
bounded away from 1. )
o lim, . Pr,,,[P|Q1, Q2] = lim,, . Pr,, [P|Q1] = 0.

Under the above regularity conditions, we have that:

Prm[@2’Ql] = Prmm[QQ’Ql] (8)

Indeed,



PinlQa Q] = Pro[Q2 @y, P) = Tt [ P BRI

1 — Pry, [P ‘_Qz, Q1]
1 — Prpm[P |@Q4]

= Prmm [Q2 |Q1]

Now first taking logarithms, then dividing both sides with(Pr,,[Q|Q:]) and
finally lettingn — oo, we get the required (the regularity conditions are needed
in the computation of the limits). This concludes the proof agt, andG,, are
equivalent.

When@; andQ), are the eventsl € A} andA € A2, respectively, then the first
regularity condition is satisfied, as, according to the bound we compute in Sec-
tion 5 (Relation (17)),Pr,,[A € A2 | A € Al] is exponentially small. Also,

the second regularity condition is true for this particular choic&efand Q.
Indeed both these events and their conjunction are negatively correlatedwith
SO Pryn[P|Q1] < Prpn,[P] — 0 and similarly forPr,,,,[P|Q1, Q]. To prove

the negative correlation claim for, sag, and P, observe that the correlation
claim is equivalent tPr,,,,[Q1|P] > Pr,..,[Q1], which in turn is equivalent to
Pr,,[@1] > Pr,,[Q1]. This last inequality is intuitively obvious (under the as-
sumption thatd = ¢), because the probability to get blocking clauses forallse
values of the satisfying truth assignmehincreases when the clauses of the for-
mula are assumed to be different. For a formal proof of this for general increasing
and reducible properties (lik@, and(),), we refer to [15].

We come now to the relation betweéfy, andG, . Bollobas in [2] proves that for

an arbitrary evenf), Pr,[Q)] > Pr,,[Q] (within a polynomial factor—but in general
Pr,[Q] may be exponentially larger thdtr,,[Q]) if p andm are related so that the
expected length of a formula ifd,, is m. In our case, this means that = rn and

p = (6r)/(7n?). To get the analogous result for a conditional probability, assume
that we have a probability valyé not necessarily equal {6r) /(7n?), but equal to
(6r')/(7n?) for any’ different, in general, from the value of the upper bounle

are trying to compute. The value of is considered fixed and equalita. We then
proceed as in [2]:

Pry[A€ A2|Ac A}l =
(3)
> (Pryllgl =i|Ae Al]-Pry[A e A2 |Ac A |¢| =i]) =

0

N
—~
w3

(Pryllol =i|A € A}]-Pri[Ac A2 [A € Al)) >

1=

Pry[|¢| =m|A € Al]-Pr,[Ac A2 |Ac A]].

o

(9)



Above, the probabilities with subscriptare in the variable formula-length model,
while all other probabilities are in the fixed formula-length model without repe-
titions. We now claim that for every given truth assignmentthere exists ap-
propriate choice off < p (or equivalently a choice of an < r), such that
Pry[l¢| = rn |A € Al] = 1 (within a rational factor). The required value of
p'is (as it is intuitively expected) that for which the expectation of the length of
the random formula conditional on the evehe A, i.e. conditional on the event
that the single flips are blocked, in the modg}, is m = rn. Intuitively it is ex-
pected that this value gf is smaller thar(6r)/(7n?), because the conditional that
the single flips are blocked forces some clauses into the formula. This argument is
formalized in Appendix A, where we actually prove thand:’ are related by the
equality:

p 3
T—T(W‘i‘l), (10)

wherean is the number of variables that are false under
Therefore we have that

Theorem 3 For r = m/n, there is an’ < r implicitly defined by the relation (10)
above such that:

Pr, A€ A2 |Ac Al] <Pry[Ac A2 |Ac A}l (11)

wherep = (6r)/(7n?), m = rn andp’ = (6r')/(Tn?).
NB Although we could not show that:
Pr, A€ A2 |Ac Al <PrJAc A2 |Ac Al],

for m = rn andp = (6r)/(7n?), still Theorem 3 above is sufficient to carry on
our proof. Also, although’ < p the previous relation does not immediately follow
from (11), nor is it supported by intuition that

Pry[A€ A2|A€ Al]<PrAe A2 |Ac A},

because the probabilities involved are conditional; actually we conjecture that the
last two relations are wrong for certain values-of

10



5 Computation of an upper bound for the conditional probability that the
double flips are blocked

By the first part of the previous Section,

Prom[A€ A2 |Ac A}l < Pr,[Aec A2 |Ac Al (12)
Now in [14], the following functions of- were introduced:

u(r)y=e"",

_6u6 In(1/u) 18u” In?(1 /u) W(—%)

2(r) = 1 — 3 (1 — ud)2 ' 6u611n(13/u) ’ (13)
Ya(r) =1+ 2(r)~ + <1> (14)
n\T) = zZ\r n o n
and was proved that f@nyr € [3,5] and forp = (6r)/(7n?):
Pr[A€ A2 | A€ Al] < (Y, ()Y, (15)

wheredf(A) is the number of double flips of.

It is easy to check analytically (or, for the non-purist, using Maple) tiat < 0

at least in the intervgB, 5] and thatz(r) is anincreasingfunction of at least in

the interval[3.5, 5]. Also, from Relation (10) it follows that for any € [4,5] and

for any A4, (0.9)r < r’ < r. Therefore, ifr is in the interval[4,5] thens’ is in

the interval[3.5, 5] (all these numerical values are far from being the best possible,
yet are sufficient for our purposes). So from the monotonicity(@f in [3.5, 5]

and from the definition ot/ (r) (Relation (14)) we get that for any € [4, 5], for
sufficiently largen and forr’” as is implicitly defined by (10),

0<Y,(r) <Y,(r)<1. (16)

Using now Relation (11), Relation (15) appliedtoandp’ = (6r')/(7n?), and
finally Relation (16), we get that for anye [4, 5]:

PrAc A2 | Ae ALl < (Yo(r)¥@, (17)

therefore, by Relation (12) we get:

PramlA € A2 | A€ Al] < (Y, ()Y@ (18)

11



wherem = rn andp = (6r)/(7n?). Therefore,

Pr[¢ is satisfiable< E[|AZ|]
<(T/8)™ s (Prmm[A € AL} (YVu(r))¥@) . (19)

In the next Section, we will bound the above sum.

6 Asymptotics

In the sequel, we establish an asymptotic upper bound fogthiaomial coeffi-
cients that will help us to estimate the summation in (19).

Let sf(A) = k = an denote the number ¢fALSE values assigned by the truth
assignment, i.e. the number of single flips of. Recall thatdf (A) denotes the
number of double flips ofd. For notational convenience, let= z(r) andY =
Y, (r). Let also:

X(sf(A)) =Prom[A € A, ] (20)

Therefore, using (20), Inequality (19) may be written as follows:

Pr,,, [0 is satisfiable < (7/8)™>" X (sf(A))Y¥W. (21)

AeS

Furthermore the following equality can be derived (see [14]) by inductiom:on

s XA = (1) 0, @2)

k=0

Where(’,;) denotes theg-binomialor Gaussiarcoefficients (see [11]). From Rela-
tions (21) and (22) and Theorem 2, we obtain the following:

Pr,,,.[¢ is satisfiable < (;)n D3 ( ) o, B,r))". 23)

k=0 Il=k

We will now consider an arbitrary term of the double sum that appears in (23) and
examine for which values of it converges to 0. If we find a condition onthat
forces all such terms to converge to 0, then the whole sum will converge to 0 since
it contains polynomially many terms, all of which vanish exponentially fast. This
technique, made known to us by D. Achlioptas, avoids the problem of finding a
closed-form upper bound for the sum itself. However, in order to handle an arbitrary

12



term, we need an upper bound for iinomial coefficients. To establish such a
bound we need the following standard result:

LEMMA 2 [19] Let f(2) = Y22, f:2" be the generating function for the sequence
fi»i > 0. Then iff(2) is analytic in|z| < R and if f; > 0 for all ¢ > 0, then for
anyt,0 < t < R, and anyn > 0, it holds thatf,, < t"f(¢).

Using this lemma, we can prove the following:

Theorem4 Let( ) denote the g-binomial coefficients forg € (0, 1). Then the
following inequality holds

(oznn> < 2q_(a2n)1:0 n e g dilos(1+e0) ~dilog(1+z0q" )] (24)
q

wherex) = -t anddilog(z) = [i" {*tdt.

Proof. For the ordinary generating functionqﬁ) (7)q the following holds [3, p.
118]:

Sinceln(1 + z¢~!) is decreasing in,

3 q(;) (”) P<(1+ a:)efln In(142q—1)di
; i
=0 q

(1 —I— x)elnq[dllog(ler) dilog(1+an_1)}.

Applying Lemma 2, we have that for all€ (0, 1)

Q1) <amaep oyttt i) (25)
(4
q

The above inequality holds for any valuesot (0, 1). Therefore, we may optimize

it by choosing the value, = qi;‘,{il that minimizes the expression on the right-
hand side of (25). The required inequality is then obtained by settingn. =

13



Settingg = Y = 1+ z/nin (24) and using the approximation(1 + z/n) ~ z/n,
asn — oo, the following can be derived:

( " ) <2 [(1)0‘ . o 52+ L[dilog(1-+0) ~dilog(1-+z0e?)] "7 (26)

1—e®®

wherez, = “=%_, which is expedient in the proof of the following:

Theorem 5 An arbitrary term of the double sum in (23) is asymptotically (ignoring
polynomial multiplicative factors) bounded from above by the following expression
F raised ton:

F =exp[—a(c+In(sy — 1) — cln sg)] <(3a)ﬁ(7 — 3a)15>"

867 (1 — B)+=F
e~ O‘iz+%[dilog(1+aco)—dilog(l—&-xoez)]
X )
SL’QQ
. k _ l . 17 az - . . .
where,a = “ B = w0 = 2=, zasgivenin (13) and( = Wc—ce_) with
c=rL.

An immediate consequence of this result is thay value of » for which F' is
smaller than 1 for alk, 3 in the domainD = {«, € [0,1] andsr > a} is an
upper bound for the unsatisfiability threshold. In other words, any valuefof
which the maximum of the functiom(F') overD is negative is an upper bound for
the threshold.

We finally claim that for any value of, the expressioi(F') is an upwards convex
function ofa, 5 over the domairD. For a proof of this claim see Appendix B.

Since for any fixedr, In(F") is upwards convex and continuously differentiable,
there is a unique point ilD whereln(F) attains its maximum, and this point can

be computed by setting the partial derivativesigfF') equal to 0. Due to the com-
plicated form of the expressidm ('), we maximized it numerically oveD for

r = 4.571 using a Maple [18] implementation @ownhill Simplex This imple-
mentation is based on the method and the code described in [20] and it is freely
distributed by F.J. Wright in his Web page [22]. Guided by the pldh¢f’) given

by Maple, we chose as a starting set of values for downhill simplex0.42 and

3 = 0.21. We set the accuracy and the scale parameters eqi@i ta In addition,

we set theDigits parameter of Maple (accuracy of floating point numbers) equal to
100. We ran downhill simplex and it returned as the maximum value(éf) over

D the number-0.0000884. We then computed all the partial derivativesofF')

at the point ofD whereln(F') takes the value-0.0000884. They were found to be
numerically equal to 0. As a final check, we generated 30000 random points close
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to the point ofD whereln(F’) takes the value-0.0000884 and we confirmed that
at all these points, the value bf( ') is not greater thar-0.0000884. All these con-
siderations show that the maximumlof /') overD is negative for = 4.571. (For
larger values of-, the downhill simplex returns a positive maximum.) Thus, the
valuer = 4.571 is established as an upper bound to the unsatisfiability threshold.
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Appendix A

Proof of Theorem 3. We first show that there exigts= (617)/(7n?) < p =
(6r)/(7n?), such that:
Eyllg] | A€ Al =rn.

Fix A (containingan FALSE values). As we have seen in Section 3, the blocking
clauses of4 have cardinalityan(";"). We call the remaining () — an(";")
clauseson-blocking We shall now compute J|¢| | A € Al], as if the value of

p' (or equivalentlyr’) was known. We work in the modé¥,,. For a non-blocking
clausec, the event that it is contained in the random formula is independent from
the eventd € A!. This is so because we work in a model where for each clause itis
independently decided to be included in the formula and moreover the conditional
A e Al does not involve non-blocking clauses. So the expected number of non-
blocking clauses i, conditional on4 € A}, equals:

n n—1\\ 6r 7—-3a,
(7(3)—an< 5 >> 7n2N - r'n (27)

An arbitrary blocking clause has probability to be selected that equals:

PI'p/ [C € ¢]Prp/ [A < A711 ‘ cE Qb]

Pr,, AeAl]= 2
rp [C€¢| € n] Prp/[AEAH ( 8)
In [14] it was shown that:
Pry[Ae Al ~ (1 e % )on, (29)

Since each blocking clauseforces exactly one single flip of to falsify ¢ and
since there are totallyn single flips we obtain:

PryjAe Al [ce ¢~ (1 —e 5)on L, (30)
From (29) and (30), Equation (28) becomes:

67”’ 3r’

—(1—e ) (31)

So the expected number of blocking clauses,inonditional onA € Al | is:

Pryfcep| A€ Al] ~

~1 .
an <n 5 )Prp/[c cplAeAl]~ 370[(1 —e ) . (32)
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From (27) and (32) we conclude:

1 3o /
e lel | A€ A~ (14 gt ) @)
We want to find’ such that fop/ = (6r')/7n?),E,[|¢| | A € Al] = rn. By (33),
r’ must satisfy:

S (7(633/3‘_1)+1> (34)

It is easy to see that the last relation uniquely defiries r.

Next we show that fop’ = (61')/(7n?), wherer’ is implicitly given by (34), we

have thatPr,[|¢| = rn |A € Al] =< 1. By the remarks preceding the state-
ment of Theorem 3, this will complete its proof. The basic idea to show this is
the following: it suffices to show that the probability distribution|of in G, is,

in some sense, sharply concentrated on its mean. To show the later it suffices to
show thatPr,[|¢| = i |A € Al] =< 1, where: is a variable, can be expressed

as an exponential function im whose base is a function ofwith a unique max-
imum As this maximum then has to be 1, in order to have that the polynomially
many possible values fahave probabilities that add up to 1, and as all other bases
have to be less than 1, the sharp concentration follows. Actually, we will prove that
Pry[l¢| =i |A € A}] < 1is notan exponential function, but a sum of exponential
functions instead. This does not change the essence of our argument. We formalize
this argument below.

Fix ' (recall thatA is also fixed and has = an FALSE values). Lety > 0 be a
parameter and let= yn. We start by computin@r, [[¢| =i |A € A}]:

Pryll¢| =i |A € A}
Pryllol =i AAE ALl =
Pry([¢] = i]Pry[A € A}]
_Pry[A € A} ||¢| = iPry[l¢] = 1]
Pry[A e Al]
_ Pri[A € Aj|Pry[|¢] =]
Prp/[A S A}J

(35)

The probabilities with subscript are in the variable formula-length model, while
the ones with subscriptare in the fixed formula-length model without repetitions.
It is easy to see that for some functioh (), such thatln(G,(v)) is upwards
convex,Pr, [|¢] = i] ~ (G1(v))" . Also, for some constartt (depending on’ and
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A), Pry[A € Al] ~ C™ (see Relation (29) above). Finally, by Theorem 2 and from
the equivalence of the models,,,, andG,, that we established in Section 4, we
conclude that if we leG2(3,v) = E(a, 8,7) (a is fixed), then:

PI‘I[A S A;] = Z (G2(ﬁ7’7))n7

=k

wherey = i/n, § = l/i anda = k/n. By directly computing its Hessian, as we do
in the next Appendix for the functiom(E(r, a, 3), but in terms of the variables
and/, we can show thain(G, (3, 7)) is upwards convex. Also, obviously there is
a large enough constant such that

Mn

> Pryllg| =i|Ae AL~ 1.
=0

Putting everything together, we conclude that there is a funetion, v), where
In(G(8,7)) is upwards convex and such that:

Mn In i

S Prll¢l =ilde Al = Y3 (G(B,7)" = 1.

=0 i=0 =k

3

~

We can immediately conclude that there are valugsaridy such thatz(5,v) = 1
(otherwise we would have that polynomially many functions that are exponentially
zero sum up to 1). But becauB€G) is convex,GG has a uniqgue maximum, so the
values off3 and~ are unique. Therefore there is a unigue- i/n such that

7

Pryllo| =ilA €Ayl <> (G(B7)" = 1.

=k

But then we should have = r, otherwise we would contradict the fact that

Eyll6] | A€ ALl ~rn.

Appendix B

We establish the upwards convexity lof ') for a any fixedr over the domain
D = {a,8 € [0,1] andZ" > 1}.

In(F) =—a(c+In(sp — 1) — cln sp)
—fBring—(1—pF)rin(l —38)+ prin(3a) —rIn8 +r(1 — 3) In(7 — 3«)
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1 1
taln— — a2+ —[dilog(1 + x¢) — dilog(1 4 zge?)].
To 2z

A. The expression-grin s — (1 — B)rin(l — ) + frin(3a) — rln8 + r(1 —
B)In(7 — 3«) is an upwards convex function af 5. Indeed, the quadratic form of
its Hessian (see e.g. [21]) computed at an arbitrary veetor') € R? is:

rl BBl 2ol
o i ) -

Bl
ooz, [BT =802 400 = 9] L [VB(T = 30)2 4 9(1 - B)a?
=) l a?(7 = 3a)? _+2 ’ [ a(7 = 3a)y/B(1 - B) ]
/\2 1
_(mrlﬁ(l—ml
_ a,¢r6(7—3a)2+9(1—6)7“_ﬁ, 1
a?(7 = 3a)? pL=8) |

Therefore, the Hessian is negative semi-definite and so the funetiotn 5— (1 —
B)rin(1 — B) + frin(3a) — rIn8 4+ r(1 — §) In(7 — 3«) is upwards convex.

B. The expressiomvIn _- — a2 + Z[dilog(1 + 20) — dilog(1 + zoe?)], where
T9 = ==, z < 0, is an upwards convex function ef, 3. Indeed, first ob-
serve that it is actually a function of alone since for fixed, = is constant (recall
its definition in the beginning of Section 5) ang depends only onv. There-
fore, the quadratic form of its Hessian computed at an arbitfatys’) € R? is:

(ez_l)eaz

z [—m - 1} (a')?. Sincez < 0, in order to show that the last expression
is non-positive it suffices to show th fj;_)(lg(ffiez) < —1. Since(1 — e**)(e** —

e*) > 0, it is sufficient to show thafe* — 1)e** < —(1 — e**)(e** — ¢*) &

e* —2e“*e* +(e**)? > (. But the last inequality holds, sineé— 2e**¢* + (e%*)? >
(€Z)2 — D0z + (eaz)2 — (ez _ 6az)2 > 0.

C. Finally, let us consider the expressioh = —a(c + In(sp — 1) — cIlnsg) as a
function ofa, 5. The quadratic form of its Hessian computed at an arbitrary vector
(o/, ) € R is:

57~e—57’/(0680)
{ o 3 (36)

o B ﬂ’} 2
)~ af () '
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«

We prove (36) by the following steps: Using thafs, — 1) = Insp — =, ¢ =
andsg(1 — e=¢/*0) = 1, we first obtain:

M:—rﬂ—alnso—l—@—l—rﬁlnso. (37)
S0

Setting in Expression (37}, = %, wherex* is an arbitrary positive variable, we
then obtain:

M——rﬁ—aln@—l—ozlnx*—l—ozx*—i—rﬁlnﬁ—rﬁlnx*. (38)
a Q
Notice now that:
so(l—e ) =1lal-c" - L =0e ac” = @ (39)
rQ e —1  x*

Therefore the partial derivatives of Expression (38) are given by:

oM

OM _ * __ oM _ _ _ *
5o =T+ Inz*+Ina— = —1Inrg, a5 =rlnrg—rlna—rlnz*.
M _ g*+102* 4 L v EM _ v da* 1 PM _ 7ozt ¢
fa?2 T x* Oa @ a?) B2 — x* 9B 37 0adB ~ z* Oa a’

We then use once more Expression (39) in order to obtain:

oz* __ z* 1 ox* _  az* 1
da T rBe " —a/(rpB)’ B

A% = —a/(rB)’
Using the partial derivatives above, we conclude that (36) holds.

Now using (39) again, we observe that

efrilaso) - & _pmar & ﬂ <0,
pr Br x*e”

sincel + z* < ¢ . Therefore, expression (36) is non-positive and the proof of the
upwards convexity ofn(F’) overD is complete.
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