
Improving the Efficiency of Load Balancing
Games through Taxes?

Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos

Research Academic Computer Technology Institute and
Dept. of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece

Abstract. In load balancing games, there is a set of available servers and
a set of clients; each client wishes to run her job on some server. Clients
are selfish and each of them selects a server that, given an assignment
of the other clients to servers, minimizes the latency she experiences
with no regard to the global optimum. In order to mitigate the effect of
selfishness on the efficiency, we assign taxes to the servers. In this way,
we obtain a new game where each client aims to minimize the sum of
the latency she experiences and the tax she pays. Our objective is to
find taxes so that the worst equilibrium of the new game is as efficient
as possible. We present new results concerning the impact of taxes on
the efficiency of equilibria, with respect to the total latency of all clients
and the maximum latency (makespan).

1 Introduction

Load balancing games are special cases of the well-known congestion games
introduced by Rosenthal [18]. A congestion game Π consists of a set E of
resources, each resource e having a non-negative and non-decreasing latency
function fe defined over non-negative numbers, and a set of n players. Each
player i has a weight (or demand) wi and can select among a set of permissi-
ble strategies Si ⊆ 2E (where each strategy of player i is a set of resources).
In general, players may follow mixed strategies, i.e., use a probability distri-
bution over their permissible strategies. An assignment A = (A1, ..., An) is a
vector of strategies, one (possibly mixed) strategy for each player. We mostly
refer to pure assignments, i.e., assignments where each player selects a single
strategy with probability 1. The cost of a player i at an assignment A is de-
fined as costi(A) =

∑
e∈Ai

fe(ne(A)), where ne(A) is the total weight of play-
ers using resource e in A. The social cost of an assignment can be either the
weighted total cost over all players or the maximum latency (makespan) over all
resources. A pure (resp., mixed) assignment is a pure (resp., mixed) Nash equi-
librium if no player has any incentive to unilaterally deviate to another strategy,

? This work was partially supported by the European Union under IST FET Integrated
Project 015964 AEOLUS and by a “Caratheodory” grant from the University of
Patras.



i.e., costi(A) ≤ costi(A−i, s) for any player i and for any pure (resp., mixed)
strategy s, where (A−i, s) is the assignment obtained if just player i deviates
from Ai to s. In linear congestion games, the latency function of resource e is
of the form fe(x) = αex + βe with non-negative constants αe and βe. We use
the terms weighted and unweighted to distinguish between the cases where the
clients have different or identical weights.

Load balancing games are congestion games where the strategies of players
are singleton sets. In load balancing terminology, we use the terms server and
client instead of the terms resource and player. The set of strategies of a client
contains the servers that are permissible for the client. A load balancing game
is called symmetric when all servers are permissible for any client. Usually, the
servers of load balancing games have linear latency functions; an important spe-
cial case is that of related servers where the latency function of server j is of
the form fj(x) = αjx, with αj > 0. Motivated by [8], we use the term graph
balancing games to denote asymmetric load balancing games where each client
is unweighted and has at most two permissible servers, and all servers have
identical linear latency functions.

Since players act selfishly, load balancing games may reach assignments that
do not minimize the social cost. We use the notion of the price of anarchy intro-
duced in [15, 17] to quantify the degradation of the overall system performance.
In particular, the price of anarchy of a game Π is the maximum over all pure
(or mixed) Nash equilibria of the ratio of the social cost of a pure (or mixed)
Nash equilibrium over the social cost of the optimal assignment.

A vast amount of the literature (see [20, 25] and the references therein) studies
the complexity of computing equilibria of best and worst social cost and provides
bounds on the price of anarchy for various games that can be thought of as special
cases of congestion games such as load balancing games, when the social cost is
defined as the makespan or the weighed total latency. Awerbuch et al. [1] and,
independently, Christodoulou and Koutsoupias [4] prove tight bounds on the
price of anarchy of congestion games with respect to the weighted total latency.
Among other results concerning polynomial latency functions, they show that
the price of anarchy of pure Nash equilibria in unweighted linear congestion
games is 5/2 while for mixed Nash equilibria or pure Nash equilibria of weighted
players it is 2.618. These bounds carry over to load balancing games [2] and
can be improved for interesting special cases [2, 16, 22]. The price of anarchy of
weighted load balancing games on m related servers is Θ( log m

log log log m ) [7] over
mixed Nash equilibria with respect to the makespan. A better tight bound of
Θ( log m

log log m ) is known for pure Nash equilibria as well as for mixed Nash equilibria
at identical servers [7, 14].

In order to downscale the effect of selfishness to performance, we assign taxes
to the servers. Formally, a tax function δ : E × Q+ → Q+ assigns a tax δj(w)
to each client of weight w that wishes to use server j ∈ E. Furthermore, we
assume that clients are not equally sensitive to taxes. In particular, client i has
a tax sensitivity γi > 0. Assuming selfish behavior of the clients, we obtain a
new extended game (Π, δ) where each client now aims to minimize the expected



latency she experiences plus her disutility due to the taxes she pays at the server
she uses. This disutility equals γiδj(wi) when client i selects server j. Again, an
assignment y is a pure Nash equilibrium for the extended game if no player
has an incentive to unilaterally change her strategy, i.e., costi(y) + γiδs(wi) ≤
costi(y−i, s

∗)+γiδs∗(wi) for any client i that is on server s under the assignment
y, where y−i, s

∗ is the assignment produced when client i moves from s to s∗.

Like in our previous work [3] on the topic and motivated by [6], we consider
both refundable and non-refundable taxes. In the former case, we assume that
the collected taxes can be feasibly returned (directly or indirectly) to the play-
ers (e.g., as a “lump-sum refund”) and therefore the overall system disutility
depends only on the social cost. However, refunding the collected taxes could be
logistically or economically infeasible; the latter case models this scenario. We
will say that a function δ : E×Q+ → Q+ is a ρ-pure-efficient refundable tax for
the load balancing game Π if the social cost for any pure Nash equilibrium of
the extended game is at most ρ times the social cost of the optimal assignment.
Similarly, a function δ : E×Q+ → Q+ is a ρ-pure-efficient non-refundable tax for
the load balancing game Π if the social cost plus the total disutility due to taxes
at any pure Nash equilibrium is at most ρ times the social cost of the optimal
assignment. Similar definitions apply to the case of mixed Nash equilibria.

The problem of computing optimal taxes has received significant attention in
the economics and transportation science literature; the main underlying model
in these studies is that of non-atomic congestion games [21]. These games dif-
fer from the atomic games that we consider in that each player controls an
infinitesimal amount of demand, and, therefore, the actions of a single player
cannot affect the overall system performance. The results about taxes in non-
atomic congestion games (see for example [5, 6, 10, 13]) do not carry over to the
atomic model. In our previous work [3], we presented (among several negative
and positive results on the influence of taxes, under the assumption that all
clients are equally sensitive to taxes) 2-mixed-efficient refundable taxes with re-
spect to the weighted total latency for linear atomic congestion games and a
pure-optimal tax function for symmetric load balancing games; this latter result
was extended by Fotakis and Spirakis [12] to also hold for network congestion
games on series-parallel graphs. Swamy [23] studied more general (e.g., polyno-
mial) latency functions for the case of atomic congestion games with splittable
demands and presented taxes that ensure that the optimal assignment is a pure
Nash equilibrium.

In this paper we show the following results concerning non-refundable taxes.
For the case of graph balancing games and unweighted clients with different
sensitivities, we present an 1.618-pure-efficient tax function. This is the first
class of asymmetric load balancing games for which an upper bound better than
2 is achieved, while we note that the lower bound of 11/10 presented in [3]
also holds for graph balancing games. Recall that the price of anarchy of these
games can be at least 2.012 [22]. Our tax function exploits the structure of graph
balancing games and also uses the optimal assignment which can be computed
in polynomial time. Then, we consider symmetric load balancing games with



unweighted clients and servers with polynomial latency functions of degree p.
We prove a negative result that no non-refundable tax function can be better
than (p+1)1+1/p

(p+1)1+1/p−p
-pure-efficient, i.e., O

(
p

ln p

)
-pure-efficient. Note that this lower

bound matches the known upper bound on the price of anarchy of these games
which is a corollary of the relation to symmetric non-atomic congestion games in
[11] and the upper bounds of [19]. Next, we focus on the makespan as the social
cost. For the case of pure Nash equilibria and weighted clients on m related
servers, we present a 2-pure-efficient tax function, greatly improving upon the
Θ( log m

log log m ) bound on the price of anarchy presented in [7]. The tax function
is defined using a particular fractional schedule of clients to servers. We also
present a lower bound that shows that this tax function is best possible. Finally,
for mixed Nash equilibria we observe that the introduction of taxes does not
mitigate significantly the impact of selfishness, since no better than O( log m

log log m )-
mixed-efficient taxes exist, even for games with unweighted clients on identical
servers.

The rest of the paper is structured as follows. We begin by presenting, in
Section 2, our result concerning graph balancing games. We continue in Section 3
with the negative result about non-refundable taxes in symmetric load balancing
games with polynomial latency functions. The results concerning the objective
of minimizing the makespan are presented in Section 4.

2 Efficient Taxes for Graph Balancing Games

In this section, we present 1.618-pure-efficient tax functions for graph balancing
games. This is the first subclass of asymmetric load balancing games which is
proved to have better than 2-pure efficient taxes. The tax function is simple and
exploits the structure of the game. We will assign very small taxes to the servers
so that each server is assigned a different tax. So, although we prove the result
ignoring the total taxes paid by the clients, this quantity can become arbitrarily
small and our result carries over to non-refundable taxes by adding an ε factor
to the efficiency.

Consider a graph balancing game with a set of clients U (with |U| = n) and
let δ̂ be such that 0 < δ̂ ≤ 1/ maxi γi, where γi is the tax sensitivity of client i.
First, we compute an optimal assignment and denote by oj the number of clients
using server j in this assignment. This computation can be done in polynomial
time by a natural reduction to a minimum cost flow problem on a single-source
network, similar to the reduction presented in [9] for computing an equilibrium
of symmetric congestion games that minimizes Rosenthal’s potential. Then, we
consider the graph having a node for each server j and an edge between two
different nodes j1 and j2 for each client that has servers j1 and j2 as permissible
servers. For each such edge corresponding to a client i, we define the edge’s
optimal node to be the endpoint corresponding to the server that client i uses
in the optimal assignment. We compute an orientation of the edges so that the
corresponding directed graph is acyclic. Then, either this directed graph or the
one in which all edges have opposite directions have the following property: at



most half of the edges point to their non-optimal node. We select the orientation
that has this property and assign different taxes from

{
1
n δ̂, 2

n δ̂, ..., n−1
n δ̂, δ̂

}
to

the nodes/servers so that for any edge directed from j1 to j2, it is δj1 > δj2 .
Now, consider any pure Nash equilibrium of the extended game and let nj

denote the number of clients using server j. For a client i, denote by j1 the server
that client i uses in the pure Nash equilibrium and let j2 be the other permissible
server of client i (j1 = j2 if the client has only one permissible server). Since no
client has an incentive to change her strategy, it is nj1 + γiδj1 ≤ nj2 + 1 + γiδj2 .
This means that nj1 ≤ nj2 + 1 + γi (δj2 − δj1) and nj1 ≤ nj2 + 1 since nj1 and
nj2 are integers and γi (δj2 − δj1) < 1 by the definition of the tax function. This
inequality holds for any client and we conclude that any pure Nash equilibrium
of the extended game is also a pure Nash equilibrium for the original game.

We now show that any pure Nash equilibrium for the extended game is a
1
2 -PNE for the original game, i.e., a pure Nash equilibrium that satisfies the
property

∑

j

n2
j ≤

∑

j

(
njoj +

oj

2

)
. (1)

For each client i, we denote by ji and j′i the servers she uses in the pure Nash
equilibrium and in the optimal assignment, respectively. Denote by S the set of
clients i such that ji = j′i. Denote by F the set of clients i such that ji 6= j′i
and δji > δj′i . Then, the condition nji + γiδji ≤ nj′i + 1 + γiδj′i , implying that
client i has no incentive to use the server she uses in the optimal assignment,
implies that nji ≤ nj′i , since nji and nj′i are integers and δji > δj′i . The condition
nji ≤ nj′i +1 holds for any client i not belonging in S and F since the pure Nash
equilibrium for the extended game is also a pure Nash equilibrium for the original
game.

By the definition of the tax function, we have that |U \ (F ∪ S)| ≤ |U|/2 =
1
2

∑
j oj . By considering the equilibrium conditions for all clients, we have

∑

j

n2
j =

n∑

i=1

∑

j:ji=j

nj

=
∑

i∈S

∑

j:ji=j

nj +
∑

i∈F

∑

j:ji=j

nj +
∑

i∈U\(F∪S)

∑

j:ji=j

nj

≤
∑

i∈S

∑

j:j′i=j

nj +
∑

i∈F

∑

j:j′i=j

nj +
∑

i∈U\(F∪S)

∑

j:j′i=j

(nj + 1)

=
n∑

i=1

∑

j:j′i=j

nj + |U \ (F ∪ S)|

≤
∑

j

njoj +
1
2

∑

j

oj

=
∑

j

(
njoj +

oj

2

)
.



This completes the proof of inequality (1).
In our analysis, we will consider all 1

2 -PNE for the original graph balancing
game, and we will show that their price of anarchy is at most 1+

√
5

2 . We will
need the following technical claim.

Lemma 1. For any non-negative integers x and y,

3−√5
4

x2 +
3 +

√
5

4
y2 ≥ xy +

3(
√

5− 1)
4

y − 3
√

5− 5
4

x.

Theorem 1. For any graph balancing game, the tax function described above is
a 1+

√
5

2 ≈ 1.618-pure-efficient tax.

Proof. We will show that the price of anarchy of any 1
2 -PNE of a graph balancing

game is at most 1+
√

5
2 . Again, we denote by nj and oj the number of clients in

server j in the 1
2 -PNE and in the optimal assignment, respectively. By inequality

(1) and since
∑

j nj =
∑

j oj , we have that the social cost is

∑

j

n2
j ≤

∑

j

(
njoj +

oj

2

)

=
∑

j

(
njoj +

oj

2

)
+

3
√

5− 5
4

∑

j

oj − 3
√

5− 5
4

∑

j

nj

=
∑

j

(
njoj +

3(
√

5− 1)
4

oj − 3
√

5− 5
4

nj

)

≤
∑

j

(
3−√5

4
n2

j +
3 +

√
5

4
o2

j

)

=
3−√5

4

∑

j

n2
j +

3 +
√

5
4

∑

j

o2
j

where the first equality follows since
∑

j nj =
∑

j oj , the second and third equal-
ities are obvious, and the second inequality follows by Lemma 1. We obtain that
the price of anarchy is

∑
j n2

j∑
j o2

j

≤
3+
√

5
4

1− 3−√5
4

=
1 +

√
5

2
. ut

Broadening the class of load balancing games that admit better than 2-pure-
efficient taxes (or even pure-optimal taxes) is an interesting open problem.

3 Non-refundable Taxes in Symmetric Load Balancing

We now proceed to answer in a negative way a question posed in [3] concerning
non-refundable taxes in symmetric load balancing games, i.e., whether taxes



can diminish the effect of selfishness. Our following theorem suggests that taxes
do not help in the case of symmetric load balancing with polynomial latency
functions of degree p, since for any tax function, the price of anarchy of the
extended game in these games is (p+1)1+1/p

(p+1)1+1/p−p
∈ O

(
p

ln p

)
. Clearly, our result also

demonstrates that the known upper bound on the price of anarchy of such games
(without taxes) is tight.

Theorem 2. For any p ≥ 1 and any ε > 0, there exists a symmetric load
balancing game with polynomial latency functions of degree p that does not admit
better than (ρ− ε)-pure-efficient non-refundable taxes where ρ = (p+1)1+1/p

(p+1)1+1/p−p
∈

O
(

p
ln p

)
.

Proof. Let k ≥ 2 be an integer and define λ = 2kp+1−kp−(k−1)p+1

k . We have λ =

kp + kp
((

1− 1
k

)− (
1− 1

k

)p+1
)

and, since k ≥ 2 and p ≥ 1, it is kp < λ < 2kp.

Define y∗ = k −
⌊(

λ
p+1

)1/p
⌋
. Since p ≥ 1 and λ < 2kp, it is 1 ≤ y∗ ≤ k.

Consider a game with k clients where each client j has γj = 1, and k + 1
servers 0, 1, ..., k. Server 0 has latency function xp while each of the other k
servers has latency function λxp. The assignment in which server 0 has k − y∗

clients, y∗ among the other servers have exactly one client and any other server
is empty has cost

opt = (k − y∗)p+1 + y∗λ.

In the absence of taxes, the assignment where all clients select server 0 is
a pure Nash equilibrium since each of them has a latency of kp and, in case a
client decides to choose another server, she would face latency λ > kp. The cost
of this equilibrium is cost = kp+1 and the price of anarchy is

PoA ≥ cost

opt
=

kp+1

(k − y∗)p+1 + y∗λ
.

Therefore, in order to avoid this assignment as an equilibrium of the extended
game, we have to assign taxes in such a way that at least one client has an
incentive to change her choice. So, without loss of generality, we assume that
there is a tax function δ, for which it holds that δ0(w) = α and δj(w) = 0, for
any 1 ≤ j ≤ k. Note that, for any α ≤ λ − kp, the aforementioned assignment
remains a pure Nash equilibrium of the extended game, since any client at server
0 would have a cost of kp+α ≤ λ. Now, assume that α = λ−kp+ε for any ε > 0.
Then, any client would have a incentive to leave server 0 and move to another
server. Then, assuming that one client moves, the total cost cost′ (latency plus



taxes) of the resulting assignment would be

cost′ = (k − 1)p+1 + α (k − 1) + λ

> (k − 1)p+1 + (λ− kp) (k − 1) + λ

= (k − 1)p+1 + λ (k − 1)− kp (k − 1) + λ

= λk + (k − 1)p+1 − kp+1 + kp

= kp+1

= cost.

Applying similar reasoning, it is not hard to see that by increasing δ0(w) = α
even more so that more clients have an incentive to leave server 0, the total
cost similarly increases. Therefore, the total cost is minimized by setting α = 0.

Observe that limk→∞ λ
kp = 1 and limk→∞

y∗

k = 1−
(

1
p+1

)1/p

. Hence,

lim
k→∞

kp+1

(k − y∗)p+1 + y∗λ
= lim

k→∞
1

(1− y∗
k )p+1 + y∗λ

kp+1

=
1

(
1

p+1

)1+1/p

+ 1−
(

1
p+1

)1/p

=
(p + 1)1+1/p

(p + 1)1+1/p − p
= ρ.

Hence, for any ε > 0, by setting k to a sufficiently large value, we obtain that
the price of anarchy becomes at least ρ− ε. ut

4 Minimizing the Makespan

In this section we focus on the makespan as the social cost. We consider the well-
known case where servers are related, i.e., server j has latency function αjx. Our
upper bound uses tax functions that assign to each server a tax of either 0 or
∞. In this setting, there is no difference between refundable and non-refundable
taxes since no client is assigned to a server where it has to pay an infinite tax.
Furthermore, the tax sensitivity of each client does not affect her behavior.

Denote by n the number of clients and by m the number of servers. We assume
that the servers are sorted in non-decreasing order of αi (i.e., αi ≤ αi+1) and
clients are sorted in non-increasing order of their weight (i.e., wi ≥ wi+1). We
define the following procedure that produces fractional schedules of makespan
T ≥

∑
i wi∑

i 1/αi
. Observe that the quantity

∑
i wi∑

i 1/αi
is a lower bound on the makespan

of any fractional schedule; the numerator is the total weight of the clients and
the denominator is the “capacity” of all servers.



1. set j = 1, i = 1, and t = 0;
2. while i ≤ n do
3. if T − t ≥ αjwi then
4. put the remaining weight of client i at server j;
5. set t = t + αjwi and i = i + 1;
6. else
7. put weight T−t

αj
of client i at server j;

8. set wi = wi − T−t
αj

, j = j + 1, and t = 0;

What the above procedure is doing is to consider each client (according to
their ordering) and put as much of her weight as possible to the server of smallest
index so that the latency does not exceed T . This will end up with a fractional
schedule in which there exists a server j′ such that the latency of all servers
j ≤ j′ is exactly T , (if j′ < m) the latency of server j′ + 1 is at most T , and the
latency of all servers j > j′ + 1 (if any) is 0. Each client occupies consecutive
servers and, furthermore, at most one client may have non-zero weights in two
specific consecutive servers.

Given a value of T , the schedule produced by the procedure above is called
2-feasible if for any client i and any two consecutive servers j and j + 1, it holds
that αjw

j
i + αj+1w

j+1
i ≤ T , where wj

i denotes the weight of client i assigned
to server j. We start with the value T =

∑
i wi∑

i 1/αi
and run the procedure. If

the schedule produced is 2-feasible, we stop. Otherwise, we increase T until the
schedule produced by the procedure is 2-feasible. Let T ∗ be the corresponding
value of T (i.e., the minimum value for which the schedule produced is 2-feasible).
Clearly, if T ∗ >

∑
i wi∑

i 1/αi
, there will be at least one client i and two consecutive

servers j and j + 1 such that αjw
j
i + αj+1w

j+1
i = T ∗.

We now describe the tax function. We partition the clients into groups ac-
cording to their weight, so that two clients i1 and i2 belong to same group when
wi1 = wi2 . We denote by w∗g the weight corresponding to group g. Let Sg denote
the set of servers that contain non-zero weights of clients belonging to group g
in the fractional schedule of makespan T ∗. If |Sg| = 1, then we set δj(w∗g) = 0
for the server j ∈ Sg and δj′(w∗g) = ∞ for any other server j′ /∈ Sg. Otherwise,
when |Sg| > 1, we distinguish between two cases depending on whether the last
server of Sg (i.e., the one with the larger index) contains only clients of group
g or also clients of different groups. In the first case, we set δj(w∗g) = 0 for any
server j ∈ Sg and δj′(w∗g) = ∞ for any other server j′ /∈ Sg, while in the second
case, we set δj(w∗g) = 0 for the |Sg| − 1 servers of Sg with smallest index and
δj′(w∗g) = ∞ for any other server j′. In any case, we denote with ∆g the set of
servers j for which δj(w∗g) = 0.

We show the following result.

Theorem 3. For any symmetric load balancing game on related servers, the
above tax function is 2-pure-efficient with respect to the makespan.



Proof. Consider the 2-feasible fractional schedule of makespan T ∗ produced as
above. We first show that the optimal assignment has makespan at least T ∗.
This clearly holds if T ∗ =

∑
i wi∑

i 1/αi
. Otherwise, there will be a client i and two

consecutive servers j and j+1 such that αjw
j
i +αj+1w

j+1
i = T ∗. Then, all clients

with smaller index than i are fractionally scheduled at servers 1, ..., j which have
latency exactly T ∗. In any integral schedule, either all of the clients 1, ..., i will
be scheduled to servers 1, ..., j or some of them will be scheduled at some server
with larger index than j. In the first case, the makespan will be at least T ∗ since
the total weight of clients assigned to servers 1, ..., j does not decrease compared
to the fractional schedule. In the second case, a client of weight at least wi will
be assigned to a server j′ with αj′ ≥ αj+1 ≥ αj . This server will have latency at
least αj′wi ≥ αjw

j
i + αj+1w

j+1
i = T ∗.

Now, we show that there exists an integral schedule with makespan at most
2T ∗ in which each client in group g selects a server from the set ∆g. The clients
that have non-zero weight in the server of Sg with the smallest index are sched-
uled in this server. Each other client of group g for which the server with largest
index containing a non-zero amount of her weight in the fractional schedule is
j is scheduled at server j − 1. In this way, the total weight of any server j may
increase by at most the weight of clients in server j+1 in the fractional schedule.
Since αj ≤ αj+1, the latency at server j will not exceed 2T ∗.

Observe that the tax function essentially divides the original game into sub-
games in the following sense. In any pure Nash equilibrium, the clients of group
g with |∆g| = 1 are forced to use the server of ∆g. The clients of group g with
|∆g| > 1 play a symmetric game with linear latency functions at server j of
the form αjx + βj . Here, βj denotes the latency at server j due to clients not
belonging to group g which are forced to use server j. Furthermore, by the def-
inition of the tax function, the sets ∆g with size more than 1 are disjoint and,
hence, the corresponding sets of clients do not interfere. It is not hard to see
that any equilibrium in each subgame of clients of group g has the minimum
possible integral makespan, i.e., at most 2T ∗. This completes the proof of the
theorem. ut

The next theorem states that this tax function is best possible. The proof is
omitted; it will appear in the final version.

Theorem 4. For any ε > 0, there exists a load balancing game on m identical
servers that does not admit better than (2− ε)-pure-efficient taxes with respect
to the makespan.

Unfortunately, taxes cannot significantly improve the price of anarchy with
respect to the makespan over mixed Nash equilibria. To show this, we use a
construction that we have also used in [3] to lower-bound the efficiency of taxes
at mixed Nash equilibria with respect to the total latency. The construction
applies to symmetric load balancing games with identical clients and identical
servers and the proof follows by a standard balls-to-bins argument.



Consider a tax function δ. Without loss of generality, we assume that δj ≤ δj′

for j < j′. Let k be equal to m if 1 +
∑m−1

j=1 δj

m−1 > δm, otherwise k is equal to

the largest integer such that
m−1+

∑k
j=1 δj

k ≤ δk+1. Let D =
∑k

j=1 δj . Consider
the following assignment y for all clients. Client i uses server j with probability
yij = 1

k + D
k(m−1) −

δj

m−1 if j ≤ k and yij = 0 otherwise. Notice that all clients
have the same probability distribution. It can be verified that y is a mixed Nash
equilibrium of the extended game.

In order to compute the expected makespan, it suffices to observe that it is
the expectation of the maximum number of balls at any bin when m balls are
thrown independently at m bins according to the probability distribution y. It
is well-known (e.g., see [24]) that this expectation is minimized to Θ

(
log m

log log m

)

when y is the uniform distribution. Thus, we obtain the following statement.

Theorem 5. There exists a symmetric load balancing game on m servers that
does not admit better than Ω

(
ln m

ln ln m

)
-mixed-efficient taxes with respect to the

makespan.

Note that this bound matches the price of anarchy of symmetric load bal-
ancing with identical servers [7, 14]. The price of anarchy for related servers is
slightly higher [7]. We leave as an open problem whether taxes can improve the
price of anarchy with respect to the makespan in this particular case and, more
importantly, in the more general case of congestion games.

References

1. B. Awerbuch, Y. Azar, and A. Epstein. The price of routing unsplittable flow. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC
’05), pp. 57-66, 2005.

2. I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and L. Moscardelli.
Tight bounds for selfish and greedy load balancing. In Proceedings of the 33rd In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’06),
LNCS 4051, Springer, Part I, pp. 311-322, 2006.

3. I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Taxes for linear atomic con-
gestion games. In Proceedings of the 14th Annual European Symposium on Algo-
rithms (ESA ’06), LNCS 4168, Springer, pp. 184-195, 2006.

4. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. In Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing (STOC ’05), pp. 67-73, 2005.

5. R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous
selfish users. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing (STOC ’03), pp. 521-530, 2003.

6. R. Cole, Y. Dodis, and T. Roughgarden. How much can taxes help selfish routing?
Journal of Computer and System Sciences, 72(3), pp. 444-467, 2006.

7. A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Trans-
actions on Algorithms, 3(1), 2007.



8. T. Ebenlendr, M. Krcal, and J. Sgall. Graph balancing: a special case of schedul-
ing unrelated parallel machines. In Proceedings ot the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’08), pp. 483-490, 2008.

9. A. Fabrikant, C. Papadimitriou and K. Talwar. On the complexity of pure equilib-
ria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC ’04), pp. 604-612, 2004.

10. L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users in
multicommodity networks and generalized congestion games. In Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’04),
pp. 277-285, 2004.

11. D. Fotakis. Stackelberg strategies for atomic congestion games. In Proceedings of
the 15th European Symposium on Algorithms (ESA ’07), LNCS 4698, Springer, pp.
299-310, 2007.

12. D. Fotakis and P. Spirakis. Cost-balancing tolls for atomic network congestion
games. In Proceedings of the 3rd International Workshop on Internet and Network
Economics (WINE ’07), LNCS 4858, Springer, pp. 179-190, 2007.

13. G. Karakostas, and S. Kolliopoulos. Edge pricing of multicommodity networks for
heterogeneous selfish users. In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’04), pp. 268-276, 2004.

14. E. Koutsoupias, M. Mavronicolas and P. Spirakis. Approximate equilibria and ball
fusion. Theory of Computing Systems, 36(6), pp. 683-693, 2003.

15. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th International Symposium on Theoretical Aspects of Computer Science
(STACS ’99), LNCS 1563, Springer, pp. 404-413, 1999.

16. T. Lücking, M. Mavronicolas, B. Monien, and M. Rode. A new model for selfish
routing. In Proceedings of the 21st International Symposium on Theoretical Aspects
of Computer Science (STACS ’04), LNCS 2996, Springer, pp. 547-558, 2004.

17. C. Papadimitriou. Algorithms, games and the internet. In Proceedings of the 33rd
Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 749-753, 2001.

18. R. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Interna-
tional Journal of Game Theory, 2: 65-67, 1973.

19. T. Roughgarden. The price of anarchy is independent of the network topology.
Journal of Computer and System Sciences, 67(2), pp. 341-364, 2003.

20. T. Roughgarden. Routing games. Book chapter in Algorithmic Game Theory, (eds.
N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani), Cambridge University
Press, 2007.

21. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM,
49(2), pp. 236-259, 2002.

22. S. Suri, C. Tóth and Y. Zhou. Selfish load balancing and atomic congestion games.
Algorithmica, 47(1), pp. 79-96, 2007.

23. C. Swamy. The effectiveness of Stackelberg strategies and tolls for network conges-
tion games. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’07), pp. 1133-1142, 2007.

24. B. Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4), pp.
568-589, 2003.

25. B. Vöcking. Selfish load balancing. Book chapter in Algorithmic Game Theory
(eds. N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani), Cambridge University
Press, 2007.


