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Abstract. We study the effect of combining selfishness and altruism in
atomic congestion games. We allow players to be partially altruistic and
partially selfish and determine the impact of this behavior on the overall
system performance. Surprisingly, our results indicate that, in general,
by allowing players to be (even partially) altruistic, the overall system
performance deteriorates. Instead, for the class of symmetric load bal-
ancing games, a balance between selfish and altruistic behavior improves
system performance to optimality.

1 Introduction

Congestion games provide a natural model for antagonistic resource allocation in
large-scale systems and have recently played a central role in algorithmic game
theory. In a congestion game, a set of non-cooperative players, each control-
ling an unsplittable unit demand, compete over a set of resources. All players
using a resource experience a latency (or cost) given by a non-negative and non-
decreasing function of the total demand (or congestion) of the resource. Among
a given set of resource subsets (or strategies), each player selects one selfishly
trying to minimize her individual total cost, i.e., the sum of the latencies on the
resources in the chosen strategy. Load balancing games are congestion games in
which the strategies of the players are singletons. Load balancing games in which
all players have all resources as singleton strategies are called symmetric.

A typical example of a congestion game stems from antagonistic routing on
a communication network. In this setting, we have several network users, where
each user wishes to send traffic between a source-destination pair of network
nodes. Each user may select among all possible paths connecting her source-
destination pair of nodes. A natural objective for a user is to route her traffic
using as less congested links as possible. This situation can be modelled by a
congestion game where the users of the network are the players and the com-
munication links correspond to the resources. In a load balancing game, we may
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think of the resources as servers and the players as clients wishing to get served
by one of the servers. Then, the load balancing game is used to model the inher-
ent selfishness of the clients in the sense that each of them desires to be served
by the least loaded server.

A natural solution concept that captures stable outcomes in a (congestion)
game is that of a pure Nash equilibrium (PNE), a configuration where no player
can decrease her individual cost by unilaterally changing her strategy. Rosenthal
[13] proved that the PNE of congestion games correspond to the local optima
of a natural potential function, and thus every congestion game admits a PNE.
Much of the recent literature on congestion games has focused on quantifying
the inefficiency due to the players’ selfish behavior. It is well known that a
PNE may not optimize the system performance, usually measured by the total
cost incurred by all players. The main tool for quantifying and understanding
the performance degradation due to selfishness has been the price of anarchy,
introduced by Koutsoupias and Papadimitriou [10] (see also [12]). The price of
anarchy is the worst-case ratio of the total cost of a PNE to the optimal total
cost.

Many recent papers have provided tight upper and lower bounds on the
price of anarchy for several interesting classes of congestion games, mostly con-
gestion games with linear and polynomial latencies. Awerbuch et al. [2] and
Christodoulou and Koutsoupias [7] proved that the price of anarchy of conges-
tion games is 5/2 for linear latencies and dΘ(d) for polynomial latencies of degree
d. Subsequently, Aland et al. [1] obtained exact bounds on the price of anarchy
for congestion games with polynomial latencies. Caragiannis et al. [4] proved
that the same bounds hold for load balancing games as well. For symmetric load
balancing games, Lücking et al. [11] proved that the price of anarchy is 4/3.

In this paper, we are interested in the impact of altruistic behavior on the
efficiency of atomic congestion games with linear latency functions. We assume
that a player with completely altruistic behavior aims to minimize the total
latency incurred by the other players. We also consider types of behavior that
lie between completely altruistic behavior and selfishness. In this respect, we
use a parameter ξ ∈ [0, 1] and consider a player to be ξ-altruistic is she aims
to minimize the linear combination of the total latency incurred by the other
players and her latency with coefficients ξ and 1 − ξ respectively. Hence, an
1-altruistic player acts completely altruistically while a 0-altruistic one is selfish.

Intuitively, altruism should be considered as a synonym for trustworthy be-
havior. In contrast to this intuition, we demonstrate rather surprising results.
We show that having players that behave completely altruistically may lead to a
significant deterioration of performance. More importantly, even a small degree
of altruism may have a negative effect on performance compared to the case of
selfish players. These results hold for general atomic congestion games in which
players may have different strategy sets. This asymmetry seems to be incompat-
ible with altruism. On the contrary, in simpler games such as symmetric load
balancing games, we prove that a balance between altruism and selfishness in
the players’ behavior leads to optimal performance.



In technical terms, we show the following results which extend the known
bounds on the price of anarchy of games with selfish players to games with
ξ-altruistic ones:

– The price of anarchy of atomic congestion games with ξ-altruistic players is
at most 5−ξ

2−ξ when ξ ∈ [0, 1/2] and at most 2−ξ
1−ξ when ξ ∈ [1/2, 1]. These

bounds are proved to be tight for all values of ξ. The corresponding lower
bound proofs are based on the construction of load balancing games with
the desired price of anarchy.

– For symmetric load balancing games, we show that the price of anarchy

with ξ-altruistic players is at most 4(1−ξ)
3−2ξ when ξ ∈ [0, 1/2] and at most

3−2ξ
4(1−ξ) when ξ ∈ [1/2, 1]. These bounds are proved to be tight as well; the

lower bound constructions are very simple and use symmetric load balancing
games with two machines and two players.

Surprisingly, our first set of results indicates that altruism may be harmful
in general since the price of anarchy increases from 5/2 to unbounded as the
degree of altruism increases from 0 to 1. Hence, selfishness is more beneficial
than altruism in general. Our second set of results establishes a different setting
for symmetric load balancing games. Interestingly, a balance between altruistic
and selfish behavior leads to optimal performance (i.e., the price of anarchy is
1 and the equilibria reached are optimal). This has to be compared to the tight
bound of 4/3 on the price of anarchy with selfish players. Again, completely
altruistic behavior leads to an unbounded price of anarchy.

In our upper bound proofs, we follow the standard high-level analysis ideas
that have been used in the literature (see [3]) in order to compare the cost of
equilibria to the cost of optimal assignments but adapt it to the case of altruistic
players. For each player, we express with an inequality its preference to the
strategy she uses in the equilibrium instead of the one she uses in the optimal
assignment. For general atomic congestion games, by summing these inequalities
over all players, we obtain an upper bound on the cost of the equilibrium in terms
of quantities characterizing both the equilibrium and the optimal assignment.
Then, we need to use new inequalities on the non-negative integers in order to
obtain a direct relation between the cost of the equilibrium and the optimal
assignment. In symmetric load balancing, we exploit the symmetry in order to
obtain a better relation between the cost of the equilibrium and the optimal cost.
In our analysis, we use the inequalities expressing the preference of a carefully
selected set of players and develop new inequalities over non-negative integers
in order to obtain our upper bound.

Chen and Kempe [6] have considered similar questions in non-atomic con-
gestion games, i.e., games with an infinite number of players each controlling
a negligibly small amount of traffic. Our findings are inherently different than
theirs as in non-atomic congestion games the system performance improves as
the degree of altruism of the players increases. Hoefer and Skopalik [9] consider
atomic congestion games using a slightly different definition of altruism, which
corresponds to ξ-altruistic behavior with ξ ∈ [0, 1/2] in our model. They mainly



present complexity results for the computation of equilibria in the corresponding
congestion games and do not address questions related to the price of anarchy.

The rest of the paper is structured as follows. We begin with preliminary
definitions and properties of altruistic players in Section 2. Our upper bounds
for atomic congestion games and the corresponding lower bounds are presented
in Sections 3 and 4, respectively. Section 5 is devoted to our results regarding
symmetric load balancing. We conclude in Section 6 with a discussion on possible
extensions of our work.

2 Preliminaries

In this section we formally define the model and establish characteristic inequal-
ities that capture the players’ behavior.

In atomic congestion games there is a set E of resources, each resource e
having a non-negative and non-decreasing latency function fe defined over non-
negative numbers, and a set of n players. Each player i has a set of strategies Si ⊆
2E (each strategy of player i is a set of resources) and controls an unsplittable
unit demand. An assignment A = (A1, ..., An) is a vector of strategies, one
strategy for each player. The cost of player i for an assignment A is defined
as costi(A) =

∑
e∈Ai

fe(ne(A)), where ne(A) is the number of players using
resource e in A, while the social cost of an assignment is the total cost of all
players. An assignment is a pure Nash equilibrium if no player has an incentive
to unilaterally deviate to another strategy, i.e., costi(A) ≤ costi(A−i, s) for any
player i and for any s ∈ Si, where (A−i, s) is the assignment produced from
A if player i deviates from Ai to s. This inequality is also known as the Nash
condition. A congestion game is called symmetric when all players share the
same set of strategies. Load balancing games are congestion games where the
strategies of the players are singleton sets. The price of anarchy of a congestion
game is defined as the ratio of the maximum social cost over all Nash equilibria
over the optimal cost. The price of anarchy for a class of congestion games is
simply the highest price of anarchy among all games belonging to that class.

In this paper, we consider latency functions of the form fe(x) = αex + βe

for each resource e, where αe, βe are non-negative constants. Then, the cost of a
player i for an assignment A becomes costi(A) =

∑
e∈Ai

(αene(A) + βe), while
the social cost becomes∑

i

costi(A) =
∑
i

∑
e∈Ai

(αene(A) + βe) =
∑
e

(
αen

2
e(A) + βene(A)

)
.

We now proceed to modify the model so that altruism is taken into account.
We assume that each player i is partially altruistic, in the sense that she tries
to minimize a function depending on the total cost of all other players and the
total latency she experiences. We say that player i following a strategy Ai is
ξ-altruistic, where ξ ∈ [0, 1], when her cost function is

costi(A) = ξ

(∑
e

(
αen

2
e(A) + βene(A)

)
−
∑
e∈Ai

(αene(A) + βe)

)



+(1− ξ)
∑
e∈Ai

(αene(A) + βe).

Clearly, when ξ = 0 then player i wishes to minimize her total latency, while
when ξ = 1 player i wishes to minimize the total latency of all other players.

Now, consider two assignments A and A′ that differ in the strategy of player
i and let p1 and p2 be the strategies of i in the two assignments. Furthermore,
by slightly abusing notation, we let ne = ne(A) and n′

e = ne(A
′).

Assume that assignment A is an equilibrium; the cost of player i under A is

costi(A) = ξ

(∑
e

(
αen

2
e + βene

)
−
∑
e∈p1

(αene + βe)

)
+ (1− ξ)

∑
e∈p1

(αene + βe)

= ξ

 ∑
e/∈p1⊖p2

(
αen

2
e + βene

)
+

∑
e∈p1⊖p2

(
αen

2
e + βene

)
+(1− 2ξ)

 ∑
e∈p1∩p2

(αene + βe) +
∑

e∈p1\p2

(αene + βe)

 ,

where ⊖ is the symmetric difference operator in set theory, i.e., for two sets a, b
it holds that a⊖ b = (a \ b) ∪ (b \ a).

Consider now the second assignment A′ = (A−i, p2) in which player i has
changed her strategy from p1 to p2. Observe that n′

e = ne + 1 for e ∈ p2 \ p1,
n′
e = ne − 1 for e ∈ p1 \ p2 and n′

e = ne otherwise. Her cost under the second
assignment is

costi(A
′) = ξ

(∑
e

(
αen

′2
e + βen

′
e

)
−
∑
e∈p2

(αen
′
e + βe)

)
+ (1− ξ)

∑
e∈p2

(αen
′
e + βe)

= ξ

 ∑
e/∈p1⊖p2

(
αen

′2
e + βen

′
e

)
+

∑
e∈p1⊖p2

(
αen

′2
e + βen

′
e

)
+(1− 2ξ)

 ∑
e∈p1∩p2

(αen
′
e + βe) +

∑
e∈p2\p1

(αen
′
e + βe)


= ξ

 ∑
e/∈p1⊖p2

(
αen

2
e + βene

)
+

∑
e∈p1\p2

(
αe (ne − 1)

2
+ βe (ne − 1)

)

+
∑

e∈p2\p1

(
αe (ne + 1)

2
+ βe (ne + 1)

)
+(1− 2ξ)

 ∑
e∈p1∩p2

(αene + βe) +
∑

e∈p2\p1

(αe (ne + 1) + βe)

 .



Since player i has no incentive to change her strategy from p1 to p2, we obtain
that costi(A) ≤ costi(A

′), i.e.,

ξ
∑

e∈p1⊖p2

(
αen

2
e + βene

)
+ (1− 2ξ)

∑
e∈p1\p2

(αene + βe) ≤

ξ

 ∑
e∈p1\p2

(
αe (ne − 1)

2
+ βe (ne − 1)

)
+

∑
e∈p2\p1

(
αe (ne + 1)

2
+ βe (ne + 1)

)
+(1− 2ξ)

∑
e∈p2\p1

(αe (ne + 1) + βe),

which implies that∑
e∈p1\p2

(αe (ne − ξ) + βe (1− ξ)) ≤
∑

e∈p2\p1

(αe (ne + 1− ξ) + βe (1− ξ))

=
∑

e∈p2\p1

(αe (n
′
e − ξ) + βe (1− ξ)),

and, equivalently,∑
e∈p1

(αe (ne − ξ) + βe (1− ξ)) ≤
∑
e∈p2

(αe (n
′
e − ξ) + βe (1− ξ)).

Observe that when ξ = 0, the above inequality is merely the Nash condition.
In general, this condition implies that, given an assignment A−i of the remaining
players, a ξ-altruistic player i aims to select a strategy s from Si such that the
expression ∑

e∈s

(αe (ne(A−i, s)− ξ) + βe (1− ξ))

is minimized.
In the rest of this paper, we will assume, without loss of generality, that

βe = 0 for all resources. Our lower bound constructions exhibit this property,
while the proofs of our upper bounds carry over even with non-zero values of βe.

3 Upper Bounds for Atomic Congestion Games

In this section we describe our upper bounds concerning the price of anarchy
for atomic congestion games and ξ-altruistic players. In our proofs we use the
following two technical lemmas.

Lemma 1. For all integers x, y ≥ 0 and ξ ∈ [0, 1/2] it holds that

xy + (1− ξ) y + ξx ≤ 1 + ξ

3
x2 +

5− ξ

3
y2.



Proof. Consider the function

f(x, y) =
1 + ξ

3
x2 +

5− ξ

3
y2 − xy − (1− ξ) y − ξx.

It suffices to prove that f(x, y) ≥ 0 when x, y are non-negative integers and
ξ ∈ [0, 1/2].

We start with the case x = y = k. Then,

f(x, y) = f(k, k) = k2 − k ≥ 0.

We now consider the case x = k and y = k+z, where k ≥ 0 and z ≥ 1. Then,

f(x, y) = f(k, k + z)

= f(k, k) +
5− ξ

3

(
z2 + 2zk

)
− kz − (1− ξ) z

= f(k, k) + z

(
5− ξ

3
z +

7− 2ξ

3
k − 1 + ξ

)
.

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [0, 1/2], we conclude that f(x, y) ≥ 0, when
y > x.

Finally, we consider the case where x = k + z and y = k, where k ≥ 0 and
z ≥ 1. Then,

f(x, y) = f(k + z, k)

=
1 + ξ

3
(k + z)

2
+

5− ξ

3
k2 − (k + z) k − (1− ξ) k − ξ (k + z)

= k2 − k + z

(
1 + ξ

3
(z + 2k)− k − ξ

)
.

If z > k, then

f(x, y) ≥ k2 − k + z

(
(1 + ξ) k +

1 + ξ

3
− k − ξ

)
≥ 0,

since k ≥ 0 and ξ ∈ [0, 1/2].
If z = k, then

f(x, y) = k2 − k + k ((1 + ξ) k − k − ξ) ≥ 0,

since k = z ≥ 1 and ξ ∈ [0, 1/2].
Finally, if z < k, then

f(x, y) = k2 − k + z

(
1 + ξ

3
z − ξ

)
+ z

(
1 + ξ

3
2k − k

)
.

Since z
(

1+ξ
3 z − ξ

)
≥ 0 for z ≥ 1 and ξ ∈ [0, 1/2], and k2 − k − zk ≥ 0 for

z ≤ k − 1, the lemma follows. ⊓⊔



Lemma 2. For all integers x, y ≥ 0 and ξ ∈ [1/2, 1] it holds that

xy + (1− ξ) y + ξx ≤ ξx2 + (2− ξ) y2.

Proof. Consider the function

f(x, y) = ξx2 + (2− ξ) y2 − xy − (1− ξ) y − ξx.

To prove the lemma it suffices to show that f(x, y) ≥ 0 when x, y are non-
negative integers and ξ ∈ [1/2, 1].

We first consider the case where x = y = k. Then,

f(x, y) = f(k, k) = k2 − k ≥ 0.

We now consider the case x > y and let x = k + z and y = k, where k ≥ 0
and z ≥ 1. Then,

f(x, y) = f(k + z, k)

= f(k, k) + ξ
(
z2 + 2kz

)
− kz − ξz

= f(k, k) + z (zξ + 2ξk − k − ξ)

= f(k, k) + z (ξ (z − 1) + k (2ξ − 1)) .

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [1/2, 1], it holds that f(x, y) ≥ 0 when x > y.
Finally, we consider the case y > x and let x = k and y = k+ z, where k ≥ 0

and z ≥ 1. Then,

f(x, y) = f(k, k + z)

= f(k, k) + (2− ξ)
(
z2 + 2kz

)
− kz − (1− ξ)z

= f(k, k) + z ((2− ξ) (z + 2k)− k − 1 + ξ)

= f(k, k) + z ((2− ξ) z + (3− 2ξ) k − 1 + ξ) .

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [1/2, 1], it holds that f(x, y) ≥ 0 also when
y > x. ⊓⊔

We note that the above lemmas also hold for the more general case of possibly
negative x and y, but it suffices to consider non-negative values for our purposes.
We are now ready to state the main result of this section.

Theorem 1. The price of anarchy of atomic congestion games with ξ-altruistic
players is at most 5−ξ

2−ξ if ξ ∈ [0, 1/2] and at most 2−ξ
1−ξ if ξ ∈ [1/2, 1].

Proof. Consider a pure Nash equilibrium and an optimal assignment, and denote
by ne and oe the number of players using resource e in the two assignments.
Furthermore, let pi1 and pi2 be the strategies of player i in the two assignments.
Since player i is a ξ-altruistic player, it holds that∑

e∈pi1

αe (ne − ξ) ≤
∑
e∈pi2

αe (ne + 1− ξ).



For the total latency of the pure Nash equilibrium, it holds that

cost =
∑
e

αen
2
e =

∑
i

∑
e∈pi1

αene

=
∑
i

∑
e∈pi1

(αe (ne − ξ) + αeξ)

≤
∑
i

∑
e∈pi2

αe (ne + 1− ξ) +
∑
i

∑
e∈pi1

αeξ

=
∑
e

αeneoe + (1− ξ)
∑
e

αeoe + ξ
∑
e

αene

=
∑
e

αe (neoe + (1− ξ) oe + ξne).

So, for the case where ξ ∈ [0, 1/2], from Lemma 1 we obtain that∑
e

αe (neoe + (1− ξ) oe + ξne) ≤
1 + ξ

3

∑
e

αen
2
e +

5− ξ

3

∑
e

αeo
2
e,

and, thus, ∑
e

αen
2
e ≤ 1 + ξ

3

∑
e

αen
2
e +

5− ξ

3

∑
e

αeo
2
e

which leads to
2− ξ

3

∑
e

αen
2
e ≤ 5− ξ

3

∑
e

αeo
2
e.

So, we obtain that the price of anarchy for this case is∑
e αen

2
e∑

e αeo2e
≤ 5− ξ

2− ξ
.

Similarly, for the case where ξ ∈ [1/2, 1], from Lemma 2 we obtain that∑
e

αe (neoe + (1− ξ) oe + ξne) ≤ ξ
∑
e

αen
2
e + (2− ξ)

∑
e

αeo
2
e,

and, thus, ∑
e

αen
2
e ≤ ξ

∑
e

αen
2
e + (2− ξ)

∑
e

αeo
2
e

which leads to
(1− ξ)

∑
e

αen
2
e ≤ (2− ξ)

∑
e

αeo
2
e.

So, we obtain that the price of anarchy for this case is∑
e αen

2
e∑

e αeo2e
≤ 2− ξ

1− ξ
.

⊓⊔
We observe that altruism is actually harmful, since the price of anarchy is

minimized when ξ = 0, i.e., in the absence of altruism. Furthermore, when ξ = 1,
i.e., players are completely altruistic, the price of anarchy is unbounded.



4 Lower Bounds for Atomic Congestion Games

In this section we state our lower bounds on the price of anarchy. The construc-
tions in the proofs are load balancing games and are similar to a construction
used in [4]. In these constructions, we represent the load balancing game as a
graph. In this graph, each node represents a machine, and each edge represents
a player having as possible strategies the machines corresponding to the nodes
defining the edge.

Theorem 2. For any ϵ > 0 and ξ ∈ [0, 1/2], there is a load balancing game with
ξ-altruistic users whose price of anarchy is at least 5−ξ

2−ξ − ϵ.

Proof. We construct a graph G, consisting of a complete binary tree with k + 1
levels and 2k+1 − 1 nodes, with a line of k + 1 edges and k + 1 additional nodes
hung at each leaf. So, graph G has 2k + 2 levels 0, . . . , 2k + 1, with 2i nodes at
level i for i = 0, . . . , k and 2k nodes at levels k + 1, . . . , 2k + 1. The machines
corresponding to nodes of level i = 0, . . . , k − 1, have latency functions fi(x) =
( 2−ξ
3−ξ )

ix, the machines corresponding to nodes of level i = k, . . . , 2k, have latency

functions fi(x) = ( 2−ξ
3−ξ )

k−1( 1−ξ
2−ξ )

i−kx, and the machines corresponding to nodes

of level 2k+1, have latency functions f2k+1(x) = (2−ξ
3−ξ )

k−1( 1−ξ
2−ξ )

kx. Consider the
assignment where all players select machines corresponding to the endpoint of
their corresponding edge which is closer to the root of graph G. It is not hard to
see that this is a Nash equilibrium, since machines corresponding to nodes of level
i = 0, . . . , k − 1, have two players and latency 2(2−ξ

3−ξ )
i, machines corresponding

to nodes of level i = k, . . . , 2k, have one player and latency (2−ξ
3−ξ )

k−1( 1−ξ
2−ξ )

i−k,
and machines corresponding to nodes of level 2k+1, have no player. Therefore,
due to the definition of the latency functions, a player assigned to a machine
corresponding to a node of level i = 0, . . . , 2k, would experience exactly the
same latency if she changed her decision and chose the machine corresponding
to the node of level i+ 1. The cost of the assignment is

cost =
k−1∑
i=0

4 · 2i
(
2− ξ

3− ξ

)i

+
2k∑
i=k

2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i−k

= 4

(
2(2−ξ)
3−ξ

)k
− 1

4−2ξ
3−ξ − 1

+ 2k
(
2− ξ

3− ξ

)k−1

1−
(

1−ξ
2−ξ

)k+1

1− 1−ξ
2−ξ


=

4 (3− ξ)

1− ξ

((
2 (2− ξ)

3− ξ

)k

− 1

)
+ (2− ξ)

(
3− ξ

2− ξ

)(
2 (2− ξ)

3− ξ

)k

−(2− ξ)2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k+1

= (3− ξ)

(
5− ξ

1− ξ

)(
2 (2− ξ)

3− ξ

)k

− (3− ξ) (1− ξ)

2− ξ

(
2− 2ξ

3− ξ

)k

− 4 (3− ξ)

1− ξ
.



To compute the upper bound on the cost of the optimal assignment it suffices
to consider the assignment where all players select the machines corresponding
to nodes which are further from the root. We obtain that the cost opt of the
optimal assignment is

opt ≤
k−1∑
i=1

2i
(
2− ξ

3− ξ

)i

+
2k∑
i=k

2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i−k

+2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

=
3− ξ

1− ξ

((
2(2− ξ)

3− ξ

)k

− 1

)
− (2− ξ)2k

(
2− ξ

3− ξ

)k−1
((

1− ξ

2− ξ

)k+1

− 1

)

+2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

− 1

=
3− ξ

1− ξ

((
2(2− ξ)

3− ξ

)k

− 1

)
− 1 + (2− ξ)

(
3− ξ

2− ξ

)(
2(2− ξ)

3− ξ

)k

−2(2− ξ)

(
1− ξ

2− ξ

)k+1(
2(2− ξ)

3− ξ

)k−1

+ 2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

=

(
3− ξ

1− ξ
+ 3− ξ

)(
2(2− ξ)

3− ξ

)k

− 2(2− ξ)

(
1− ξ

2− ξ

)k+1(
2(2− ξ)

3− ξ

)k−1

+2k
(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

− 3− ξ

1− ξ
− 1.

Hence, for any ϵ > 0 and for sufficiently large k, the price of anarchy of the game
is larger than

cost

opt
≥

(3−ξ)(5−ξ)
1−ξ

(3−ξ)(2−ξ)
1−ξ

− ϵ =
5− ξ

2− ξ
− ϵ.

⊓⊔

We notice that this lower bound is tight for ξ ∈ [0, 1/2]. In order to prove a tight
lower bound for the case ξ ∈ [1/2, 1], it suffices to focus on one line of k + 2
nodes and k+1 edges hanging from the binary tree of the aforementioned graph
(including the corresponding leaf).

Theorem 3. For any ϵ > 0 and ξ ∈ [1/2, 1], there is a load balancing game with
ξ-altruistic users, whose price of anarchy is at least 2−ξ

1−ξ − ϵ.

Proof. Consider the construction used in the proof of the previous theorem. We
remind that the machine located at the node of the 2k+1 level, has latency func-
tion f2k+1(x) = ( 2−ξ

3−ξ )
k−1( 1−ξ

2−ξ )
kx, and the machines corresponding to nodes of

levels i = k, . . . , 2k have latency functions fi(x) = ( 2−ξ
3−ξ )

k−1( 1−ξ
2−ξ )

i−kx. Simi-
larly, the assignment, where all players select the machine corresponding to the



node closer to the root, is a Nash equilibrium, whereas the players are optimally
assigned to the machine corresponding to the node further from the root (con-
sidering the endpoints of the corresponding edge). Using similar analysis, we
obtain that

cost =
2k∑
i=k

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i−k

=

k∑
i=0

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i

=

(
2− ξ

3− ξ

)k−1 ( 1−ξ
2−ξ )

k+1 − 1
1−ξ
2−ξ − 1

= (2− ξ)

(
2− ξ

3− ξ

)k−1
(
1−

(
1− ξ

2− ξ

)k+1
)
,

and

opt ≤
2k∑

i=k+1

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i−k

+

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

=
k∑

i=1

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)i

+

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

=

(
2− ξ

3− ξ

)k−1 ( 1−ξ
2−ξ )

k+1 − 1−ξ
2−ξ

1−ξ
2−ξ − 1

+

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

= (2− ξ)

(
2− ξ

3− ξ

)k−1
1− ξ

2− ξ

(
1−

(
1− ξ

2− ξ

)k
)

+

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

= (1− ξ)

(
2− ξ

3− ξ

)k−1
(
1−

(
1− ξ

2− ξ

)k
)

+

(
2− ξ

3− ξ

)k−1(
1− ξ

2− ξ

)k

.

We conclude, that for any ϵ > 0, and sufficiently large k, the price of anarchy
of the game is larger than 2−ξ

1−ξ − ϵ. ⊓⊔

5 Symmetric Load Balancing Games

In this section, we consider the important class of symmetric load balancing
games with ξ-altruistic players. In our proof, we make use of the following two
technical lemmas.

Lemma 3. For any integers x, y ≥ 0 and any ξ ∈ [0, 1/2] it holds that, when
x < y,

xy + (1− ξ) y − (1− ξ)x ≤ 1 + 2ξ

4
x2 + (1− ξ) y2,

and, when x ≥ y,

xy + ξx− ξy ≤ 1 + 2ξ

4
x2 + (1− ξ) y2.



Proof. We begin with the case x < y. Consider the function

f(x, y) =
1 + 2ξ

4
x2 + (1− ξ) y2 − xy − (1− ξ) y + (1− ξ)x.

It suffices to show that f(x, y) ≥ 0. Let y = x+ z, where z is a positive integer.
Then

f(x, y) = f(x, x+ z)

=
1 + 2ξ

4
x2 + (1− ξ)

(
x2 + z2 + 2xz

)
− x2 − xz + (1− ξ)x− (1− ξ)x

− (1− ξ) z

=

(
1 + 2ξ

4
+ 1− ξ − 1

)
x2 + (1− ξ) z2 + (2− 2ξ − 1)xz − (1− ξ) z

=
1− 2ξ

4
x2 + (1− ξ) z2 + (1− 2ξ)xz − (1− ξ) z

≥ 0,

since x ≥ 0, z ≥ 1 and ξ ∈ [0, 1/2].
We now consider the case x ≥ y. Consider the function

g(x, y) =
1 + 2ξ

4
x2 + (1− ξ) y2 − xy − ξx+ ξy.

In order to complete the proof, we have to show that g(x, y) ≥ 0. Since x ≥ y,
let x = y + z, where z is a non-negative integer. Then,

g(x, y) = g(y + z, y)

=
1 + 2ξ

4
(y + z)

2
+ (1− ξ) y2 − (y + z) y − ξ (y + z) + ξy

=
1 + 2ξ

4
y2 +

1 + 2ξ

4
z2 +

1 + 2ξ

2
yz − ξy2 − yz − ξz

=
1− 2ξ

4
y2 +

1 + 2ξ

4
z2 − 1− 2ξ

2
yz − ξz

=
1

4
(y2 + z2 − 2yz)− ξ

2
(y2 − z2 − 2yz)− ξz

=
1

4
(y − z)2 − ξ

2
(y2 + z2 − 2yz) + ξz2 − ξz

=
1

4
(y − z)2 − ξ

2
(y − z)2 + ξz(z − 1)

≥ 0

since z ≥ 0 and ξ ∈ [0, 1/2]. ⊓⊔

Lemma 4. For any integers x, y ≥ 0 and any ξ ∈ [1/2, 1] it holds that when
x < y

xy + (1− ξ) y − (1− ξ)x ≤ ξx2 +
3− 2ξ

4
y2,



and when x ≥ y

xy + ξx− ξy ≤ ξx2 +
3− 2ξ

4
y2.

Proof. The proof follows from Lemma 3. Note that the two inequalities of Lemma
3 can be transformed to those of Lemma 4 by replacing ξ by 1−ξ and exchanging
x and y. Furthermore, the two inequalities become identical when x = y. ⊓⊔

Again, these two lemmas also hold when x, y can be negative. We are now
ready to prove the main result of this section.

Theorem 4. The price of anarchy for symmetric load balancing games with

ξ-altruistic players is 4(1−ξ)
3−2ξ when ξ ∈ [0, 1/2] and 3−2ξ

4(1−ξ) when ξ ∈ [1/2, 1].

Proof. Consider a pure Nash equilibrium and an optimal assignment and let nj

and oj be the number of players in machine j in the equilibrium and the optimal
assignment, respectively. Consider the sets H and L of machines j such that
nj > oj and nj < oj , respectively. Denote by S the set of players consisting of
nj − oj players that are in machine j ∈ H in equilibrium, for every machine
j ∈ H. Observe that

∑
j∈H (nj − oj) =

∑
j∈L (oj − nj). Hence, we can associate

each player of S with a machine in L such that oj−nj players of S are associated
to each machine j ∈ L.

Consider a player in S that lies in machine j ∈ H in equilibrium and let
j′ ∈ L be the machine of L she is associated with. By the ξ-altruistic condition,
we have that αj(nj − ξ) ≤ αj′(nj′ − ξ + 1). By summing up the ξ-altruistic
conditions for each player in S, we obtain that∑

j:nj>oj

αj(nj − ξ)(nj − oj) ≤
∑

j:nj<oj

αj(nj − ξ + 1)(oj − nj). (1)

Now using (1), the fact that nj and oj are integers, and the definition of the
latency functions, we obtain that

∑
j

αjn
2
j =

∑
j:nj>oj

αjn
2
j +

∑
j:nj≤oj

αjn
2
j

=
∑

j:nj>oj

αj (nj − ξ) (nj − oj) +
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj)

+
∑

j:nj≤oj

αjn
2
j

≤
∑

j:nj<oj

αj(nj − ξ + 1)(oj − nj) +
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj)

+
∑

j:nj≤oj

αjn
2
j

=
∑

j:nj<oj

(
αjnjoj − αjn

2
j − αjξoj + αjξnj + αjoj − αjnj

)



+
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj) +
∑

j:nj≤oj

αjn
2
j

=
∑

j:nj<oj

αj (njoj − ξoj + ξnj + oj − nj) +
∑

j:nj>oj

αj (njoj + ξnj − ξoj)

+
∑

j:nj=oj

αjn
2
j

=
∑

j:nj<oj

αj (njoj + (1− ξ) (oj − nj)) +
∑

j:nj≥oj

αj (njoj + ξ (nj − oj)).

When ξ ∈ [0, 1/2], by Lemma 3 we obtain that∑
j

αjn
2
j ≤

∑
j

αj

(
1 + 2ξ

4
n2
j + (1− ξ) o2j

)
which yields that the price of anarchy is∑

j αjn
2
j∑

j αjo2j
≤ 4 (1− ξ)

3− 2ξ
.

When ξ ∈ [1/2, 1], by Lemma 4 we obtain that∑
j

αjn
2
j ≤

∑
j

αj

(
ξn2

j +
3− 2ξ

4
o2j

)
which yields that the price of anarchy is∑

j αjn
2
j∑

j αjo2j
≤ 3− 2ξ

4 (1− ξ)
.

⊓⊔

We note that when ξ = 0, i.e., for the case of totally selfish players this result
implies the known 4/3 upper bound on the price of anarchy [11], while when ξ =
1, i.e., for completely altruistic players, the ratio is unbounded. Furthermore, as
ξ increases from 0 to 1/2 the ratio improves from 4/3 to 1, and then deteriorates
as ξ approaches 1; note that when ξ = 0.7 the ratio is again 4/3.

It is not hard to show that these bounds are tight. It suffices to consider a
load balancing game with two machines with latency functions f1(x) = (2− ξ)x
and f2(x) = (1− ξ)x and two players. Two assignments are equilibria in this
setting: either assigning both players to the second machine (where the total
latency is 4 (1− ξ)) or assigning one player at each machine (where the total
latency is 3− 2ξ).

6 Extensions and Open Problems

In this paper, we have studied the impact of altruism on the system performance
in atomic congestion games and have noticed that, surprisingly, altruism can be



harmful in general. For the special case of symmetric load balancing games, we
observe that altruism can be helpful in some cases; in particular, compared to
selfishness, we have shown that altruism helps in decreasing the price of anarchy
when ξ ∈ [0, 0.7] but is harmful when ξ ∈ (0.7, 1]. We note that for ξ = 1/2,
symmetric load balancing games with ξ-altruistic players admit only optimal
solutions as equilibria.

Following [6], we have also briefly considered the case in which players are
simultaneously selfish and spiteful (as opposed to altruistic). Similarly to the
model in the current paper, we can define ξ-spiteful players for particular values
of the parameter ξ. In this setting, player i aims to select a strategy s ∈ Si so
that the quantity ∑

e∈s

(αe (ne(A−i, s) + ξ) + βe (1 + ξ))

is minimized given the strategies A−i of the other players. This is equivalent
to assuming that all players are selfish and each of them is forced to pay a tax
equal to ξαe for each resource e she uses (this particular tax definition is called a
universal tax function in [5]). Then, the cost of a player is the sum of her latency
and the taxes she pays and the equilibria of the corresponding game are those
assignments in which no player has an incentive to deviate in order to decrease
her cost. Caragiannis et al. [5] have proved that the universal tax function with
ξ = 3

2

√
3 − 2 ≈ 0.598 yields the best possible price of anarchy which is equal

to 1 + 2/
√
3 ≈ 2.155. This result implies the rather surprising conclusion that

ξ-spiteful behavior for the particular value of ξ leads to the best possible price
of anarchy.

In our study herein, we have assumed that all players are unweighted, i.e.,
each controls a unit demand, and homogeneous, i.e., each player is ξ-altruistic
(or ξ-spiteful) for the same value of ξ. It would be interesting to study the case
of heterogeneous players with different behavior, i.e., each player i is ξi-altruistic
(or ξi-spiteful). Furthermore, an interesting question from the system designer’s
point of view is whether the behavior of the players can be coordinated in order
to always force them to reach efficient equilibria. Even in this case, one cannot
hope to achieve a price of anarchy smaller than 2.012 in general. This value
matches the tight bound on the price of anarchy of load balancing games with
identical latency functions of the form f(x) = x on all resources [4, 14]; in this
case, any combination of selfish and altruistic or spiteful behavior of a player is
actually equivalent to selfishness.

We plan to elaborate on the two claims above in the final version of the
paper.
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