
Scheduling to maximize participation?

Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and
Evi Papaioannou

Research Academic Computer Technology Institute &
Department of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
E–mail: {caragian,kakl,kanellop,papaioan}@ceid.upatras.gr

Abstract. We study a problem of scheduling client requests to servers.
Each client has a particular latency requirement at each server and may
choose either to be assigned to some server in order to get serviced pro-
vided that her latency requirement is met or not to participate in the
assignment at all. From a global perspective, in order to optimize the
performance of such a system, one would aim to maximize the number
of clients that participate in the assignment. However, clients may be-
have selfishly in the sense that each of them simply aims to participate
in an assignment and get serviced by some server where her latency re-
quirement is met with no regard to the overall system performance. We
model this selfish behavior as a strategic game, show how to compute
equilibria efficiently, and assess the impact of selfishness on system per-
formance. We also show that the problem of optimizing performance is
computationally hard to solve, even in a coordinated way, and present
efficient approximation and online algorithms.

1 Introduction

We are motivated by the following scenario where clients aim to retrieve some
objects (e.g., video/audio files) from servers (each server can be thought of as
an electronic store). Each client requests one object which may exist in some
of the servers. In order to get serviced, the client has to connect to the server
and download the object. The service time (or latency) for a client connected
to a server is proportional to the number of simultaneous connections to that
server. Clients may value differently the service received from each server in the
sense that if the latency is high enough, the client may decide not to receive
the object from that server and close the connection. A client may connect to
a server and download the requested object if the current load of the server
is within her valuation criterion; of course, this action could regret some other
client connected to the server who will decide not to get serviced by that server
and will make another choice. A client may decide not to get serviced at all if
no server meets her valuation criterion.
? This work was partially supported by the European Union under IST FET Integrated

Project 015964 AEOLUS.

Naturally, such a scenario of selfish behavior can be modeled using the notion
of a strategic game from game theory. We define a particular class of games called
SMP games. In an SMP game, we have a set of clients C and a set of servers
M . Each client c ∈ C has a non-negative finite integer latency bound `k

c at each
server k ∈ M . Clients are non-cooperative in the sense that each client wishes
to be assigned to some server where her latency bound is satisfied; otherwise,
she prefers not to be assigned to any server. Given an assignment of some of the
clients to servers, an SMP game is defined by the following payoff function for
each client: a client assigned to a server k together with nk − 1 other clients has
payoff 1 if `k

c ≥ nk and payoff −1 otherwise. A client that is not assigned to any
server has zero payoff. We say that an assignment is valid if no client has payoff
−1. An assignment is a pure Nash equilibrium (or, simply, an equilibrium) for
an SMP game if no client has an incentive to unilaterally change her strategy.
Clearly, any equilibrium is a valid assignment. The benefit of an assignment for
an SMP game is the sum of the payoffs of all clients. Hence, the benefit of a
valid assignment equals the number of clients accommodated in servers. We use
the notion of the price of anarchy introduced in [20] (see also [16]) to assess the
quality of equilibria of SMP games. The price of anarchy of an SMP game is
defined as the ratio of the benefit of an optimal assignment for the SMP game
over the benefit of the worst equilibrium.

Selfish behavior could be bypassed by having a scheduler which knows the
load of each of the available servers, receives the requests of the clients for objects
together with their latency bound for each server, and coordinates the assignment
of clients to servers. Although such an approach would be inappropriate and
unrealistic in a networked environment, it is important to consider it in order to
compare it with the uncoordinated case and assess selfish behavior. Furthermore,
it gives rise to an interesting combinatorial optimization problem which we call
scheduling to maximize participation (SMP). Although scheduling optimization
problems (focusing mainly on minimizing some function of the server latencies
when all clients must be assigned to a server, e.g., see [17]) and corresponding
games (such as load balancing [6, 8, 12, 13, 15, 16, 18] and congestion games [1, 7,
21]) have been extensively studied in the literature, to the best of our knowledge,
SMP has not been studied before.

Our main motivating question concerns the efficient construction of equilib-
ria in SMP games. In Section 2, we first present a Nashification technique which,
starting from a valid assignment, converges to an equilibrium by making a poly-
nomial number of client moves. This is motivated by [12] where a similar in spirit
technique has been applied to a different scheduling game. We also show that
the price of anarchy of any SMP game is at most 2. Hence, the Nashification
technique provides an algorithm for approximating both the best and the worst
equilibrium within a factor of 2; these two problems are proved to be APX-hard.
An important property of our Nashification technique is that the benefit of the
equilibrium computed is not smaller than the benefit of the initial assignment.
So, in order to compute equilibria of large benefit, it suffices to compute valid
assignments of large benefit. We use the term SMP to refer to the optimization

problem that corresponds to the problem of computing a valid assignment of
maximum benefit.

In Section 3, we present a e
e−1 ≈ 1.58-approximation SMP algorithm based

on linear programming and randomized rounding. SMP can be thought of as a
special case of combinatorial auctions. In the problem of combinatorial auctions,
we have a set of players and a set of items. A feasible allocation assigns every
item to at most one player. For every player, her utility function wi is defined
over the set of items that she receives. The goal is to find a feasible allocation
that maximizes social welfare

∑
i wi(Si), where Si is the set of items allocated

to player i. In SMP, the servers correspond to players and the clients correspond
to items; the utility of a set of clients for a server is the maximum number of
clients from this set that can be assigned to the server in any valid assignment.
Recent work [9–11] presents e

e−1 -approximation algorithms (also based on lin-
ear programming and randomized rounding) for combinatorial auctions when
the utility functions have special properties (e.g., subadditivity). However, these
techniques are rather impractical since they make use of the ellipsoid method
in order to solve the corresponding linear programming relaxation which is of
exponential size. The LP corresponding to SMP has also an exponential number
of variables. In this paper, for SMP, we exploit the structure of the problem and
prove that SMP is equivalent to a constrained integral flow problem whose LP
relaxation is of polynomial size and, hence, it can be solved by practical linear
programming algorithms. Then, randomized rounding in our case is simpler com-
pared to [9–11]. On the negative side, we show that the problem is APX-hard
by showing an explicit inapproximability result of 368/367 using a reduction
from multidimensional matching (this result also implies the APX-hardness of
the problem of computing the best equilibrium for an SMP game).

In Section 4, we consider the online version of SMP where clients (together
with their latency bound vector) appear online and an irrevocable decision has
to be made when each client c appears. This means that client c can either be
rejected or put in a server so that neither the latency bounds of previously as-
signed clients nor the latency bound of c herself is violated. This can be thought
of as the problem of computing an efficient valid assignment for an SMP game
when information about the game is gradually revealed to the algorithm. Here,
we assess the quality of the solution in terms of the competitive ratio [4] (or
competitiveness) defined as the maximum over all SMP sequences of the ratio
of the optimal benefit over the expected benefit of the assignment computed by
the algorithm. In general, we assume that sequences are generated by oblivious
adversaries which may have knowledge of the probability distribution that may
be used by the algorithm but have no access to its random choices (if any). The
online version is inherently more difficult to approximate since, as we prove, no
deterministic algorithm is better than T -competitive while no randomized algo-
rithm can be better than HT -competitive against oblivious adversaries, where
T is the ratio of the maximum over the minimum non-zero latency bound over
all clients and servers and H is the harmonic function. On the positive side, we
show an asymptotically tight upper bound by presenting an O(lnT)-competitive

randomized algorithm that needs to know T in advance. In the case where no in-
formation about T is known in advance, a slightly inferior competitiveness bound
is obtained. Our online algorithms are based on the classify-and-randomly-select
paradigm (see [4]) which has been proved to be useful in other problems (e.g.,
call admission control in communication networks [2, 3], online independent set
problems [5], etc.).

2 Equilibria and price of anarchy

We begin by presenting our Nashification technique. We describe algorithm
Nashify which starts from a valid assignment for an SMP game consisting of
a set C of n clients and a set M of m servers and works as follows. It proceeds in
rounds. Denote by ni

k the number of clients assigned to server k at the beginning
of round i. In each round, algorithm Nashify performs one step for each server
k ∈ M . In each step of a round i, at most two moves are performed. If there
exists a client c not assigned to any server which has latency bound lkc > ni

k, c
moves to server k. If there exists another client c′ in server k with lkc′ = ni

k (i.e.,
her latency bound is violated by the move of client c), then client c′ moves out of
server k (and is not assigned to any server). Algorithm Nashify terminates when
no move is performed during a whole round. We prove the following statement.

Theorem 1 (Nashification). For any SMP game with n clients and m servers,
algorithm Nashify computes an equilibrium of benefit not smaller than the benefit
of the initial assignment by performing at most 2nm moves.

Proof. The assignment produced by algorithm Nashify is valid since the condition
that the number of clients in any server is not greater than the latency bound of
each client assigned to this server remains true after each step of the algorithm.
It is also an equilibrium since, by the termination criterion, no unassigned client
has an incentive to move to any server. Furthermore, during a step, a client may
move out of a server only if another client moves to this server. Hence, the benefit
of the final assignment is not smaller than the benefit of the initial one. In order
to prove the upper bound on the total number of moves, observe that a client
c that moves out of a server k at some round i has lkc = ni

k. Since the number
of clients at server k never decreases in later rounds, client c will never move to
server k again. So, the total number of moves each of the n clients can make is
at most 2m (one move in and one move out for each of the m servers). ut

Implicitly, in the proof of Theorem 1 we also prove that SMP games always
have equilibria. The next result states that their benefit is fairly large.

Theorem 2. The price of anarchy of any SMP game is at most 2.

Proof. Consider an equilibrium for an SMP game on a set of servers M and an
optimal assignment. We denote by oj the number of clients that are in server
j in the optimal assignment. Let nj be the number of clients in server j in
the equilibrium and Rj be the set of clients that are in server j in the optimal

assignment but are not assigned to any server in the equilibrium. Consider a
client c ∈ Rj for some server j. Since c is in server j in the optimal assignment,
it holds that `j

c ≥ oj . Since c is not assigned to any server in the equilibrium,
it holds that `j

c ≤ nj , otherwise c would have an incentive to move to server j.
Thus, oj ≤ nj for any server j for which Rj 6= ∅. It holds that
∑

j∈M

oj =
∑

j∈M :Rj=∅
oj +

∑

j∈M :Rj 6=∅
oj ≤

∑

j∈M :Rj=∅
oj +

∑

j∈M :Rj 6=∅
nj

≤
∑

j∈M

nj +
∑

j∈M :Rj 6=∅
nj ≤ 2

∑

j∈M

nj ut

The above result is tight since there exists a simple matching lower bound
consisting of two servers a, b and two clients x, y with `a

x = `b
x = `a

y = 1 and
`b
y = 0. In the optimal solution, x is assigned to b and y is assigned to a, while

the assignment where x is assigned to a and y is not assigned to any server is
an equilibrium.

Algorithm Nashify is essentially a 2–approximation algorithm for computing
the best equilibrium for SMP games. Starting from any initial valid assignment
for an SMP game, it computes an equilibrium which (by Theorem 2) has benefit
at least half the optimal benefit. In Section 3, we present an algorithm that com-
putes a valid assignment of benefit at most 1.58 times smaller than the optimal
benefit. Combined with algorithm Nashify, this yields a 1.58–approximation al-
gorithm for computing the best equilibrium for SMP games. Clearly, algorithm
Nashify is also a 2–approximation algorithm for computing the worst equilibrium
for SMP games.

Concerning the hardness of approximation of the problem of computing the
best equilibrium for SMP games, this follows by a statement in the next section
where we show that the problem of computing the best valid assignment is
APX-hard. The next theorem shows that the problem of computing the worst
equilibrium is APX-hard as well.

Theorem 3. The problem of computing the worst equilibrium for SMP games
is APX-hard.

Proof. We will show that there are instances of the problem which are equiva-
lent to instances of Minimum Maximal Bipartite Matching which is known
to be APX-hard [22]. An instance of Minimum Maximal Bipartite Match-
ing consists of a bipartite graph G(U, V, E) and the objective is to compute a
maximal matching of minimum size. A matching is called maximal if we can-
not obtain another matching by adding one extra edge to it. Consider such an
instance consisting of a bipartite graph G(U, V, E) and construct an SMP game
consisting of a client for each node of U and a server for each node of V . The
latency bound of a client corresponding to a node u ∈ U is 1 to each server
corresponding to a node v ∈ V such that (u, v) ∈ E and 0 otherwise. We will
show that there exists a maximal matching in G of size K if and only if the
SMP game has an equilibrium of benefit K. Consider a maximal matching in

G consisting of K edges. Then, an equilibrium for the SMP game is defined as
follows. For each edge (u, v) in the matching, the client corresponding to node u
is assigned to the server corresponding to node v. The fact that M is a matching
guarantees that each client is assigned to at most one server and each server
receives at most one client, i.e., the assignment is valid. In order to prove that
it is also an equilibrium, observe that since the matching is maximal there is no
edge (u, v) ∈ E\M such that neither u nor v is an endpoint of an edge in M .
Hence, no client that is not assigned to any server has an incentive to move to
some server. Similarly, consider an equilibrium for the SMP game. Each client is
assigned to at most one server and, by the definition of the latency bounds, each
server contains at most one client. Hence, the set consisting of the edges (u, v)
where v ∈ V corresponds to a server containing the client corresponding to node
u ∈ U is a matching in G. Since the assignment is an equilibrium, no client c
among those not assigned to any server has an incentive to move to some server
k such that `k

c = 1 because server k already contains some other client. This
implies that all edges in E\M are adjacent to some edge in M which means that
M is maximal. ut

3 Computation of efficient valid assignments

In this section, we present an algorithm that computes valid assignments for
SMP instances. The algorithm is based on linear programming and randomized
rounding and achieves an approximation guarantee of e

e−1 ≈ 1.58.
Given an instance of SMP consisting of a set C of n clients and a set M of m

servers, we say that a set of clients A ⊆ C is valid for server k ∈ M if `k
c ≥ |A|

for each client c ∈ A. Hence, a valid set for server k is a set of clients which can
be accommodated in server k in a solution of SMP. Now, SMP is to select one
valid set of clients for each server so that the valid sets selected are disjoint and
the total number of clients in valid sets selected is maximized. This is equivalent
to the following integer linear program:

(ILP) maximize
∑

k∈M

∑

A∈Ak

xk
A|A|

subject to
∑

k∈M

∑

A∈Ak:c∈A

xk
A ≤ 1, for any c ∈ C

∑

A∈Ak

xk
A ≤ 1, for any k ∈ M

xk
A ∈ {0, 1}, for any k ∈ M and A ∈ Ak.

where A denotes the set of all valid sets and Ak denotes the set of valid sets for
server k. The variable xk

A denotes whether the valid set A is selected at server k.
The constraints guarantee that each client is assigned to at most one server (i.e.,
it belongs to at most one valid set) and that at most one valid set is selected for
each server.

We will first show that (ILP) is equivalent to a constrained integral flow
problem in a particular polynomially sized network N presented in the following.
For each server k = 1, ..., m the network has three nodes sk (called the source
node associated with server k), s′k, and tk (called the sink node associated with
server k) and, for each i = 1, ..., n, it has two nodes uk

i and vk
i . For each server

k = 1, ...,m, node sk is connected through a directed link to node s′k, and for each
i = 1, ..., n, node s′k is connected through a directed link to node uk

i , while node
vk

i is connected through a directed link to node tk. For each server k = 1, ...,m,
each i = 1, ..., n, each j = 1, ..., i, and each client c ∈ C, the network has two
nodes wk

i (c, j) and zk
i (c, j). For each server k = 1, ..., m and each i = 1, ..., n, node

uk
i is connected through a directed link to all nodes wk

i (c, 1) for each client c such
that `k

c ≥ i. All nodes zk
i (c, i) are connected through a directed link to node vk

i .
For each server k = 1, ..., m, each i = 1, ..., n, and each j = 1, ..., i, node wk

i (c, j)
is connected to node zk

i (c, j). For each server k = 1, ..., m, we fix an ordering
πk of the clients in C (i.e., πk assigns a distinct integer in {1, 2, ..., n} to each
client) such that πk(c′) > πk(c) implies `k

c′ ≥ `k
c . For each server k = 1, ...,m,

each i = 2, ..., n, and each j = 1, ..., i − 1, node zk
i (c, j) is connected to nodes

wk
i (c′, j + 1) for all clients c′ with πk(c′) > πk(c). All edges have unit capacity.

The edge connecting nodes wk
i (c, j) and zk

i (c, j) (for some client c ∈ C, each
server k = 1, ..., m, each i = 1, ..., n, and each j = 1, ..., i) belongs to the edge-set
Ec of client c. Such edges are called client edges. An example of this construction
is presented in Figure 1.

We observe that there is an 1 − 1 correspondence between valid sets of
clients and source-sink paths in N . Indeed, consider a valid set of clients A =
{c1, c2, ..., ci} for server k and assume without loss of generality that πk(cj) <
πk(cj+1), for j = 1, ..., i − 1. Then, nodes sk and tk are connected through the
path

〈
sk, s′k, uk

i , wk
i (c1, 1), zk

i (c1, 1), wk
i (c2, 2), zk

i (c2, 2), ..., wk
i (ci, i), zk

i (ci, i), vk
i , tk

〉
.

Similarly, consider a path p from node sk to node tk in network N . By the
definition of the network, the path consists of the subpath

〈
sk, s′k, uk

i

〉
, a subpath

p′ =
〈
uk

i , wk
i (c1, 1), zk

i (c1, 1), wk
i (c2, 2), zk

i (c2, 2), ..., wk
i (ci, i), zk

i (ci, i), vk
i

〉

connecting node uk
i to node vk

i , and the subpath
〈
vk

i , tk
〉

for some i. The client
edges in subpath p′ belong to different clients since an edge connecting node
zk
i (cj , j) to wk

i (cj+1, j + 1) implies that πk(cj) < πk(cj+1). Consequently, it
holds that `k

cj
≤ `k

cj+1
for j = 1, ..., i− 1. Furthermore, an edge connecting node

uk
i to wk

i (c1, 1) implies that `k
c1
≥ i. So, it holds that `k

cj
≥ i for j = 1, ..., i, i.e.,

the set of clients {c1, c2, ..., ci} is valid.
Now, SMP can be thought of as the following constrained integral flow prob-

lem: the objective is to push flow f from the source nodes to the sink nodes so
that the flow fe carried by each edge e is integral, the capacity constraints
are maintained (i.e., fe ≤ 1 for each edge e), the total flow carried by all
edges in the edge-set Ec is at most 1 for each client c ∈ C, and the quantity

s
1 1

s’

u
1
1

2
u1

u
3
1

1(c ,1)
1 1

1(c ,1)w
1 1

z

1
1
(c ,1)

3
z

1
(c ,1)1

3
w

1
(c ,1)1

2
z(c ,1)

2
w

1
1

(c ,1)
2
1

1
z(c ,1)

2
1w

1 1
1w (c ,2)
2

1
1

(c ,2)
2

z

1z (c ,2)
3232

1(c ,2)w(c ,1)
2
1

3
z(c ,1)

2
1w

3

2
1(c ,1)

2
z

2
w 1(c ,1)

2 2
z

2
1

22
w 1(c ,2) (c ,2)

z
3
1

1
(c ,3)

3
1

1
w (c ,3)

3
1

1
z

3
1

1
w (c ,2)

1
(c ,1)

3
1z

3
1

1
(c ,1)w (c ,2)

3 3
1z (c ,3)

3
w 1

3
(c ,3)

3
1z
3

1
3

w
3
(c ,2)

3
(c ,1)1

3
z

3
(c ,1)w 1

3
(c ,2)

(c ,1)1
3 2

(c ,1)w 1
3 2

z
2

(c ,3)1
3

zw 1
3 2
(c ,3)w (c ,2)

3
z1

2
1
3 2

(c ,2)

3
v1

1
t

2
v1

v
1
1

(c ,1)w 2
3 1

(c ,1)2
3 1

z 2
3

zw (c ,3)2
3 1 1

w
3

z(c ,2) 2
1

2
3 1

(c ,2) (c ,3)

(c ,1)
3

2
3

z
33

w 2 (c ,1) w
3

2
3
(c ,3)

3 3
2z (c ,3)2

3
w

3
(c ,2)

3
2z
3
(c ,2)

3 2
w (c ,1)2

23
2z (c ,1) w

3
2

2
z

3
2

2
(c ,3)(c ,3)

3
2

2
w (c ,2)

3
2

2
z (c ,2)

(c ,1)
2
2

2
z

2
w 1(c ,1)

1 12
w 2

1
z

2
2(c ,2) (c ,2)

32
2(c ,2)w

3
2z (c ,2)
2

(c ,1)
2
2w

3 2
2

3
z (c ,1)

2
2w

2 22
2(c ,2) z(c ,1)

2
2w

2 2
2

2
z (c ,1) (c ,2)

(c ,1)w
1
2

1 1 1
z2(c ,1)

1
(c ,1)2

3
w 2

1
(c ,1)

3
z

(c ,1)1 2z2(c ,1)1 2w 2

1
v2

2
v2

3
v2

t
2

s
2

s’
2 2

u2

1
u2

3
u2

Fig. 1. The corresponding network constructed by the algorithm of Section 3 for
an instance of SMP with two servers 1 and 2 and three clients c1, c2, c3 with la-
tency bounds `1c1 = 0, `2c1 = 3, `1c2 = 2, `2c2 = 0, `1c3 = 1, and `2c3 = 2. The
ordering in each server is defined as π1(c1) = 1, π1(c2) = 3, π1(c3) = 2 and
π2(c1) = 3, π2(c2) = 1, π2(c3) = 2. An optimal solution to the corresponding con-
strained integral flow problem consists of the paths 〈s1, s

′
1, u

1
1, w

1
1(c2, 1), z1

1(c2, 1), v1
1 , t1〉

and 〈s2, s
′
2, u

2
2, w

2
2(c3, 1), z2

2(c3, 1), w2
2(c1, 2), z2

2(c1, 2), v2
2 , t2〉 corresponding to the as-

signment of client c2 to server 1 and clients c1 and c3 to server 2.

∑
k∈M

∑n
i=1 i · f(vk

i
,tk) is maximized. The constraints imply that the solution to

the constrained integral flow problem will consist of at most one path connect-
ing each source node to its corresponding sink node so that the client edges in
these paths belong to different clients. The quantity to be maximized equals the
number of client edges that carry some flow. Equivalently, we obtain at most
one valid set of clients per server so that the valid sets are disjoint and contain
a maximum number of clients for the original SMP instance.

Since, as we show later in this section, SMP is APX-hard, we cannot hope
to solve optimally the constrained integral flow problem. Instead, we relax the
integrality constraint and solve the corresponding constrained fractional flow
problem by transforming it to a linear program. Here, the variables of the linear
program represent the flow fe carried by each edge e and the constraints of the
linear program are either flow conservation constraints at the network nodes, or
capacity constraints at the network edges, or require that the total flow carried
by the edges of the edge-set of any client is at most 1. Note that, although (ILP)
has an exponential number of variables, the constrained fractional flow prob-
lem can be expressed as a linear program with polynomial number of variables
and constraints since the network constructed has at most O(n3m) nodes and
O(n4m) edges.

Once we have a solution to the constrained fractional flow problem, we can
obtain a solution to the linear programming relaxation of (ILP) obtained by
relaxing the integrality constraint to xk

A ≥ 0. This can be done by decomposing
the flow into flow paths using a folklore path stripping technique. For k = 1, ...,m,
we pick the edge e carrying the smallest non-zero amount of flow between nodes
sk and tk and compute a path p from sk to tk that contains e and consists of edges
carrying non-zero amounts of flow. We set the flow carried by the flow path p to
f̂p = fe and decrease the flow on each edge in p by fe. We repeat this procedure
and decompose all flow between nodes sk and tk into flow paths. Note that the
number of paths obtained in this way is not greater than the number of edges
in the network since, in each step, the flow variable of some edge is decreased
to zero. After performing path stripping, we obtain a fractional solution to the
linear programming relaxation of (ILP) by setting xk

A = f̂p for each valid set of
clients A corresponding to a flow path p carrying a non-zero amount of flow f̂p

between nodes sk and tk and implicitly setting all other variables to 0.
In order to obtain an integral feasible solution to (ILP), we will use random-

ized rounding. Due to the special structure of SMP, randomized rounding and
its analysis are simpler compared to [9–11]. We cast a die for each server k hav-
ing one face for each valid set A ∈ Ak with xk

A > 0 (with probability that this
face is the outcome of the die-casting equal to xk

A) and an additional face corre-
sponding to the fact that no client is accepted at server k (with the probability
that this face is the outcome of the die-casting equal to 1 −∑

A∈Ak
xk

A). After
performing the die-castings for all servers, we perform a correction procedure by
assigning each client c to that server k (if any) where a set containing client c is
the outcome of the die-casting for server k; if more than one die-castings have
outcomes containing the same client, then client c is assigned to one of the cor-

responding servers arbitrarily. The assignment produced is valid since the first
set of constraints of (ILP) is guaranteed by the correction procedure while the
second set of constraints is guaranteed by randomized rounding. Clearly, all sets
produced by the correction procedure are valid since removing a client from a
valid set still gives a valid set of clients.

Lemma 1. Given an instance of SMP, the algorithm computes a valid assign-
ment with expected benefit at least 1− 1

e times the optimal benefit.

Proof. Denote by Yc the 0/1 random variable denoting whether client c is con-
tained in some of the valid sets selected after the application of randomized
rounding. The probability that a client is contained in some of the valid sets
for server k selected after the randomized rounding is

∑
A∈Ak:c∈A xk

A and, since
die-castings are performed independently, the probability that a client c ∈ C is
contained in some of the valid sets selected after the randomized rounding is

Pr[Yc = 1] = 1−
∏

k∈M

(
1−

∑

A∈Ak:c∈A

xk
A

)
≥ 1− exp

(
−

∑

k∈M

∑

A∈Ak:c∈A

xk
A

)

where the inequality follows since
∏n

i=1 (1− xi) ≤ exp (−∑n
i=1 xi) when xi ∈

[0, 1].
Denote by x̂k

A the solution obtained after the application of the correction
procedure. Since a client that is contained in some valid set selected by the
randomized rounding procedure also appears in exactly one valid set after the
correction procedure, the benefit of the final solution is

∑
k∈M

∑
A∈Ak

x̂k
A|A| =∑

c∈C Yc. Hence, we obtain that the expected benefit of the final solution is

E
[∑

k∈M

∑

A∈Ak

x̂k
A|A|

]
= E

[∑

c∈C

Yc

]

=
∑

c∈C

Pr[Yc = 1]

≥
∑

c∈C

(
1− exp

(
−

∑

k∈M

∑

A∈Ak:c∈A

xk
A

))

≥
∑

c∈C

(
1− e−1

) ∑

k∈M

∑

A∈Ak:c∈A

xk
A

=
(
1− e−1

) ∑

c∈C

∑

k∈M

∑

A∈Ak:c∈A

xk
A

=
(
1− e−1

) ∑

k∈M

∑

A∈Ak

xk
A|A|

≥ (
1− e−1

) ∑

k∈M

∑

A∈Ak

x∗kA |A|

where x∗ denotes the optimal integral SMP solution. The second inequality fol-
lows since 1 − exp(−x) ≥ (1 − e−1)x when x ∈ [0, 1] and due to the constraint
of the linear program. ut

The algorithm can be forced to obtain a ratio which is within any constant ε > 0
close to e

e−1 with high probability by applying the randomized rounding proce-
dure O(1/ε) times; this follows by a simple application of the Markov inequality
[19]. The next statement summarizes the discussion in this section.

Theorem 4. There exists an e
e−1 ≈ 1.58-approximation algorithm for SMP.

On the negative side, we show that SMP is APX-hard.

Theorem 5. For any ε > 0, it is NP-hard to approximate SMP within 368/367−
ε.

Proof. We use a reduction from 6-dimensional matching which is known to be
APX-hard. An instance of 6-dimensional matching consists of a 6-uniform 6-
partite hypergraph G and the objective is to compute a matching of maximum
size in G (i.e., a set of hyperedges of maximum cardinality in which no two of
them share any node). In particular, [14] shows that there exist instances of
6-dimensional matching consisting of a 6-uniform 6-partite hypergraph with n
nodes and n/2 edges for which, for any ε ∈ (0, 1/46), it is NP-hard to decide
whether the maximum matching has size at least (1− ε)n

6 or at most
(

22
23 + ε

)
n
6 .

Given such an instance I6DM of 6-dimensional matching consisting of a hy-
pergraph G, we construct the instance ISMP of SMP that contains a server for
each hyperedge of G, a client for each node of G and 5n

2 additional clients. Each
of the additional clients has latency bound 5 at all servers while the client cor-
responding to node v of G has latency bound 6 at each server corresponding to
hyperedges of G containing v and latency bound 5 at all other servers.

We say that a solution to ISMP is maximal if it contains at least 5 clients
per server. Note that given a solution to ISMP , we can compute a maximal
solution of at least the same benefit by accommodating additional clients to the
servers that contain less than 5 clients. We observe that any solution for I6DM

of cardinality K can be converted to a maximal solution for ISMP of benefit
5n
2 +K by assigning to each server corresponding to a hyperedge in the solution

of I6DM the clients corresponding to nodes contained in the hyperedge and 5 of
the additional clients to any other server. Similarly, any maximal solution for
ISMP of benefit 5n

2 + K can be converted to a solution for I6DM of cardinality
K by simply considering the hyperedges corresponding to servers with 6 clients.
Hence, if for some ε ∈ (0, 1/46) we could decide whether the optimal benefit for
ISMP is above

(
368
23 − ε

)
n
6 or below

(
367
23 + ε

)
n
6 then we could decide whether the

maximum matching in I6DM has cardinality at least
(

368
23 − ε

)
n
6 − 5n

2 = (1− ε)n
6

or at most
(

367
23 + ε

)
n
6 − 5n

2 =
(

22
23 + ε

)
n
6 . ut

4 Online algorithms

In this section we consider the online version of SMP. Observe that deterministic
online algorithms for SMP are at least T -competitive, where T is the ratio of the
maximum over the minimum latency bound over all clients. To see this, consider

an instance of SMP where a single server is available, a deterministic algorithm
A and an offline adversary ADV working as follows. First, the adversary presents
one client of latency bound 1. If the algorithm A rejects the client, the adversary
stops the sequence; in this case A has no benefit. Otherwise (i.e., if A accepts the
client of latency bound 1), the adversary presents T clients each with latency
bound T . In this case, the benefit of the algorithm A is 1, while the optimal
benefit is T .

In what follows, using Yao’s Minimax Principle (see [4, 19]), we prove a lower
bound on the competitive ratio of any randomized online SMP algorithm against
oblivious adversaries. In our proof, we use the following lemma.

Lemma 2 (Minimax Principle [4, 19]). Given a probability distribution P
over sequences of clients, denote by EP [BA] and EP [BOPT] the expected benefit
of a deterministic algorithm A and the expected optimal benefit on sequences of
clients generated according to P. Define the competitiveness cPA of A under P to
be

cPA =
EP [BOPT]
EP [BA]

and let c be the minimum of cPA over all deterministic algorithms A. Then, c is
a lower bound on the competitiveness of any randomized algorithm AR against
an oblivious adversary.

Our lower bound is the following.

Theorem 6. Any (possibly randomized) online SMP algorithm has competitive
ratio at least HT against oblivious adversaries, where T is the ratio of the max-
imum over the minimum latency bound over all clients and servers.

Proof. We will prove that there exists an adversaryADV that presents sequences
of clients with latency bounds between 1 and T according to a probability dis-
tribution P in such way that no deterministic algorithm can be better than
HT –competitive under P. Then, the theorem will follow by Lemma 2.

The adversary ADV runs at most T phases at a single server. At phase i,
1 ≤ i ≤ T , it presents i clients of latency bound i. The adversary ADV starts
with phase 1. After running phase i with 1 ≤ i ≤ T − 1, ADV tosses a coin
with probability Pr[heads] = 1

i+1 . On heads, it stops the sequence; on tails, it
proceeds to phase i+1. After having run phase T , the adversary ADV stops the
sequence.

Consider an algorithm and assume that the first client it accepts belongs to
phase i. Since the latency bound of this client is i, the algorithm cannot accept
more than i−1 additional clients. So, the best the algorithm can do is to accept
all clients of phase i. Thus, in order to prove the lower bound, it suffices to
consider the deterministic algorithm At (for t = 1, ..., T) that waits for the first
t− 1 phases of the sequence accepting no clients and (if phase t is run) accepts
all t clients of phase t. Clearly, algorithm A1 has benefit 1. The probability that
the adversary runs phase t is 1

t (which is the probability that the adversary
ADV continues after each of the first t − 1 phases). So, At has benefit t with

probability 1
t and no benefit with probability 1− 1

t . Hence, the expected benefit
of At under P is 1.

The optimal benefit for a sequence produced byADV is obtained by accepting
all clients of the last phase of the sequence. Denote by pi the probability that
phase i is the last phase the adversary runs. It is pT = 1

T while for i = 1, ..., T −
1 it is pi = 1

i(i+1) . We obtain that the expected optimal benefit under P is

EP [BOPT] =
∑T

i=1 i · pi =
∑T

i=1
1
i = HT . ut

In the following, we present the randomized online SMP algorithm Classify.
Assume that the algorithm knows in advance the values `min and `max of the
minimum and maximum non-zero latency bounds of any client of the sequence at
any server. Let T = `max/`min. The algorithm uses a parameter γ (to be defined
later) and equiprobably selects an integer i from 0 to dlogγ T e−1. When a client
appears, the algorithm checks whether her latency bound at some server is in
the interval

[
`minγi, `minγi+1

)
and whether assigning the client to this server

is feasible in the sense that neither the latency bound of previously accepted
clients at this server nor the latency bound of the client herself at this server are
violated. If such a server exists, the algorithm assigns the client to this particular
server (ties are broken arbitrarily); otherwise, it rejects the client. We prove the
following theorem.

Theorem 7. Algorithm Classify has competitive ratio at most 1 + γ + 1+γ
ln γ ln T

against oblivious adversaries.

Proof. Denote by OPT the optimal set of clients of the sequence. We define a par-
tition of OPT in dlogγ T e disjoint subsets OPTi of OPT for i = 0, ..., dlogγ T e−1.
For each client c and integer i = 0, ..., dlogγ T e−1, denote by F i

c the set of servers
at which the client c has latency bound in the interval [`minγi, `minγi+1). A client
c belongs to OPTi if it is accepted at a server in F i

c in the optimal solution.
Assume that algorithm Classify has selected integer i. Then, it considers the

original sequence as a new sequence σi where each client c has latency bound
`
′k
c = `k

c if k ∈ F i
c and `

′k
c = 0, otherwise. Denote by Oi the optimal set of clients

for σi. By the definition of the sequence σi and the set OPTi, it is |Oi| ≥ |OPTi|.
First, we show that the benefit Bi of the algorithm Classify when it selects

integer i is Bi ≥ 1
γ+1 |Oi| ≥ 1

γ+1 |OPTi|. Denote by A and R the sets of clients
accepted and rejected, respectively, by the algorithm Classify when it selects
integer i. For each server k, denote by Ak the set of clients accepted at server
k by algorithm Classify and by Ok

i the set of clients accepted at server k in the
optimal solution for σi. Since the latency bound of any client in Ak at server
k is at most γ times smaller than the latency bound of any client in R ∩ Ok

i

at server k and since no client from R ∩ Ok
i can fit in server k, it holds that

|Ak| ≥ 1
γ |R ∩Ok

i |. So, for the benefit Bi we have

Bi = |A| ≥ 1
γ + 1

|A|+ γ

γ + 1

∑

k

|Ak| ≥ 1
γ + 1

|A ∩Oi|+ 1
γ + 1

∑

k

|R ∩Ok
i |

=
1

γ + 1
(|A ∩Oi|+ |R ∩Oi|) =

1
γ + 1

|Oi| ≥ 1
γ + 1

|OPTi|.

Now, by linearity of expectation, we obtain that the expected benefit of the
algorithm is

E[B] =
dlogγ Te−1∑

i=0

(Pr[i is selected] ·Bi) ≥ 1
(1 + γ) dlogγ T e

dlogγ Te−1∑

i=0

|OPTi|

≥ 1
(1 + γ)

(
1 + logγ T

) |OPT |.

Hence, the competitive ratio of the algorithm is 1 + γ + 1+γ
ln γ ln T . ut

The expression in Theorem 7 is minimized to approximately 4.6 + 3.59 lnT
for γ = 3.6. Note that we have assumed that algorithm Classify knows the
maximum and minimum over the non-zero latency bounds of all clients at all
servers `max and `min in advance (and, consequently, it knows their ratio T). If
it only knows T , when the first client appears, it may assume `max = `T and
`min = max{1, `/T} where ` is any non-zero latency bound of the first client
appeared at some server. Then, the analysis proceeds along very similar lines
to the proof of Theorem 7 and yields a competitive ratio only a constant factor
worse than that of Theorem 7.

If T is not known in advance, we can adapt algorithm Classify by applying
a recent technique from [5] to obtain an algorithm with slightly worse competi-
tiveness.

Theorem 8. There exists a randomized online SMP algorithm with competitive
ratio at most O

(∏log∗ T
i=1 log(i) T

)
against oblivious adversaries that does not

require knowledge of T in advance.

Note that function log(i) is defined as log(i) T = log (log(i−1) T) for i > 1 and
log(1) T = log T while log∗ T denotes the number of times we have to apply log
to T in order to get a result smaller than 2.

References

1. B. Awerbuch, Y. Azar and A. Epstein. The price of routing unsplittable flow. In
Proc. of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05),
pp. 57-66, 2005.

2. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. Online competitive
algorithms for call admission in optical networks. Algorithmica, 31(1): 29-43, 2001.

3. B. Awerbuch, Y. Bartal, A. Fiat, A. Rosen. Competitive nonpreemptive call con-
trol. In Proc. of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’94), pp. 312-320, 1994.

4. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, 1998.

5. I. Caragiannis, A. Fishkin, C. Kaklamanis and E. Papaioannou. Randomized online
algorithms and lower bounds for computing large independent sets in disk graphs.
Discrete Applied Mathematics, 155(2), pp. 119-136, 2007.

6. I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos and L. Moscardelli.
Tight bounds for selfish and greedy load balancing. In Proc. of the 33rd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP ’06), LNCS
4051, Part I, Springer, pp. 311-322, 2006.

7. G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion
games. In Proc. of the 37th Annual ACM Symposium on Theory of Computing
(STOC ’05), pp. 67-73, 2005.

8. A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. In Proc. of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pp.
413-420, 2002.

9. S. Dobzinski and M. Schapira. An improved approximation algorithm for combina-
torial auctions with submodular bidders. In Proc. of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06), pp. 1064-1073, 2006.

10. U. Feige. On maximizing welfare when utility functions are subadditive. In Proc.
of the 38th Annual ACM Symposium on Theory of Computing (STOC ’06), pp.
41-50, 2006.

11. U. Feige and J. Vondrak. The allocation problem with submodular utility functions.
In Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’06), to appear.

12. R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification and
the coordination ratio for a selfish routing game. In Proc. of the 30th International
Colloquium on Automata, Languages, and Programming (ICALP ’03), LNCS 2719,
Springer, pp. 514-526, 2003.

13. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas and P. Spirakis. The
structure and complexity of Nash equilibria for a selfish routing game. In Proc.
of the 29th International Colloquium on Automata, Languages and Programming
(ICALP ’02), LNCS 2380, Springer, pp. 123-134, 2002.

14. E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-
dimensional matching. In Proc. of the 6th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX ’03), LNCS
2764, Springer, pp. 83-97, 2003. Extended version as ECCC Report TR03-020.

15. E. Koutsoupias, M. Mavronicolas and P. Spirakis. Approximate equilibria and ball
fusion. Theory of Computing Systems, 36(6): 683-693, 2003.

16. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proc. of the 16th
International Symposium on Theoretical Aspects of Computer Science (STACS
’99), LNCS 1563, Springer, pp. 404-413, 1999.

17. J. Y-T. Leung (ed.), Handbook of scheduling: algorithms, models, and performance
analysis. CRC Press, 2004.

18. M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proc. of the 33rd
Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 510-519, 2001.

19. R. Motwani and B. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

20. C. Papadimitriou. Algorithms, Games and the Internet. In Proc. of the 33rd Annual
ACM Symposium on Theory of Computing (STOC ’01), pp. 749-753, 2001.

21. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM,
49(2): 236-259, 2002.

22. M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, Vol. 38(3), pp. 364-372, 1980.

