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Abstract. Sponsored search auctions are the main source of revenue
for search engines. In such an auction, a set of utility-maximizing ad-
vertisers compete for a set of ad slots. The assignment of advertisers to
slots depends on bids they submit; these bids may be different than the
true valuations of the advertisers for the slots. Variants of the celebrated
VCG auction mechanism guarantee that advertisers act truthfully and,
under mild assumptions, lead to revenue or social welfare maximization.
Still, the sponsored search industry mostly uses generalized second price
(GSP) auctions; these auctions are known to be non-truthful and sub-
optimal in terms of social welfare and revenue. In an attempt to explain
this tradition, we study a Bayesian setting where the valuations of adver-
tisers are drawn independently from a regular probability distribution.
In this setting, it is well known by the work of Myerson (1981) that the
optimal revenue is obtained by the VCG mechanism with a particular
reserve price that depends on the probability distribution. We show that
by appropriately setting the reserve price, the revenue over any Bayes-
Nash equilibrium of the game induced by the GSP auction is at most
a small constant fraction of the optimal revenue, improving recent re-
sults of Lucier, Paes Leme, and Tardos (2012). Our analysis is based on
the Bayes-Nash equilibrium conditions and on the properties of regular
probability distributions.

1 Introduction

The sale of advertising space is the main source of income for information
providers on the Internet. For example, a query to a search engine creates ad-
vertising space that is sold to potential advertisers through auctions that are
known as sponsored search auctions (or ad auctions). In their influential papers,
Edelman et al. [6] and Varian [18] have proposed a (now standard) model for
this process. According to this model, a set of utility-maximizing advertisers
compete for a set of ad slots with non-increasing click-through rates. The auc-
tioneer collects bids from the advertisers and assigns them to slots (usually, in
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non-increasing order of their bids). In addition, it assigns a payment per click
to each advertiser. Depending on the way the payments are computed, different
auctions can be defined. Typical examples are the Vickrey-Clark-Groves (VCG),
the generalized second price (GSP), and the generalized first price (GFP) auc-
tion. Naturally, the advertisers are engaged as players in a strategic game defined
by the auction; the bid submitted by each player is such that it maximizes her
utility (i.e., the total difference of her valuation minus her payment over all
clicks) given the bids of the other players. This behavior leads to equilibria, i.e.,
states of the induced game from which no player has an incentive to unilaterally
deviate.

Traditionally, truthfulness has been recognized as an important desideratum
in the Economics literature on auctions [11]. In truthful auctions, truth-telling is
an equilibrium according to specific equilibrium notions (e.g., dominant strategy,
Nash, or Bayes-Nash equilibrium). Such a mechanism guarantees that the social
welfare (i.e., the total value of the players) is maximized. VCG is a typical
example of a truthful auction [5, 8, 19]. In contrast, GSP auctions are not truthful
[6, 18]; still, they are the main auction mechanisms used in the sponsored search
industry adopted by leaders such as Google and Yahoo!

In an attempt to explain this prevalence, several papers have provided bounds
on the social welfare of GSP auctions [2, 12, 13, 17] over different classes of equi-
libria (pure Nash, coarse-correlated, Bayes-Nash). The main message from these
studies is that the social welfare is always a constant fraction of the optimal one.
However, one would expect that revenue (as opposed to social welfare) maxi-
mization is the major concern from the point of view of the sponsored search
industry. In this paper, following the recent paper by Lucier et al. [14], we aim
to provide a theoretical justification for the wide adoption of GSP by focusing
on the revenue generated by these auctions.

In order to model the inherent uncertainty in advertisers’ beliefs, we consider
a Bayesian setting where the advertisers have random valuations drawn indepen-
dently from a common probability distribution. This is the classical setting that
has been studied extensively since the seminal work of Myerson [15] for single-
item auctions (which is a special case of ad auctions). The results of [15] carry
over to our model as follows. Under mild assumptions, the revenue generated
by a player in a Bayes-Nash equilibrium depends only on the distribution of the
click-through rate of the ad slot the player is assigned to for her different valua-
tions. Hence, two Bayes-Nash equilibria that correspond to the same allocation
yield the same revenue even if they are induced by different auction mechanisms;
this statement is known as revenue equivalence. The allocation that optimizes
the expected revenue is one in which low-bidding advertisers are excluded and
the remaining ones are assigned to ad slots in non-increasing order of their val-
uations. Such an allocation is a Bayes-Nash equilibrium of the variation of the
VCG mechanism where an appropriate reserve price (the Myerson reserve) is set
in order to exclude the low-bidding advertisers.

GSP auctions may lead to different Bayes-Nash equilibria [7] in which a
player with a higher valuation is assigned with positive probability to a slot



with lower click-through rate than another player with lower valuation. This
implies that the revenue is suboptimal. Our purpose is to quantify the loss of
revenue over all Bayes-Nash equilibria of GSP auctions by proving worst-case
revenue guarantees. A revenue guarantee of ρ for an auction mechanism implies
that, at any Bayes-Nash equilibrium, the revenue generated is at most ρ times
smaller than the optimal one. Note that, it is not even clear whether Myerson
reserve is the choice that minimizes the revenue guarantee in GSP auctions. This
issue is the subject of existing experimental work (see [16]).

Recently, Lucier et al. [14] proved theoretical revenue guarantees for GSP
auctions. Among other results for full information settings, they consider two
different Bayesian models. When the advertisers’ valuations are drawn inde-
pendently from a common probability distribution with monotone hazard rate
(MHR), GSP auctions with Myerson reserve have a revenue guarantee of 6. This
bound is obtained by comparing the utility of players at the Bayes-Nash equi-
librium with the utility they would have by deviating to a single alternative
bid (and by exploiting the special properties of MHR distributions). The class
of MHR distributions is wide enough and includes many common distributions
(such as uniform, normal, and exponential). In the more general case where the
valuations are regular, the same bound is obtained using a different reserve price.
This reserve is computed using a prophet inequality [10]. Prophet inequalities
have been proved useful in several Bayesian auction settings in the past [4, 9].

In this work, we consider the same Bayesian settings with [14] and improve
their results. We show that when the players have i.i.d. valuations drawn from
a regular distribution, there is a reserve price so that the revenue guarantee is
at most 4.72. For MHR valuations, we present a bound of 3.46. In both cases,
the reserve price is either Myerson’s or another one that maximizes the revenue
obtained by the player allocated to the first slot. The latter is computed by
developing new prophet-like inequalities that exploit the particular characteris-
tics of the valuations. Furthermore, we show that the revenue guarantee of GSP
auctions with Myerson reserve is at most 3.90 for MHR valuations. In order to
analyze GSP auctions with Myerson reserve, we extend the techniques recently
developed in [2, 13] (see also [3]). The Bayes-Nash equilibrium condition implies
that the utility of each player does not improve when she deviates to any other
bid. This yields a series of inequalities which we take into account with differ-
ent weights. These weights are given by families of functions that are defined in
such a way that a relation between the revenue at a Bayes-Nash equilibrium and
the optimal revenue is revealed; we refer to them as deviation weight function
families.

The rest of the paper is structured as follows. We begin with preliminary
definitions in Section 2. Our prophet-type bounds are presented in Section 3.
The role of deviation weight function families in the analysis is explored in
Section 4. Then, Section 5 is devoted to the proofs of our main statements for
GSP auctions. We conclude with open problems in Section 6. Due to lack of
space several proofs have been omitted.



2 Preliminaries

We consider a Bayesian setting with n players and n slots1 where slot j ∈ [n] has
a click-through rate αj that corresponds to the frequency of clicking an ad in
slot j. We add an artificial (n+1)-th slot with click-through rate 0 and index the
slots so that α1 ≥ α2 ≥ · · · ≥ αn ≥ αn+1 = 0. Each player’s valuation (per click)
is non-negative and is drawn from a publicly known probability distribution.

The auction mechanisms we consider use a reserve price t and assign slots
to players according to the bids they submit. Player i submits a bid bi(vi) that
depends on her valuation vi; the bidding function bi is the strategy of player
i. Given a realization of valuations, let b = (b1, . . . , bn) denote a bid vector
and define the random permutation π so that π(j) is the player with the j-th
highest bid (breaking ties arbitrarily). The mechanism assigns slot j to player
π(j) whenever bπ(j) ≥ t; if bπ(j) < t, the player is not allocated any slot. In
such an allocation, let σ(i) denote the slot that is allocated to player i. This is
well-defined when player i is assigned a slot; if this is not the case, we follow the
convention that σ(i) = n + 1. Given b, the mechanism also defines a payment
pi ≥ t for each player i that is allocated a slot. Then, the utility of player i is
ui(b) = ασ(i)(vi − pi). A set of players’ strategies is a Bayes-Nash equilibrium if
no player has an incentive to deviate from her strategy in order to increase her
expected utility. This means that for every player i and every possible valuation
x, E[ui(b)|vi = x] ≥ E[ui(b

′
i,b−i)|vi = x] for every alternative bid b′i. Note

that the expectation is taken over the randomness of the valuations of the other
players and the notation (b′i,b−i) is used for the bid vector where player i has
deviated to b′i and the remaining players bid as in b. The social welfare at a
Bayes-Nash equilibrium b is Wt(b) = E[

∑
i ασ(i)vi], while the revenue generated

by the mechanism is Rt(b) = E[
∑

i ασ(i)pi].

We focus on the case where the valuations of players are drawn independently
from a common probability distribution D with probability density function f
and cumulative distribution function F . Given a distribution D over players’ val-

uations, the virtual valuation function is ϕ(x) = x− 1−F (x)
f(x) . We consider regular

probability distributions where ϕ(x) is non-decreasing. The work of Myerson [15]
implies that the expected revenue from player i at a Bayes-Nash equilibrium b
of any auction mechanism is E[ασ(i)ϕ(vi)], i.e., it depends only on the alloca-
tion of player i and her virtual valuation. Hence, the total expected revenue is
maximized when the players with non-negative virtual valuations are assigned
to slots in non-increasing order of their virtual valuations and players with neg-
ative virtual valuations are not assigned any slot. A mechanism that imposes
this allocation as a Bayes-Nash equilibrium (and, hence, is revenue-maximizing)
is the celebrated VCG mechanism with reserve price t such that ϕ(t) = 0. We
refer to this as Myerson reserve and denote it by r in the following. We use the
notation µ to denote such an allocation. Note that, in µ, players with zero virtual

1 Our model can simulate cases where the number of slots is smaller than the number
of players by adding fictitious slots with zero click-through rate.



valuation can be either allocated slots or not; such players do not contribute to
the optimal revenue.

A particular subclass of regular probability distributions are those withmono-
tone hazard rate (MHR). A regular distribution D is MHR if its hazard rate
function h(x) = f(x)/(1 − F (x)) is non-decreasing. These distributions have
some nice properties (see [1]). For example, F (r) ≤ 1− 1/e and ϕ(x) ≥ x− r for
every x ≥ r.

In this paper, we focus on the GSP mechanism. For each player i that is
allocated a slot (i.e., with bid at least t), GSP computes her payment as the
maximum between the reserve price t and the next highest bid bπ(i+1) (assuming
that bπ(n+1) = 0). As it has been observed in [7], GSP may not admit the
allocation µ as a Bayes-Nash equilibrium. This immediately implies that the
revenue over Bayes-Nash equilibria would be suboptimal. In order to capture
the revenue loss due to the selfish behavior of the players, we use the notion of
revenue guarantee.

Definition 1. The revenue guarantee of an auction game with reserve price t
is maxb

ROPT

Rt(b)
, where b runs over all Bayes-Nash equilibria of the game.

In our proofs, we use the notation σ to refer to the random allocation that
corresponds to a Bayes-Nash equilibrium. Note that, a player with valuation
strictly higher than the reserve has always an incentive to bid at least the re-
serve and be allocated a slot. When her valuation equals the reserve, she is
indifferent between bidding the reserve or not participating in the auction. For
auctions with Myerson reserve, when comparing a Bayes-Nash equilibrium to
the revenue-maximizing allocation µ, we assume that a player with valuation
equal to the reserve has the same behavior in both σ and µ (this implies that
E[
∑

i ασ(i)] = E[
∑

i αµ(i)]). This assumption is without loss of generality since
such a player contributes zero to the optimal revenue anyway. In our proofs, we
also use the random variable o(j) to denote the player with the j-th highest val-
uation (breaking ties arbitrarily). Hence, µ(i) = o−1(i) if the virtual valuation of
player i is positive and µ(i) = n+1 if it is negative. When the virtual valuation
of player i is zero, it can be either µ(i) = o−1(i) or µ(i) = n+ 1.

When considering GSP auctions, we make the assumption that players are
conservative: whenever the valuation of player i is vi, she only selects a bid
bi(vi) ∈ [0, vi] at Bayes-Nash equilibria. This is a rather natural assumption
since any bid bi(vi) > vi is weakly dominated by bidding bi(vi) = vi [17].

In the following, we use the notation x+ to denote max{x, 0} while the ex-
pression x1{E} equals x when the event E is true and 0 otherwise.

3 Achieving Minimum Revenue Guarantees

Our purpose in this section is to show that by appropriately setting the reserve
price, we can guarantee a high revenue from the advertiser that occupies the first
slot at any Bayes-Nash equilibrium. Even though this approach will not give us
a “standalone” result, it will be very useful later when we will combine it with



the analysis of GSP auctions with Myerson reserve. These bounds are similar in
spirit to prophet inequalities in optimal stopping theory [10].

We begin with a simple lemma.

Lemma 1. Consider n random valuations v1, ..., vn that are drawn i.i.d. from
a regular distribution D. Then, for every t ≥ r, it holds that

E[max
i

ϕ(vi)
+] ≤ ϕ(t) +

n(1− F (t))2

f(t)
.

We can use Lemma 1 in order to bound the revenue in the case of regular
valuations.

Lemma 2. Let b be a Bayes-Nash equilibrium for a GSP auction game with n
players with random valuations v1, ..., vn drawn i.i.d. from a regular distribution
D. Then, there exists r′ ≥ r such that Rr′(b) ≥ (1− 1/e)α1E[maxi ϕ(vi)

+].

For MHR valuations, we show an improved bound.

Lemma 3. Let b be a Bayes-Nash equilibrium for a GSP auction game with n
players with random valuations v1, ..., vn drawn i.i.d. from an MHR distribution
D. Then, there exists r′ ≥ r such that Rr′(b) ≥ (1 − e−2)α1E[maxi ϕ(vi)

+] −
(1− e−2)α1r(1− Fn(r)).

Proof. We will assume that E[maxi ϕ(vi)
+] ≥ r(1−Fn(r)) since the lemma holds

trivially otherwise. Let t∗ be such that F (t∗) = 1−η/n where η = 2−(1−1/e)n.
We will distinguish between two cases depending on whether t∗ ≥ r or not.

We first consider the case t∗ ≥ r. We will use the definition of the virtual
valuation, the fact that the hazard rate function satisfies h(t∗) ≥ h(r) = 1/r,
the definition of t∗, Lemma 1 (with t = t∗), and the fact that F (r) ≤ 1 − 1/e
which implies that 1− Fn(r) ≥ η − 1. We have

t∗(1− Fn(t∗))

= ϕ(t∗)(1− Fn(t∗)) +
1

h(t∗)
(1− Fn(t∗))

= ϕ(t∗)(1− Fn(t∗)) +
η

h(t∗)
(1− Fn(t∗))− η − 1

h(t∗)
(1− Fn(t∗))

≥ ϕ(t∗)(1− Fn(t∗)) +
n(1− F (t∗))2

f(t∗)
· η(1− Fn(t∗))

n(1− F (t∗))
− (η − 1)r(1− Fn(t∗))

= (1− Fn(t∗))

(
ϕ(t∗) +

n(1− F (t∗))2

f(t∗)
− (η − 1)r

)
≥

(
1−

(
1− 2− (1− 1/e)n

n

)n)(
E[max

i
ϕ(vi)

+]− r(1− Fn(r))
)
.

Note that the left side of the above equality multiplied with α1 is a lower bound

on the revenue of GSP with reserve t∗. Also,
(
1− 2−(1−1/e)n

n

)n

is non-decreasing



in n and approaches e−2 from below as n tends to infinity. Furthermore, the
right-hand side of the above inequality in non-negative. Hence,

Rt∗(b) ≥ (1− e−2)α1E[max
i

ϕ(vi)
+]− (1− e−2)α1r(1− Fn(r))

as desired.
We now consider the case t∗ < r. We have 1− η/n = F (t∗) ≤ F (r) ≤ 1− 1/e

which implies that n ≤ 5. Tedious calculations yield

1− Fn(r)

n(1− F (r))
=

1 + F (r) + ...+ Fn−1(r)

n
≥ 1− e−2

2− e−2

for n ∈ {2, 3, 4, 5} since F (r) ≥ 1− η/n. Hence,

Rr(b) ≥ α1r(1− Fn(r))

≥ (1− e−2)α1nr(1− F (r))− (1− e−2)α1r(1− Fn(r))

≥ (1− e−2)α1E[max
i

ϕ(vi)
+]− (1− e−2)α1r(1− Fn(r)),

where the last inequality follows by applying Lemma 1 with t = r. ⊓⊔

4 Deviation Weight Function Families

The main idea we use for the analysis of Bayes-Nash equilibria of auction games
with reserve price t is that the utility of player i with valuation vi = x ≥ t does
not increase when this player deviates to any other bid in [t, x]. This provides us
with infinitely many inequalities on the utility of player i that are expressed in
terms of her valuation, the bids of the other players, and the reserve price. Our
technique combines these infinite lower bounds by considering their weighted
average. The specific weights with which we consider the different inequalities
are given by families of functions with particular properties that we call deviation
weight function families.

Definition 2. Let β, γ, δ ≥ 0 and consider the family of functions G = {gξ : ξ ∈
[0, 1)} where gξ is a non-negative function defined in [ξ, 1]. G is a (β, γ, δ)-DWFF
(deviation weight function family) if the following two properties hold for every
ξ ∈ [0, 1):

i)

∫ 1

ξ

gξ(y) dy = 1,

ii)

∫ 1

z

(1− y)gξ(y) dy ≥ β − γz + δξ, ∀z ∈ [ξ, 1].

The next lemma is used in order to prove most of our bounds together with
the deviation weight function family presented in Lemma 5.



Lemma 4. Consider a Bayes-Nash equilibrium b for a GSP auction game with
n players and reserve price t. Then, the following two inequalities hold for every
player i.

E[ui(b)] ≥
n∑

j=c

E[αj(βvi − γbπ(j) + δt)1{µ(i) = j}], (1)

E[ασ(i)ϕ(vi)] ≥
n∑

j=c

E[αj(βϕ(vi)− γbπ(j))1{µ(i) = j}], (2)

where c is any integer in [n], β, γ, and δ are such that a (β, γ, δ)-DWFF exists,
and µ is any revenue-maximizing allocation.

Lemma 5. Consider the family of functions G1 consisting of the functions gξ :
[ξ, 1] → R+ defined as follows for every ξ ∈ [0, 1):

gξ(y) =

{ κ
1−y , y ∈ [ξ, ξ + (1− ξ)λ),

0, otherwise,

where λ ∈ (0, 1) and κ = − 1
ln(1−λ) . Then, G1 is a (κλ, κ, κ(1− λ))-DWFF.

We remark that the bound for GSP auctions with Myerson reserve (and play-
ers with MHR valuations) follows by a slightly more involved deviation weight
function family. Due to lack of space, we omit it from this extended abstract; it
will appear in the final version of the paper.

5 Revenue Guarantees in GSP Auctions

We will now exploit the techniques developed in the previous sections in order to
prove our bounds for GSP auctions. Throughout this section, we denote by Oj

the event that slot j is occupied in the revenue-maximizing allocation considered.
The next lemma provides a lower bound on the revenue of GSP auctions.

Lemma 6. Consider a Bayes-Nash equilibrium b for a GSP auction game with
Myerson reserve price r and n players. It holds that∑

j≥2

E[αjbπ(j)1{Oj}] ≤ Rr(b)− α1r · Pr[O1].

Proof. Consider a Bayes-Nash equilibrium b for a GSP auction game with Myer-
son reserve price r. Define Pr[On+1] = 0. Consider some player whose valuation
exceeds r and is thus allocated some slot. Note that the player’s payment per
click is determined by the bid of the player allocated just below her, if there is
one, otherwise, the player’s (per click) payment is set to r. It holds that

Rr(b) =
∑
j

αjr(Pr[Oj ]− Pr[Oj+1]) +
∑
j

E[αjbπ(j+1)1{Oj+1}]



=
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjr(Pr[Oj ]− Pr[Oj+1])

+
∑
j

E[(αj − αj+1)bπ(j+1)1{Oj+1}]

≥
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjr(Pr[Oj ]− Pr[Oj+1])

+
∑
j

(αj − αj+1)r · Pr[Oj+1]

=
∑
j≥2

E[αjbπ(j)1{Oj}] +
∑
j

αjrPr[Oj ]−
∑
j

αj+1r · Pr[Oj+1]

=
∑
j≥2

E[αjbπ(j)1{Oj}] + α1r · Pr[O1].

The proof follows by rearranging the terms in the last inequality. ⊓⊔

The next statement follows by Lemmas 2 and 4 using the DWFF defined in
Lemma 5.

Theorem 1. Consider a regular distribution D. There exists some r∗, such that
the revenue guarantee over Bayes-Nash equilibria of GSP auction games with
reserve price r∗ is 4.72, when valuations are drawn i.i.d. from D.

Proof. By Lemma 2, we have that there exists r′ ≥ r such that the expected
revenue over any Bayes-Nash equilibrium b′ of the GSP auction game with
reserve price r′ satisfies

Rr′(b
′) ≥ (1− 1/e)E[α1ϕ(vo(1))

+]. (3)

Now, let b′′ be any Bayes-Nash equilibrium of the GSP auction game with
Myerson reserve and let β, γ, and δ be parameters so that a (β, γ, δ)-DWFF
exists. Using inequality (2) from Lemma 4 with c = 2 and Lemma 6 we obtain

Rr(b
′′) =

∑
i

E[ασ(i)ϕ(vi)]

≥
∑
i

∑
j≥2

E[αj(βϕ(vi)− γbπ(j))1{µ(i) = j}]

= β
∑
j≥2

E[αjϕ(vo(j))
+]− γ

∑
j≥2

E[αjbπ(j)1{Oj}]

≥ β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′′).

In other words,

(1 + γ)Rr(b
′′) ≥ β

∑
j≥2

E[αjϕ(vo(j))
+].



Using this last inequality together with inequality (3), we obtain(
1 + γ +

eβ

e− 1

)
max{Rr(b

′′),Rr′(b
′)} ≥ (1 + γ)Rr(b

′′) +
eβ

e− 1
Rr′(b

′)

≥ β
∑
j

E[αjϕ(vo(j))
+]

= βROPT .

We conclude that there exists some reserve price r∗ (either r or r′) such that for
any Bayes-Nash equilibrium b it holds that

ROPT

Rr∗(b)
≤ 1 + γ

β
+

e

e− 1
.

By Lemma 5, the family G1 is a (β, γ, 0)-DWFF with β = κλ and γ = κ, where
λ ∈ (0, 1) and κ = − 1

ln (1−λ) . By substituting β and γ with these values and

using λ ≈ 0.682, the right-hand side of our last inequality is upper-bounded by
4.72. ⊓⊔

The next statement applies to MHR valuations. It follows by Lemmas 3 and
4 using the DWFF defined in Lemma 5.

Theorem 2. Consider an MHR distribution D. There exists some r∗, such that
the revenue guarantee over Bayes-Nash equilibria of GSP auction games with
reserve price r∗ is 3.46, when valuations are drawn i.i.d. from D.

Proof. Let b′ be any Bayes-Nash equilibrium of the GSP auction game with
Myerson reserve and let β, γ, and δ be parameters so that a (β, γ, δ)-DWFF
exists. Since D is an MHR probability distribution, we have

E[ασ(i)r] ≥ E[ασ(i)(vi − ϕ(vi))] = E[ui(b
′)]

for every player i. By summing over all players and using inequality (1) from
Lemma 4 with c = 2, we obtain∑

i

E[ασ(i)r] ≥
∑
i

E[ui(b
′)]

≥
∑
i

n∑
j=2

E[αj(βvi − γbπ(j) + δr)1{µ(i) = j}]

≥
∑
j≥2

E[αj(βϕ(vo(j))
+ − γbπ(j) + δr)1{Oj}]

≥ β
∑
j≥2

E[αjϕ(vo(j))
+]− γ

∑
j≥2

E[αjbπ(j)1{Oj}] + δ
∑
j≥2

E[αjr1{Oj}]

≥ β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′) + (γ − δ)E[α1r1{O1}] + δ
∑
j

E[αjr1{Oj}]

= β
∑
j≥2

E[αjϕ(vo(j))
+]− γRr(b

′) + (γ − δ)E[α1r1{O1}] + δ
∑
i

E[αµ(i)r].



The last inequality follows by Lemma 6. Since
∑

i E[αµ(i)r] =
∑

i E[ασ(i)r], we
obtain that

γRr(b
′) ≥ β

∑
j≥2

E[αjϕ(vo(j))
+] + (γ − δ)α1r · Pr[O1] + (δ − 1)

∑
i

E[ασ(i)r].

(4)

By Lemma 3, we have that there exists r′ ≥ r such that the expected revenue
over any Bayes-Nash equilibrium b′′ of the GSP auction game with reserve price
r′ satisfies

Rr′(b
′′) ≥ (1− e−2)E[α1ϕ(vo(1))

+]− (1− e−2)E[α1r1{O1}].
Using this last inequality together with inequality (4), we obtain(

γ +
e2β

e2 − 1

)
max{Rr(b

′),Rr′(b
′′)}

≥ γRr(b
′) +

e2β

e2 − 1
Rr′(b

′′)

≥ β
∑
j

E[αjϕ(vo(j))
+] + (γ − δ − β)E[α1r1{O1}] + (δ − 1)

∑
i

E[ασ(i)r]

≥ βROPT + (γ − δ − β)E[α1r1{O1}] + (δ − 1)
∑
i

E[ασ(i)r].

By Lemma 5, the family G1 is a (β, γ, δ)-DWFF with β = γ − δ = κλ, γ = κ,
and δ = κ(1 − λ), where λ ∈ (0, 1) and κ = − 1

ln(1−λ) . By setting λ ≈ 0.432

so that δ = κ(1 − λ) = 1, the above inequality implies that there exists some
reserve price r∗ (either r or r′) such that for any Bayes-Nash equilibrium b of
the corresponding GSP auction game, it holds that

ROPT

Rr∗(b)
≤ 1

λ
+

e2

e2 − 1
≈ 3.46,

as desired. ⊓⊔
For GSP auctions with Myerson reserve, our revenue bound follows using a

slightly more involved deviation weight function family.

Theorem 3. Consider an MHR distribution D. The revenue guarantee over
Bayes-Nash equilibria of GSP auction games with Myerson reserve price r is
3.90, when valuations are drawn i.i.d. from D.

6 Conclusions

Even though we have significantly improved the results of [14], we conjecture
that our revenue guarantees could be further improved. The work of Gomes and
Sweeney [7] implies that the revenue guarantee of GSP auctions with Myerson
reserve is in general higher than 1; however, no explicit lower bound is known.
Due to the difficulty in computing Bayes-Nash equilibria analytically, coming
up with a concrete lower bound construction is interesting and would reveal the
gap of our revenue guarantees.
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14. B. Lucier, R. Paes Leme, and É. Tardos. On revenue in generalized second price
auctions. In Proceedings of the 21st World Wide Web Conference (WWW), pp.
361–370, 2012.

15. R. Myerson. Optimal auction design. Mathematics of Operations Research,
6(1): 58–73, 1981.

16. M. Ostrovsky and M. Schwarz. Reserve prices in Internet advertising auctions:
a field experiment. In Proceedings of the 12th ACM Conference on Electronic
Commerce (EC), pp. 59–60, 2011.
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