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Abstract. We study geometric versions of the min-size k-clustering
problem, a clustering problem which generalizes clustering to minimize
the sum of cluster radii and has important applications. We prove that
the problem can be solved in polynomial time when the points to be clus-
tered are located on a line. For Euclidean spaces of higher dimensions,
we show that the problem is NP-hard and present polynomial time ap-
proximation schemes. The latter result yields an improved approximation
algorithm for the related problem of k-clustering to minimize the sum of
cluster diameters.

1 Introduction

Clustering is an area of combinatorial problems which is both algorithmically rich
and practically relevant. Several clustering problems have been extensively stud-
ied since they have applications in many fields including database systems, image
processing, data mining, information retrieval, molecular biology, and more.

Given a set of points X, we call a cluster any nonempty subset of X. A set
of clusters is a clustering for X if each point of X belongs to some cluster. A
clustering is called k-clustering if it consists of at most k clusters. In general,
clustering problems are stated as follows: An instance of such a problem consists
of a set X of n points, a distance function dist : X × X → R and an integer
k and the objective is to compute a k-clustering of the points in X minimiz-
ing f(C1, ..., Ck), where f is a function defined on the clusters, typically using
the distance function dist. Depending on the definition of the function f , many
different clustering problems can be defined. The mostly studied ones are the
k-center, k-median, and k-clustering. Their objectives are to assign the points to
at most k clusters so that the maximum distance from any point to its cluster
center (k-center) or the sum of distances from each point to its closest clus-
ter center (k-median) or the sum of all distances between points in the same
cluster (k-clustering) is minimized. These problems are NP-hard and several ap-
proximation algorithms have been proposed [3, 5, 13] including polynomial time
approximation schemes for geometric instances of these problems [1, 2, 10, 16].



In this paper, we study a variation of the problem of clustering a set of points
into a specific number of clusters so as to minimize the sum of cluster sizes. The
size of a cluster may be proportional to the radius/diameter of the cluster, to its
area, etc. In particular, minimizing the sum of cluster radii/diameters has been
suggested as an alternative to the k-center objective in certain applications so
as to avoid the dissection effect [8]: using the maximum diameter/radius as the
objective sometimes results in objects that should have been placed in the same
cluster to be placed in different clusters.

Clustering to minimize the sum of diameters/radii has been studied for points
in metric spaces in [6] and [8]. An approximation algorithm which computes a
solution with at most 10k clusters of cost at most a factor of O(log n/k) within
the optimal solution for k clusters was presented in [8]. This result was im-
proved by Charikar and Panigrahy in [6] where an algorithm that computes a
constant approximate solution using at most k clusters is presented. In metric
spaces, ρ-approximation algorithms for clustering to minimize the sum of di-
ameters give 2ρ-approximation algorithms for the corresponding radii problem
(and vice versa). Negative results include a 2 − ε inapproximability bound for
minimizing the sum of diameters in metric spaces [8] while the complexity of the
corresponding radii problem is open. For non-metrics, no approximation bound
is possible for diameters in polynomial time unless P = NP even for k = 3
[8]. When k is fixed, the optimal solution for radii/diameters can be found in
polynomial time by enumerating the O(nk) possible solutions. The papers [12]
and [15] present fast polynomial time algorithms for the case k = 2, addressing
the Euclidean case as well. Capoyleas et al. [7] study a generalized version of the
problem for points on the Euclidean plane and show that, for fixed k and any
function of the cluster diameters, it can be solved in polynomial time.

In this paper, we consider geometric versions of the min-size k-clustering
problem. Formally, an instance (X, F, d, α) of the problem has a set X of n
points with rational coordinates on the d-dimensional Euclidean space, a cost
function F that associates a fixed non-negative cost with each point, and a
constant value α. The objective is to compute a k-clustering C together with
center points c ∈ X in each cluster C such that

∑
C∈C COST (C) is minimized,

where COST (C) is defined as (maxp∈C dist(p, c))α+Fc and dist(p, c) denotes the
Euclidean distance between the points p and c. The quantity maxp∈C dist(p, c)
is the radius of cluster C with center c.

Besides its importance for clustering optimization, another motivation for
studying the min-size k-clustering problem is the following scenario. Assume that
a telecommunication agency wishes to give wireless access to users scattered in
several locations. This can be achieved by establishing a network of base stations
(antennas) to specific locations and setting appropriately the range of each base
station such that all the locations are within the range of some station. From
the point of view of the agency, establishing a base station incurs a setup cost
and an operational cost which is proportional to the range of the station (i.e.,
the square of the distance of the farthest location within range from the base
station). Min-size k-clustering models the problem of minimizing the costs for



building and operating the network. Very recently, we became aware of [14] which
studied special cases of min-size k-clustering under this motivation. The authors
of [14] study instances (X, F, d, 1) of min-size k-clustering with k = n and fixed
costs in {0,∞}. They present a dynamic programming algorithm that solves the
problem optimally when the points are located on the line and a polynomial-time
approximation scheme for points in Euclidean spaces of constant dimensions.
This latter result is based on ideas of a dynamic programming algorithm of [9]
for approximating the minimum vertex cover of disk graphs.

Min-size k-clustering generalizes the problem of minimizing the sum of radii.
We consider the case where k is arbitrary. The result of [6] for metric spaces
implies an algorithm with approximation ratio slightly worse than 3α in our case.
We show that the problem is NP-complete in 2-dimensional Euclidean spaces
and α ≥ 2, while a generalized version is solvable in polynomial-time when the
points are located on a line. For higher dimensions, we present a polynomial time
approximation scheme that computes an (1 + ε)-approximate solution using at
most k clusters; the running time of our algorithm is n(α/ε)O(d)

. Our techniques
yield a (2 + ε)-approximation algorithm for the k-clustering to minimize the
sum of cluster diameters. Like [14], our algorithm uses and extends ideas from
[9]. Our results are stronger than those in [14] since we assume that k can be
arbitrary, that the fixed costs of the points may have arbitrary positive values,
and we consider the more general case α ≥ 1. Our algorithm is guaranteed to
find approximate solutions in polynomial time due to structural properties of the
optimal or approximate solutions. This is captured by corresponding Structure
Lemmas.

The rest of the paper is structured as follows. In Section 2 we give complexity
results for the problem. We present the algorithm and its analysis in Section 3.
Section 4 contains the statements and proofs of the Structure Lemmas. We
conclude with some extensions and open problems in Section 5. Due to lack of
space, most of the proofs have been omitted.

2 Complexity results

We first show that the problem is solvable in polynomial time when the points
are located on the line.

Theorem 1. Min-size k-clustering for instances (X, F, 1, α) is in P.

The proof of this statement follows by expressing the problem as an integer
linear program with totally unimodular matrix and concluding that an optimal
clustering is obtained by computing a basic solution for the linear program. The
statement also holds if the clusters have arbitrary positive costs. Previous results
include weaker statements with more complicated proofs [4, 14].

In the sequel we consider points in higher dimensions. We can show that
two important cases of the problem on the Euclidean plane are NP-hard. The
first case is an interesting geometric version of set cover which is also studied
in [11]. We have two disjoint sets of points S and T on the Euclidean plane.



We wish to cover all points in T by disks centered in points of S so that the
total area of the disks is minimized. It is not difficult to see that this problem is
equivalent to the min-size k-clustering with k = |S ∪ T | = n and input instance
(S ∪ T, F, 2, 2) where Fp = ∞ if c ∈ T (this guarantees that points of T should
not be cluster centers) and Fp = 0 if c ∈ S (this guarantees that all points of
S can be centers of clusters including no points of T ). In the instances of the
second case that we prove to be NP-hard, all points have zero fixed costs. Our
NP-hardness statements follow.

Theorem 2. Let (X,F, 2, α) be an instance of the problem with α ≥ 2 and F
such that Fp ∈ {0,∞} for any point p ∈ X. Deciding whether (X, F, 2, α) has
any min-size clustering of cost at most K is NP-complete.

Theorem 3. Let (X, F, 2, α) be an instance of the problem with α ≥ 2 and
Fp = 0 for any point p ∈ X. Deciding whether (X,F, 2, α) has any min-size
k-clustering of cost at most K is NP-complete.

3 The algorithm

Our algorithm uses the idea of plane subdivision from an algorithm of Erlebach
et al. [9] that approximates the minimum vertex cover of disk graphs. Given
disks on the plane, the corresponding disk graph is the graph having a node for
each disk and an edge between any pair of nodes corresponding to overlapping
disks. Although it is not at all related to minimum vertex cover in disk graphs,
the min-size k-clustering can be seen as a covering problem with disks as well.
We may think of a cluster C with center c as a disk centered at the point c
and with radius equal to the maximum distance of c from any point of C (and
possibly zero if c is the only point of C). Such a disk has a cost equal to the
quantity (maxp∈C dist(p, c))α + Fc. Now, the min-size k-clustering problem asks
for a set of at most k disks with minimum total cost which include (i.e., cover)
all points of X.

Before we describe the min-size k-clustering algorithm, we adapt the termi-
nology of [9] to our setting. We use the term cluster instead of the term disk. Fix
a positive integer λ > 1. Consider an instance (X,F, 2, α) of min-size k-clustering
and let D denote the set of all possible n2 clusters obtained by considering all
possible radii for each point in X. Among all clusters of D with non-zero ra-
dius, let rmin and rmax be the radius of the smallest and the largest cluster,
respectively. Partition D into L + 1 levels, where L = blogλ+1(rmax/rmin)c.
For 0 ≤ j ≤ L, level j consists of all clusters di having radius ri such that
(λ + 1)−jrmax ≥ ri > (λ + 1)−(j+1)rmax. Note that the smaller the level, the
larger the radii of the clusters are. Thus, the cluster with radius rmin will be on
level L. We assume that clusters with zero radius belong to level L as well.

For each level j, 0 ≤ j ≤ L, impose a grid on the plane consisting of lines
that are 2(λ+1)−jrmax apart from each other. The v-th vertical line, for integer
v in (−∞,∞), is at x = 2v(λ + 1)−jrmax. The h-th horizontal line, for integer
h in (−∞,∞), is at y = 2h(λ + 1)−jrmax. We say that the v-th vertical line



has index v and that the h-th horizontal line has index h. Furthermore, we say
that a cluster di with center (xi, yi) and radius ri hits a vertical line at x = a if
a − ri < xi ≤ a + ri. Similarly, we say that di hits a horizontal line at y = b if
b − ri < yi ≤ b + ri. Intuitively, by considering clusters as disks, a cluster hits
a line if it intersects that line, except if it only touches the line from the left or
from below. Note that every cluster can hit at most one horizontal line and at
most one vertical line on its level.

Let 0 ≤ r, s < λ and consider the vertical lines whose index modulo λ equals
r and the horizontal lines whose index modulo λ equals s. We say that these lines
are active for (r, s). Consider one particular level j. The lines on level j that are
active for (r, s) partition the plane into squares. More precisely, for consecutive
active vertical lines at x = a1 and x = a2 and consecutive active horizontal lines
at y = b1 and y = b2, one square {(x, y)|a1 < x ≤ a2, b1 < y ≤ b2} is obtained.
We refer to these squares on level j as j-squares. As observed in [9], for any j,
0 ≤ j < L, every (j + 1)-square is completely contained in some j-square. An
example is depicted in Figure 1.

active line of level j 

active line of level j+1 

active line of level j+1 

active line of level j+1 

active line of level j+1 

active line of level j+1 

active line of level j 

Fig. 1. An example of the plane subdivision for λ = 5. The disks shown represent
clusters of level j of the minimum and maximum possible radius.

A j-square S is relevant if there exists at least one cluster of level j in D
containing a point p ∈ S ∩ X. Observe that the number of relevant squares is
polynomial in n, since the number of clusters is n2 and a cluster may cover
points in at most 4 squares of its level. For a relevant j-square S and a relevant
j′-square S′ with j′ > j, we say that S′ is a child square of S (and S is a parent of
S′) if S′ is contained in S and there is no relevant j′′-square S′′ with j′ > j′′ > j,
such that S′ is contained in S′′ and S′′ is contained in S. It can be easily seen
that the number of relevant 0-squares is at most 4; these are the only squares



without a parent. We show the following property which holds specifically for
instances of min-size k-clustering.

Lemma 1. Each relevant square has at most O(λ4) child squares.

Proof. Clearly, a square S of level j and of side length ` may have at most (λ+1)4

child squares of levels j +1 and j +2. If S has more than (λ +1)4 child squares,
then it should have child squares of level at least j + 3. We will show that the
number of child squares of S of level at least j + 3 is at most 16

π (2(λ + 1)2 + 1)2.
Pick a square S′ of smallest level j′ ≥ j + 3 among the child squares of S

and let p be a point contained in it. Then, all other points will be at distance
either smaller than `

2(λ+1)j′−j+1 or at least `
2(λ+1)2 , otherwise the j′′-square S′′

containing S′ with j < j′′ < j′ would be relevant and, hence, S′′, instead of
S′, would be a child of S. Now, observe that, within a disk of radius `

4(λ+1)2

centered at p, there can be at most four child squares of S of level at least j +3,
including S′; this is the maximum number of squares that may have one point
at distance smaller than `

2(λ+1)j′−j+1 from p. Repeat recursively this procedure
for the child squares of S of level at least j + 3 which are not contained in the
disk until all squares of level at least j +3 have been included in disks. The disks
do not overlap, otherwise this would mean that the center of some disk which is
a point in a square of level j + 3 has distance smaller than `

2(λ+1)2 and at least
`

2(λ+1)j′′−j+1 from some other point. Also, they all have their centers in S, thus

they are all contained in the square of side length
(
1 + 1

2(λ+1)2

)
`. Hence, their

number is at most
(
1 + 1

2(λ+1)2

)2

`2

π
(

`
4(λ+1)2

)2 ≤ 4
π

(2(λ + 1)2 + 1)2,

and the number of child squares of S of level at least j + 3 cannot exceed
16
π (2(λ + 1)2 + 1)2. ut

Consider some j-square S and denote by IS the set of clusters in D inter-
secting S. We denote by IS

<j the set of clusters in IS having level smaller than
j and define IS

≤j , IS
=j , IS

≥j and IS
>j analogously. We say that a set C ⊆ IS is

a pseudoclustering of S if for any point p ∈ X ∩ S there exists a cluster in C
containing p. For any pseudoclustering C of S, call IS

<j ∩ C the projection of C

onto IS
<j (and similarly for IS

≤j).
Now, we are ready to describe the algorithm. Given an instance (X, F, 2, α) of

min-size k-clustering, the algorithm assigns levels to all possible clusters defined
by X and implicitly defines horizontal and vertical lines on the plane as discussed
above. Then, for each possible value of r, s ∈ {0, ..., λ− 1}, it executes an itera-
tion. In each iteration, a k-clustering is computed; the best k-clustering among
all iterations is output as the final solution. In each iteration associated with r, s,
the algorithm processes all relevant squares defined by the plane subdivision ac-
cording to r and s in a bottom-up fashion (i.e., in decreasing order of levels). At



a relevant j-square S, the projections of polynomially many pseudoclusterings
of S are enumerated. During this enumeration process, a table TableS is con-
structed by looking up the respective entries stored in tables at children of S.
The entry TableS(P, i) for a projection P ⊆ IS

<j of a pseudoclustering of S onto
IS
<j and an integer i such that 1 ≤ i ≤ k, will be a set J ⊆ IS

≥j such that P ∪J is
a pseudoclustering of S with exactly i clusters. At the end of each iteration, the
algorithm computes a k-clustering by enumerating all clusterings obtained by
choosing entries from each table TableS taken over all relevant squares S having
no parent.

1. TableS ← ∅
2. IS

≤j ← all clusters in D of level at most j intersecting S
3. for all Q ⊆ IS

≤j such that |Q| ≤ min{ξ, k} do
4. J ← {D ∈ Q|D has level j}
5. P ← {D ∈ Q|D has level smaller than j}
6. if S has no children then
7. TableS(P, |Q|) ← J
8. else
9. let S1, S2, ..., St be the child squares of S

10. for each child square Sy do
11. P ′(Sy) ← {D ∈ Q|D intersects Sy}
12. for each possible combination of (i1, i2, ..., it)

with 1 ≤ iy ≤ k for y = 1, ..., t do

13. J ′ ← J ∪⋃t

y=1
TableSy (P ′(Sy), iy)

14. i′ = |P ∪ J ′|
15. if i′ ≤ k and P ∪ J ′ is a pseudoclustering of S then
16. if TableS(P, i′) is undefined

or ω(J ′) < ω(TableS(P, i′)) then
17. TableS(P, i′) ← J ′

Fig. 2. The pseudocode for computing TableS once the tables TableS′ have been com-
puted for all children S′ of S and all values of i.

In Figure 2, we present the pseudocode for computing TableS once the tables
TableS′ have been computed for all children S′ of S and all values of i. The
parameter ξ is used to constrain the size of pseudoclusterings of S considered.
We use ω(.) to denote the cost of a cluster or the total cost of a set of clusters.

The algorithm executes λ2 iterations. In each iteration, at most O(n2) rel-
evant squares are processed. Using Lemma 1, we can easily see that the time
required for computing the table entries for each relevant square is at most
nO(λ4+ξ). Since the number of relevant squares having no parent in each itera-
tion is at most 4, the last step of each iteration completes in polynomial time.
Overall, the running time of the algorithm is nO(λ4+ξ).

In the following, we present the main arguments for analyzing the perfor-
mance of the algorithm. Let (X, F, 2, α) be an instance of min-size k-clustering



and consider all solutions which, for any square of side ` contain at most ξ clus-
ters of radius at least `

2(λ+1)2 that can include all the points of X in the square.
We call such solutions ξ-solutions for instance (X, F, 2, α). Clearly, for any rele-
vant j-square defined by the plane subdivision according to r, s, a ξ-solution for
(X, F, 2, α) contains at most ξ clusters of level at most j covering all the points
of X in the square. The proof of the efficiency of the algorithm will be based on
the comparison of the cost of the solutions obtained with the cost of the best
ξ-solution. This will follow by Lemmas 2 and 3. First, in Lemma 2, we show that
the cost of the solution computed by the algorithm in an iteration associated
with r, s is upper-bounded by a quantity defined as a function of the cost of the
clusters in the best ξ-solution and the plane subdivision defined by r, s. Then,
in Lemma 3, we show that there are values of r, s such that this latter quantity
(and, consequently, the cost of the best solution computed by the algorithm) is
not much larger than the cost of the best ξ-solution.

Denote by C∗ the best ξ-solution of instance (X, F, 2, α). For any relevant
j-square S, denote by C∗(S) the clusters of level j in C∗ intersecting S.

Lemma 2. Let r, s ∈ {0, ..., λ − 1} and S(r, s) be the set of relevant squares
defined by r, s and X. In the iteration associated with r, s, the algorithm computes
a k-clustering A(r, s) of X of cost ω(A(r, s)) ≤ ∑

S∈S(r,s) ω(C∗(S)).

Proof. Since C∗ is a ξ-solution, we may assign each point to exactly one cluster
so that all points are assigned to some cluster and the number of clusters inter-
secting with some square S which have been assigned points contained in S is at
most ξ. We call a cluster intersecting with a relevant square S and having been
assigned a point of S, a cluster associated with S.

For any relevant j-square S, let CS be the set of clusters in C∗ associated
with S. Define CS

<j , CS
≤j and CS

=j as usual. We claim that after TableS has been
computed, it holds

ω(TableS(CS
<j , |CS |)) ≤

∑

S′≺S

ω(C∗(S′)), (1)

where S′ ≺ S denotes that S′ is a relevant square that is contained in S. Note
that S ≺ S.

The proof is by induction on the order in which the relevant squares are
processed during an iteration. It is trivially true when S has no children. Assume
that the algorithm is about to process the relevant j-square S and that (1) holds
for all squares processed before S. In one of the iterations of the outer loop in
the pseudocode of Figure 2, we have Q = CS

≤j (and J = CS
=j). In this iteration,

consider the combination (i1, i2, ..., it) such that P ′(Sy) = C
Sy

≤j and iy = |CSy |
for any 1 ≤ y ≤ t. Observe that for each j′-square which is a child of S, it is
CS′
≤j = CS′

<j′ . Also, clearly, it is CS
=j ⊆ C∗(S). Thus, the minimum cost set J ′

such that P ∪ J ′ is a pseudoclustering of S and |P ∪ J ′| = |CS | assigned to the
entry TableS(CS

<j , |CS |) has cost at most
∑

S′ child of S

ω(TableS′(CS′
≤j , |CS′ |)) + ω(C∗(S)) ≤

∑

S′≺S

ω(C∗(S′)),



and, hence, (1) holds also for S.
Finally, let S0(r, s) be the set of all relevant squares without a parent. Once

again the algorithm performs a complete enumeration of all possible solutions
obtained by choosing exactly one entry from each table TableS for all S ∈
S0(r, s). By applying the same argument used above and using the fact that for
any relevant j-square S ∈ S0(r, s) it is CS

<j = ∅, we obtain that ω(A(r, s)) ≤∑
S∈S0(r,s) ω(TableS(∅, |CS |)) ≤ ∑

S∈S(r,s) ω(C∗(S)). ut

Lemma 3. There exist r, s ∈ {0, 1, ..., λ − 1} such that
∑

S∈S(r,s) ω(C∗(S)) ≤(
1 + 6

λ

)
ω(C∗).

Similar statements with Lemma 3 are proved in [9, 14]. So far (by combining
Lemmas 2 and 3), we have bounded the cost of the best solution computed by
the algorithm after all iterations in terms of the cost of the best ξ-solution. In
the next section, we prove that for any instance (X, F, 2, α) the optimal solution
(for α = 1) or approximate solutions (for α > 1) are essentially ξ-solutions.
Combining the analysis above with Lemmas 4 and 5, we can bound the cost
of the solution computed by our algorithm in terms of the cost of the optimal
solution. By appropriately setting the parameters λ and ξ in terms of ε (for any
ε > 0), we obtain the following theorems.

Theorem 4. There exists an algorithm for min-size k-clustering which, for each
instance (X,F, 2, 1) of the problem, computes an (1+ ε)-approximate solution in
time nO(1/ε4) for any ε > 0.

Theorem 5. There exists an algorithm for min-size k-clustering which, for each
instance (X, F, 2, α) of the problem, computes an (1+ ε)-approximate solution in
time nO(α4/ε6) for any ε > 0.

4 The structure lemmas

The following lemmas imply that for any instance (X, F, 2, α) of the min-size
k-clustering problem, there exist constant values for ξ such that any optimal
solution (for α = 1) or at least a particular approximate solution (for α > 1)
are essentially ξ-solutions (and, hence, the best ξ-solution is optimal or almost
optimal, respectively).

Lemma 4 (Structure lemma). For any integer constant λ > 1, there exists
a constant ξ = ξ(λ) = O(λ4) such that the following is true: For any square S of
side length `, any optimal solution for any instance (X, F, 2, 1) of the min-size
k-clustering problem, contains at most ξ clusters of radius at least `

2(λ+1)2 which
intersect with S.

A slightly different version of this Structure Lemma can also be found in
[14]. For the case α > 1, we cannot show a statement as strong as Lemma 4.
Actually, it can be shown that there exist instances (X, F, 2, α) with α > 1 and



squares S of side length ` such that optimal solutions for (X, F, 2, α) contain
an unbounded number of clusters of radius at least `

2(λ+1)2 intersecting with S.
However, we can prove the next Approximate Structure Lemma which states that
an approximate solution is a ξ-solution and, hence, it suffices for our purposes.

Lemma 5 (Approximate Structure Lemma). For any constants γ > 0,
α > 1, and integer λ > 1, there exists a constant ξ = ξ(λ, α, γ) = O

(
α2λ4

γ2

)
such

that the following is true: Any instance (X, F, 2, α) of the min-size k-clustering
problem has an (1 + γ)α-approximate solution which, for any square S of side `,
contains a subset of at most ξ clusters of radius at least `

2(λ+1)2 which contain
all points in S.

Proof. Consider an instance (X,F, 2, α) of the min-size k-clustering problem
and an optimal solution D∗

OPT for (X,F, 2, α). Let ψOPT be a function that
assigns to each point of X a cluster of D∗

OPT containing this point. We obtain a
(1+γ)α-approximate solution D∗ by increasing the radius of each disk in D∗

OPT

by a factor of 1 + γ. Define the assignment ψ which assigns each point of X to
the smallest cluster (i.e., the one with the smallest radius) of D∗ that contains
it. We will show that, for any square of side length `, the number of clusters of
D∗ of radius at least `

2(λ+1)2 which are assigned by ψ to points of S is at most

ξ(λ, α, γ) =

((
6
√

2 +
4
√

2
γ

)
α(1 + γ)(λ + 1)2

ln 2
+ 1

)2

+ 1.

Let S be a square of side length `. Denote by X1 and X2 the sets of points
of S assigned by ψOPT to clusters of D∗

OPT of radii smaller than `
√

2/γ and at
least `

√
2/γ, respectively. All points in X1 are assigned to clusters of D∗ of radii

smaller than `
√

2(1+1/γ) by ψ. Furthermore, the radius of the clusters of D∗
OPT

to which points of X2 are assigned by ψOPT is increased by at least `
√

2 and,
hence, the resulting clusters of D∗ cover the whole square. Among these clusters,
denote by d the one with the smallest radius. The points of X2 (if any) will be
assigned either to cluster d or to clusters of radius smaller than `

√
2(1 + 1/γ).

Now assume that more than ξ(λ, α, γ) clusters of D∗ are assigned to points
of the square S by ψ. This means that more than ξ(λ, α, γ)−1 clusters of radius
larger than `

2(λ+1)2 and at most `
√

2/γ have their centers at distance at most(
3√
2

+
√

2
γ

)
` from the center O of the square, otherwise, these clusters would

not cover any point of S. Now shrink all these clusters around their centers to
obtain disks of radius 21/α−1

4(1+γ)(λ+1)2 `. Let D′ be the set of shrunk disks. We claim
that any two disks of D′ are disjoint. Assume otherwise and consider two disks
of D′ centered at points c1 and c2 of distance δ smaller than (21/α−1)`

2(1+γ)(λ+1)2 . Let
d1 and d2 be the clusters centered at c1 and c2 in the optimal solution D∗

OPT

and let r and R be their radii. Without loss of generality, assume that r ≤ R.
Clearly, r,R ≥ `

2(λ+1)2(1+γ) . If R ≥ r + δ, then this means that the cluster d2

could include all points included in the cluster d1, hence the solution D∗ would



not be optimal. If R < r + δ, then we can include all points included in clusters
d1 and d2 in the solution D∗

OPT by increasing the radius of the cluster d2 to r+δ
and removing cluster d1 from D∗

OPT . The new cost of cluster d2 is now

Fc2 + (r + δ)α < Fc2 +
(

r +
21/α − 1

2(1 + γ)(λ + 1)2
`

)α

≤ Fc2 + (r + (21/α − 1)r)α

≤ Fc2 + 2rα ≤ Fc1 + rα + Fc2 + Rα

which means that D∗ is not optimal. Hence, all disks of D′ are disjoint. By their
definition, they are contained in a disk d′ with radius

(
3√
2

+
√

2
γ + 21/α−1

4(1+γ)(λ+1)2

)
`

centered at O. Since they are disjoint, their total area is more than

(ξ(λ, α, γ)− 1)π
(

(21/α − 1)`
4(1 + γ)(λ + 1)2

)2

≥
((

6
√

2 +
4
√

2
γ

)
α(1 + γ)(λ + 1)2

ln 2
+ 1

)2

π

(
(21/α − 1)`

4(1 + γ)(λ + 1)2

)2

≥
((

6
√

2 +
4
√

2
γ

)
(1 + γ)(λ + 1)2

21/α − 1
+ 1

)2

π

(
(21/α − 1)`

4(1 + γ)(λ + 1)2

)2

≥ π

(
3√
2

+
√

2
γ

+
21/α − 1

4(1 + γ))(λ + 1)4

)2

`2

which contradicts the fact that they are completely contained in the disk d′.
Hence, the number of clusters of D∗ of radius at least `

2(λ+1)2 which are assigned
to points of S cannot exceed ξ(λ, α, γ). ut

5 Extensions and open problems

Our techniques naturally extend to higher dimensions by using similar subdivi-
sions of Euclidean spaces. Again, appropriate Structure Lemmas can be shown
with slightly more complicated arguments. We can show the following statement.

Theorem 6. There exists an algorithm for min-size k-clustering which, for each
instance (X, F, d, α) of the problem, computes an (1+ ε)-approximate solution in
time n(α/ε)O(d)

for any ε > 0, α ≥ 1, and constant integer d ≥ 2.

The most important open problem is to explore the complexity of the prob-
lems in the case α = 1. problems are still open for metric spaces as well; the best
known approximability result is the constant approximation algorithm of [6].

In k-clustering to minimize the sum of cluster diameters, the cluster centers
need not necessarily be points of X. Our polynomial-time approximation scheme
for min-size k-clustering with α = 1 yield a (2 + ε)-approximation algorithm
for any constant dimension. To our knowledge, this is the best approximation
guarantee for arbitrary k. Further improvements are also possible. Again, the
complexity of the problem in multidimensional Euclidean spaces is still open.
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