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Abstract. We study the problem of allocating a set of indivisible items
to players having additive utility functions over the items. We consider
allocations in which no player envies the bundle of items allocated to the
other players too much. We present a simple proof that deterministic
truthful allocations do not minimize envy by characterizing the truthful
mechanisms for two players and two items. Also, we present an analysis
for uniformly random allocations which are naturally truthful in expec-
tation. These results simplify or improve previous results of Lipton et
al.

1 Introduction

Resource allocation [9] has been an important problem in several areas such as
Computer Science, Artificial Intelligence, and Economics since their early days.
In the era of the Internet with a vast amount of computational, communication,
and storage resources available worldwide, the problem is still of paramount
importance. Besides efficiency, fairness is another important aspect that resource
allocation must satisfy. Additional constraints such as the selfish behavior of
resource owners and users make the variations of the problem very challenging.

A simple but foundational resource allocation problem is the well-known
cake-cutting problem [6, 20]. In cake-cutting, we are given n players with dif-
ferent utilities for different parts of a cake. The objective is to allocate pieces
of the cake to the players in such a way that they are satisfied. Traditionally,
satisfaction of players has been measured by two different notions: envy-freeness
and proportionality. Envy-freeness means that each player prefers her allocated
pieces to the pieces allocated to any other player. Proportionality means that
the utility of each player for the pieces allocated to her is at least 1/n times her
utility for the whole cake. Due to the continuity of the cake and the utilities of
the players, both objectives are always feasible.

A similar problem concerns the fair allocation of indivisible items; indivisi-
bility implies that an item cannot be broken into parts and must be allocated to
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a single player. Here, we again have a set N of n players and a set M of m indi-
visible items. Each player p has a non-negative utility function up : 2M → IR+

0 .
The objective is to assign to each player p a bundle of items Mp ⊆M, so that⋃

pMp = M and some criterion concerning fairness is maintained. An impor-
tant special case is that of additive utilities. In this case, each player p has a
utility up,i for each item i ∈ M and her utility for a bundle of items is simply
the sum of her utilities on these items. In contrast to the cake-cutting problem,
envy-freeness and proportionality are not always feasible goals in this setting
even in the case of additive utilities. Here, envy minimization is among the most
prominent measures of fairness. Given an allocation A in which players p and
q are assigned bundles Mp and Mq, the envy epq(A) of player p for player q is
epq(A) = up(Mq)−up(Mp). Then, envy of A is defined as e(A) = maxp,q∈N epq.
Clearly, A is envy-free if e(A) = 0.

An implicit assumption in the above definitions is that the players express
their true utilities which are used by the algorithm (i.e., the allocation func-
tion) in order to compute an allocation. In practice, players are usually selfish
in the sense that they aim to increase their benefit, i.e., their total utility on the
bundle of items the algorithm allocates to them. In order to do so, they may
report false valuations of items to the algorithm (i.e., different than their true
utilities). Truthful allocation functions guarantee that the allocation is based on
the true utilities of the players. A deterministic allocation function is truthful if
the benefit obtained by a player when reporting false valuations on the items is
not greater than the benefit she would have obtained by telling the truth. Simi-
larly, a randomized allocation function is truthful in expectation if the expected
benefit of a player is maximized when revealing her true utilities.

Related work. Research concerning fair allocations originated in the 1940s with
a focus on cake-cutting [21]. Since then, the problem of achieving a proportional
allocation with the minimum number of operations has received much attention
and is now well-understood [12, 13, 6, 20, 24]. The problem of achieving envy-
freeness has been proven to be much more challenging [8, 5, 22]; in fact, under
the most common computational model of cut and evaluation queries [20], no
algorithm with bounded running time is known for more than 3 players. Very
recently, envy-freeness was proved to be a harder property to achieve than pro-
portionality [19, 23]. Better solutions exist for different computational models
(e.g., moving knife algorithms [7]).

Lipton et al. [16] studied envy minimization with indivisible items. Among
other results, they proved that allocations with envy bounded by the marginal
utility always exist and can be computed in polynomial time. In the case of addi-
tive utilities, marginal utility translates to the maximum per item utility over all
players. They also present algorithms that compute allocations that approximate
the minimum envy-ratio; the envy ratio of a player p for a player q is the utility of
player p for the items allocated to player q over p’s utility for the items allocated
to her. Complexity considerations about envy-freeness for indivisible items and
non-additive utilities are presented in [4]. The papers [10, 11] study the problem
of achieving envy-free and efficient allocations in distributed settings and when



the allocation of items is accompanied by monetary side payments (in this case,
envy-freeness is always a feasible goal). Lipton et al. [16] also consider truthful
allocations; they show that any deterministic allocation function that returns an
allocation with minimum possible envy cannot be truthful; their proof uses an
instance with two players and many items. Finally, they present an analysis of
the randomized allocation function that assigns each item to one of the players
uniformly at random and independently of the allocations of the other items.
This allocation function is truthful in expectation. For the case where the sum of
utilities of each player over the items is 1, they prove that, with high probability,
the envy of the resulting allocation is O(

√
αn1/2+ε), where α is the maximum

utility per item over all players and ε is an arbitrarily small positive number. We
remark that the study of truthful allocation functions belongs to the recent line
of research on algorithmic mechanism design [18]. In particular, Mu’alem and
Schapira [17] prove lower bounds on the envy of truthful allocation functions.
However, unlike the model of [16] which we also follow in the current paper,
[17] and most of the studies in algorithmic mechanism design allow monetary
transfers between the players.

For indivisible items, a fairness objective that has been extensively considered
recently is max-min fairness. Here, the objective is to compute an allocation in
which the benefit of the least happy player is maximized. The problem was
studied by Bezáková and Dani [3] and Golovin [14] who obtained approximation
algorithms that provably return a solution that is always a factor of O(n) within
the optimal value. The problem was popularized by Bansal and Sviridenko [2]
as the Santa Claus problem, where Santa Claus aims to distribute presents to
the kids so as to maximize the happiness of the least happy kid. Subsequently,
Asadpour and Saberi [1] presented an O(

√
n log3 n)-approximation algorithm for

this problem.

Our results. In this paper, we consider allocation of indivisible items to play-
ers having additive utility functions over the items. We present an alternative
proof that no deterministic truthful allocation function minimizes envy by char-
acterizing the deterministic truthful allocation functions for two players and two
items. Our proof actually shows that for any truthful allocation function, there
are instances in which the envy is almost maximized. Our proof simplifies the
proof of Lipton et al. [16] that uses a large number of items. Our impossibility
result trivially extends to the case of many players and many items and also to
the more general case of non-additive utility functions. We also present an im-
proved analysis of uniformly random allocations of m items over n players. We
show that the envy is at most O(α

√
m ln n) with high probability, where α is the

maximum utility per item over all players and items. For the case where the sum
of utilities of each player is 1, we prove a bound of O(

√
α ln n). This improves

the previous bound of O(
√

αn1/2+ε) for any ε > 0 [16]. Our proof follows similar
lines to the proof of [16] but we exploit the fact that the allocation of each item
is independent and use the Hoeffding bound instead of the Chebychev inequality
in order to bound the envy.



Roadmap. Our characterization of the deterministic truthful allocations for two
players and two items is presented in Section 2. The analysis of random alloca-
tions is presented in Section 3.

2 Truthful allocations for two players and two items

In this section we present a characterization of deterministic truthful allocations
with two players and two items.

In general, the first player will have utilities u1x for the first item and u1(1−x)
for the second one while the utilities of the second player are u2y and u2(1− y),
respectively. Here, x, y ∈ [0, 1] and u1, u2 are the sums of utilities of the two
players for both items. So, an allocation function gets as input u1, u2, x, and y
and computes an allocation of the items to the players. We denote each of the
four possible allocations as a 2 × 2 matrix with entries 1 and 0. The columns
correspond to the players and the rows to the items. An 1 in an entry of such
a matrix indicates that the item corresponding to the row is allocated to the
player corresponding to the column.

We use the term non-boundary values to denote real numbers in [0, 1] different
than 0, 1/2, and 1. We consider only non-boundary values for x and y since they
suffice for proving our main result on the envy. Our characterization can be easily
extended to boundary values of x and y as well.

We begin with an observation that simplifies the allocation functions that
have to be considered.

Lemma 1. For non-boundary values of x and y, no truthful allocation function
f depends on u1 and u2.

Proof. Assume that this is not the case and that f computes different allocations
on inputs (u1, u2, x, y) and (u′1, u2, x, y) where x, y have non-boundary values and
u1 6= u′1.

When x has a non-boundary value, the four different possible allocations(
1 0
1 0

)
,
(

1 0
0 1

)
,
(

0 1
1 0

)
, and

(
0 1
0 1

)
yield different benefit to player 1 when her

utilities on the items are u1x and u1(1− x), namely u1, u1x, u1(1− x), and 0.
Now assume that the function f returns an allocation of higher benefit to

player 1 when she reports u′1 instead of u1. Then, player 1 has an incentive to lie.
If this is not the case and f returns an allocation of lower benefit when player
1 reports u′1, then consider the case when player 1 has true utilities u′1x and
u′1(1− x) on the two items. In this case, player 1 would have an incentive to lie
and report u1x and u1(1− x) as her valuation. ut

By Lemma 1, we may assume that f depends only on x and y when they
have non-boundary values. Without loss of generality, we also assume that u1 =
u2 = 1 in the following.

Lemma 2. A truthful allocation function f has the following properties:



(a) If f(x∗, y∗) assigns both items to the same player for some non-boundary
values x∗, y∗, then f(x, y) assigns both items to that player for any non-
boundary values x, y.

(b) If f(x∗, y∗) assigns to player 1 the item which she prefers the least for some
non-boundary values x∗, y∗, then f(x, y∗) assigns that item to player 1 for
any non-boundary value x.

(c) If f(x∗, y∗) assigns to player 2 the item which she prefers the least for some
non-boundary values x∗, y∗, then f(x∗, y) assigns that item to player 2 for
any non-boundary value y.

Proof. (a) Assume that the allocation function assigns both items to player 1
for some non-boundary values and at most one of the items for some other
non-boundary values. Then, one of the following must hold:

– There exist non-boundary values x∗, y∗, x′ such that f(x∗, y∗) assigns both
items to player 1 and f(x′, y∗) assigns at most one of the items to player 1.
In this case, if the true utility of player 1 for item 1 is x′, she has an incentive
to lie and report x∗ in order to get both items.

– There exist non-boundary values x∗, y∗, y′ such that f(x∗, y∗) assigns both
items to player 1 and f(x∗, y′) assigns at most one of the items to player
1. In this case, if the true utility of player 2 for item 1 is y∗, she has an
incentive to lie and report y′ in order to get at least one item.

The case in which the allocation function assigns both items to player 2 is sym-
metric.

(b) Consider the case with x∗ < 1/2 (the case x∗ > 1/2 is symmetric) so
that f(x∗, y∗) assigns item 1 to player 1. Assume otherwise that there exists a
non-boundary value x′ such that f(x′, y∗) assigns item 2 to player 1. Then, if
the true utility of player 1 for item 1 is x∗, player 1 has an incentive to lie and
report x′ in order to get item 2 which she prefers the most.

(c) The proof of this case is very similar to (b). ut

The properties of Lemma 2 yield the following.

Lemma 3. The only truthful allocations with respect to non-boundary item val-
uations are those depicted in Figure 1.

Proof. Figure 1 contains the eight possible allocation functions that satisfy the
properties of Lemma 2. Truthfulness follows since for each player, given the
valuation of the other player, these allocation functions either assign her the
most preferred item or the allocation does not depend on her valuations. ut

We are now ready to prove the main statement of this section.

Theorem 1. No truthful allocation minimizes envy.
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Fig. 1. The eight truthful allocation functions for two players.

Proof. Clearly, for the two first fixed truthful allocation functions of Figure 1,
both items are assigned to one player and hence the other player always has
envy 1. Let ε ∈ (0, 1/4). Consider the two valuation pairs (1 − ε, 1/2 + ε) and

(1/2 + ε, 1 − ε). The allocations
(

1 0
0 1

)
and

(
0 1
1 0

)
yield envy 2ε, respectively.

For any of the six last truthful allocation functions of Figure 1, in one of these
valuations pairs, the allocation yields benefit ε for one player and 1/2 + ε to the
other. Hence, one player has envy 1 − 2ε. By setting ε very close to 0, we have
that the envy is actually maximized. ut

0  1
1  0x

1

0 1

1  0

y

0  1

Fig. 2. The minimum envy allocation function when the sum of utilities of each player
on the two items is 1.



We remark that the four non-fixed allocation functions in Figure 1 produce an
envy-free allocation if one exists. Figure 2 presents the allocations that minimize
envy when the sum of the utilities of each player on the items is 1. The grey
areas indicate the cases of envy-free allocations. The two pairs of valuations
considered in the proof of Theorem 1 have been selected to be outside but very
close to these areas.

3 Improved analysis of random allocations

In this section we consider the randomized allocation function that allocates each
item to a player selected uniformly at random among the n players and in such a
way that the allocation of an item is independent of the other allocations. Note
that the allocation function does not depend on the valuations of the players.
Hence, it is truthful in expectation since no player has an incentive to report a
false valuation in order to increase her expected benefit. We present an upper
bound on the envy of the resulting allocations using Hoeffding inequality [15].

Theorem 2 (Hoeffding [15]). Let X1, . . . , Xk be independent random vari-
ables with Pr(Xi ∈ [ai, bi]) = 1 for 1 ≤ i ≤ k. Then, for the sum of these
variables S =

∑k
i=1 Xi, we have

Pr(S − IE[S] ≥ t) ≤ exp

(
− 2 t2∑k

i=1(bi − ai)2

)
.

So, the particular version of Hoeffding inequality upperbounds the probabil-
ity that a random variable which can be expressed as the sum of independent
random variables exceeds its expectation by a certain amount. Our statement
is the following; besides the number of players and items, it is also expressed
in terms of the maximum utility per item over all players. We assume that the
number n of players is large and the term high probability denotes a probability
of 1− 1/n. We also denote by vp,i the utility of player p for item i.

Theorem 3. Consider an instance with n players and m items and let α =
maxp,i vp,i.

(a) With high probability, the random allocation yields an envy of at most
O(α

√
m ln n).

(b) If the sum of utilities of each player is 1, then with high probability, the
random allocation yields an envy of at most O(

√
α ln n).

Proof. Consider two players p and q. We define the random variable Y pq
i indi-

cating the contribution of item i to the envy of player p for player q. Then, the
envy Spq of player p for player q is Spq =

∑m
i=1 Y pq

i . Observe that

– Y pq
i = vp,i if item i is allocated to q (and this happens with probability 1/n),

– Y pq
i = −vp,i if item i is allocated to p (and this happens with probability

1/n), and



– Y pq
i = 0 if item i is not allocated to p or q (this happens with probability

1− 2/n).

Clearly, the random variables Y pq
i are independent, Pr(Y pq

i ∈ [−vp,i, vp,i]) = 1
and IE[Spq] = 0. By applying the Hoeffding bound for any t ≥ 0, we have

Pr(Spq ≥ t) ≤ exp

(
− t2

2
∑m

i=1 v2
p,i

)
. (1)

In order to prove (a), we use inequality (1) by setting t = α
√

6m ln n and the
fact that

∑m
i=1 v2

p,i ≤ mα2 to obtain

Pr(Spq ≥ α
√

6m ln n) ≤ 1/n3.

Since there are at most n2 pairs of players p, q, by applying the union bound
we have that the probability that the maximum envy between any two players
exceeds α

√
6m ln n is at most 1/n.

In order to prove (b), we set t =
√

6α ln n and use the fact that
∑m

i=1 v2
p,i ≤ α

when
∑m

i=1 vp,i = 1 and vp,i ≥ 0. By (1), we obtain that

Pr(Spq ≥
√

6α ln n) ≤ 1/n3.

Again, by applying the union bound we have that the probability that the max-
imum envy between any two players exceeds

√
6α ln n is at most 1/n. ut

The first upper bound should be compared to the lower bound of α [16]
on the envy of allocations in which the maximum utility per item among all
players is α. This bound is shown to be tight in [16] but the upper bound is not
obtained by a truthful allocation function. Our second upper bound significantly
improves the upper bound of O(

√
αn1/2+ε) for the case where the sum of utilities

of each player is 1. Whether there exist better allocation functions (i.e., that yield
allocations with smaller envy) that are truthful in expectation is an interesting
open problem.
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