
A Minimax Tutor for Learning to Play a Board Game
Dimitris Kalles1 and Panagiotis Kanellopoulos 2

Abstract. We investigate systematically the impact of a minimax
tutor in the training of computer players in a strategy board game.
In that game, computer players utilise reinforcement learning with
neural networks for evolving their playing strategies. A traditionally
slow learning speed during conventional self-play is substantially
improved upon when minimax is employed; moreover, the ability
of minimax itself to win games serves as a very powerful tutor for
its opponents who must develop fast effective defensive strategies.
Such strategies are eventually shown to be quite good when deployed
against a player that cannot draw on minimax and must play utilising
whatever it has learnt.

1 Introduction
Several machine learning concepts have been tested in game do-
mains, since strategic games offer ample opportunities to automat-
ically explore, develop and test winning strategies. The most widely
publicised results occurred during the 1990s with the development
of Deep Thought and Deep Blue by IBM but the seeds were planted
as early as 1950 by Shannon [1] who studied value functions for
chess playing by computers. This was followed by Samuel [2] who
created a checkers program and, more recently, by Sutton [3] who
formulated the TD(λ) method for temporal difference reinforcement
learning. TD-Gammon [4, 5, 6] was the most successful early appli-
cation of TD(λ) for the game of backgammon. Using reinforcement
learning techniques and after training with 1.5 million self-playing
games, a performance comparable to that demonstrated by backgam-
mon world champions was achieved. Very recently, Schaeffer et al.
[7] proved that the game of checkers is a draw with perfect play from
both players, while the game of Go [8] has also been studied from an
AI point of view.

Implementing a computer’s strategy is the key point in strategy
games. By the term strategy we broadly mean the selection of the
computer’s next move considering its current situation, the oppo-
nent’s situation, consequences of that move and possible next moves
of the opponent. In our research, we use a strategy game to gain in-
sight into how we can develop (in the sense of evolving) game play-
ing capabilities, as opposed to programming such capabilities (using
mini-max, for example). Although the operational goal of achieving
improvement (measured in a variety of ways) is usually achieved in
several experimental settings [9, 10], the actual question of which
training actions help realize this improvement is central if we at-
tempt to devise an optimized training plan. The term optimize reflects
the need to expend judiciously the training resources, be it computer
power or human guidance.

1 Hellenic Open University, Sachtouri 23, 26222 Patras, Greece. Email:
dkalles@acm.org

2 Research Academic Computer Technology Institute & Department of
Computer Engineering and Informatics, University of Patras, 26500 Rio,
Greece. Email: kanellop@ceid.upatras.gr

Previous work [11, 12, 13, 14] has shown that the strategy game
under consideration in this paper is amenable to basic design verifica-
tion using reinforcement learning and neural networks. The problem
that we aim to highlight in this paper is that, even with the help of a
sophisticated tutor, as implemented by a minimax algorithm, learning
cannot be straightforward to automate without careful experimental
design.

For this reason we have designed, carried out and analyzed sev-
eral experimental sessions comprising in total about 25, 000 simple
computer-vs.-computer games and about 500 complex computer-vs.-
computer games. In complex games, one of the players was fol-
lowing the recommendations of a minimax algorithm, deployed at
increasing levels of look-ahead (and incurring, accordingly, signif-
icantly increasing computational costs). We believe that the results
are of interest as they indicate that increasing the look-ahead does
not necessarily lead to increasing the quality of the learned behaviour
and that a pendulum effect is present when two players compete and
one of them is temporarily aided by a knowledgeable tutor.

The rest of this paper is organised in four subsequent sections. The
next section presents the details of the game, including rules for legal
pawn movements, a review of the machine learning context, which
includes some reinforcement learning and neural network aspects,
and a brief review of the to-date experimental findings. We then de-
scribe the experimental setup, presented in distinct sessions, each of
which asks a specific question and presents data toward answering
that question. We then discuss the impact and the limitations of our
approach and identify recommended directions for future develop-
ment. The concluding section summarises the work.

2 A board game in a nutshell

The game is played on a square board of size n, by two players. Two
square bases of size α are located on opposite board corners. The
lower left base belongs to the white player and the upper right base
belongs to the black player. At game kick-off each player possesses
β pawns. The goal is to move a pawn into the opponent’s base.

The base is considered as a single square, therefore every pawn
of the base can move at one step to any of the adjacent to the base
free squares. A pawn can move to an empty square that is vertically
or horizontally adjacent, provided that the maximum distance from
its base is not decreased (so, backward moves are not allowed). Note
that the distance from the base is measured as the maximum of the
horizontal and the vertical distance from the base (and not as a sum
of these quantities). A pawn that cannot move is lost (more than one
pawn may be lost in one round). If some player runs out of pawns he
loses.

In Figure 1 some examples and counterexamples of moves are pre-
sented. The upper board demonstrates a legal and an illegal move (for
the pawn pointed to by the arrow - the illegal move is due to the rule



Figure 1. Examples and counterexamples of moves.

that does not allow decreasing the distance from the home base). The
lower boards demonstrate the loss of pawns (with arrows showing
pawn casualties), where a “trapped” pawn automatically draws away
from the game. As a by-product of this rule, when there is no free
square next to a base, the rest of the pawns of the base are lost.

The game is a discrete Markov procedure, since there are finite
states and moves and each action depends only on the current config-
uration on the board and not on how this configuration was obtained;
therefore, the Markov property (see for example [15], Section 3.5) is
satisfied. The a a priori knowledge of the system consists of the rules
only.

Reinforcement learning is quite good at helping explore the state
space of such games when it comes to learning how to play (as op-
posed to being instructed), for example by observing a tutor or an
opponent. In theory, the advantage of reinforcement learning to other
learning methods is that the target system itself detects which actions
to take via trial and error, with limited need for direct human involve-
ment. The goal is to learn an optimal policy that will maximize the
expected sum of rewards in a specific time, determining which action
should be taken next given the current state of the environment.

Before moving on, we reiterate same basic nomenclature.
By state s we mean the condition of a physical system as spec-

ified by a set of appropriate variables. A policy determines which
action should be performed in each state; a policy is a mapping from
states to actions. Reward r is a scalar variable that communicates
the change in the environment to the reinforcement learning system.
For example, in a missile controller, the reinforcement signal might
be the distance between the missile and the target (in which case, the
RL system should learn to minimize reinforcement). The value V (s)
of a state is defined as the sum of the rewards received when starting
in that state and following some fixed policy to a terminal state. The
optimal policy would therefore be the mapping from states to actions
that maximizes the sum of the rewards when starting in an arbitrary
state and performing actions until a terminal state is reached. The
value function is a mapping from states to state values and can be
approximated using any type of function approximation (e.g., multi-
layered perceptron, radial basis functions, look-up table, etc.).

Temporal difference (TD) learning is an approach to RL, based on
Monte Carlo and dynamic programming. TD methods update esti-
mates based in part on other learned estimates, without waiting for a
final outcome (bootstrapping). Whereas Monte Carlo methods must
wait until the end of the episode to determine the increment to V (s)
(only then is the reward known), TD methods need only wait until
the next time step. Eligibility traces are one of the basic mechanisms
of reinforcement learning. They can be seen as a temporary record of
the occurrence of an event, such as the visiting of a state. When a TD
error occurs, only the eligible states or actions are assigned credit or
blame for the error. Values are backed up according to the following
equation: V (s)new = V (s)old + αe(s)[r + V (s′) − V (s)], where
s is the state-position, V (s) its value, e(s) the eligibility trace, r the
reward from the transition, α the learning rate and s′ the resulting
state-position.

We now proceed to discuss some implementation issues concern-
ing the actual learning procedure. Each player approximates the
value function on its state space with a neural network. The input
layer nodes are the board positions for the next possible move plus
some flags depending on the number of surviving pawns and on the
adjacency to an enemy base. The hidden layer consists of half as
many hidden nodes and there is just one output node; it serves as
the degree to which we would like to make a specific move. At the
beginning all states have the same value except for the final states.
After each move the values are updated through TD(λ) [15]. The al-
gorithm used for the training was “vanilla” backpropagation, with
γ = 0.95 and λ = 0.5. By using γ 6= 1, we favour quick victo-
ries, as the reward decreases over time. Network weights constitute
a vector ~θ where updates occur according to ~θt+1 = ~θt + αδt~et,
where δt is the TD error, δt = rt+1 + γVt(st+1) − Vt(st) and ~et

is a vector of eligibility traces, one for each component of ~θt , up-
dated by ~et = γλ~et−1 +∇~θt

Vt(st) with ~e0 = ~0. All nodes use the
nonlinear sigmoid function h(j) = 1

1+e
−
∑

i
wijφ(i)

, of which the

values range from 0 to 1. In order to avoid local minima and encour-
age exploration of the state space, a commonly used starting ε-greedy
policy with ε = 0.9 was adopted, i.e., the system chooses the best-
valued action with a probability of 0.9 and a random action with a
probability of 0.1.

Note that, drawing on the above and the game description, we may
conclude that we cannot effectively learn a deterministic optimal pol-
icy. Such a policy does exist for the game [16], however the use of
an approximation effectively rules out such learning. Of course, even
if that was not the case, it does not follow that converging to such a
policy is computationally tractable [17].

Earlier experimentation [11] initially demonstrated that, when
trained with self-playing games, both players had nearly equal oppor-
tunities to win and neither player enjoyed a pole position advantage.
Follow-up research [12] furnished preliminary results that suggested
a computer playing against itself would achieve weaker performance
when compared to a computer playing against a human player. More
recently that line of research focused on the measurable detection of
improvement in automatic game playing, by constraining the moves
of the human (training player), while experimenting with different
options in the reward policies [13] and with varying game workflows
[14].

3 The experimental setup

To investigate the effect of employing a tutor at several sophistication
levels, we devised a set of experiments along the following stages and



associated objectives:

1. One session of 1, 000 computer-vs.-computer (CC) games. The
objective was to generate a baseline reference.

2. Five sessions of 100 computer-vs.-computer (MC) games each,
where the white player used minimax to determine its next move.
Each session involved a different look-ahead; we experimented
with look-aheads 1, 3, 5, 7 and 9 (note that a look-ahead of 2n+1,
denoted by MC2n+1, indicates n + 1 moves for the white player
and n moves for the black player). The objective was to train the
white players by tutors of increased sophistication.

3. Five sessions of 1, 000 CC games each, where each session was
based on one of the previous stage (for example, the MC3 ses-
sion was followed by a 1, 000 CC session). The objective was to
examine how the white player did when the tutor was absent, as
well as how the black player reacted when its opponent lost expert
support.

4. A tournament between all MC variants. A comparison between
variants X and Y is done in two steps of 1, 000 CC games each
where, in the first step the white player of the Xth batch plays
again the black player of the Y th batch and in the second step,
the white player of the Y th batch plays again the black player of
the Xth batch. The objective was to measure the quality of deep
look-ahead, which is an expensive undertaking.

All experiments were made on 8×8 boards with 2×2 bases, with
10 pawns for each player.

3.1 The tabula rasa case
The first stage delivered 490 games won by the white player and 510
games won by the black player. However, the white player needed an
average of 630 moves to win each game, whereas the black player
only required 438 moves on average.

On closer inspection of intermediate steps (by examining the first
1/10-th and then the fifth 1/10-th of experiments), we observed that
the balance of games won was never really disturbed, whereas the
average number of moves per game won fluctuated widely.

It is reasonable to declare that session a draw - and a good refer-
ence point. It also confirmed earlier similar findings [11].

3.2 The minimax case: early and standard
When deploying a minimax tutor, a certain level of look-ahead is
required.

Note that the white player’s network is always updated. This re-
flects that the white player attempts to build a playing model based
on its (minimax) tutor. That model is also used whenever minimax
examines a leaf state (in the minimax tree) that is not also a final
game; we use that state’s value as a surrogate for the minimax value
which we cannot compute.

When we examine MC experiments, we expect that the white
player’s performance will be improved the longer we allow exper-
imentation to carry on. There is a simple reason for that: the white
player is better situated to observe winning states and then update its
learning data structures accordingly, for those states that lead to a win
but have not been yet reached via minimax. The results are shown in
Table 1.

Indeed, we observe that as we experiment with 100 MC rounds
up from 10 MC rounds, the percentage of games won by the white
player does not decrease. Also, a consistent observation is that the av-
erage number of moves, per won game of the white player, decreases.

Look-ahead Games Won Average # of Moves
10 MC 100 MC 10 MC 100 MC
W B W B W B W B

1 7 3 93 7 30 67 34 110
3 6 4 93 7 19 31 17 45
5 9 1 91 9 21 19 17 73
7 3 7 82 18 62 162 54 181
9 10 0 89 11 17 21 14

Table 1. The evolution of minimax tutoring.

This indicates that the white player actually improves its playing,
taking less time to achieve a win. This is consistent with using the
neural network as a surrogate for the minimax value; a high value
steers the white player towards a promising path whenever minimax
cannot observe a final state. It is also interesting to observe that the
sessions where the black player wins have also become increasingly
lengthier.

The MC9 experiments are quite interesting. While the 10 - 0 score
of the first 10 experiments can be attributed to a twist of luck, the
rather short duration of games even for the games won by the black
player are intriguing. However, this observation can lead to two ex-
treme explanations: a very efficient black learner (suggesting that the
overall session at 100 games may be too small to call it significant)
or a performance degradation for both players.

3.3 Judging a tutor by the impact of absence

When the minimax tutor is absent, the black player has a learned be-
haviour that can be effectively deployed. The white player, however,
may be able to better deal with end-games; therein look-ahead is eas-
ier to deliver a win and subsequently update the neural network (with
credit, however, only marginally being able to flow back to states that
correspond to game openings).

There are two easily identifiable alternatives for game develop-
ment given that the two players have roughly similar learning capa-
bilities (see section 3.1).

One option is that the relative distribution of wins will not change
much from the numbers reported in the relevant columns (MC 100)
of Table 1.

Another option, however, is that the black player, which has had to
sustain a battering by an unusually effective opponent (the minimax
player), has also had to improve itself as much as possible due to such
harsh circumstances. In that case, we would expect that the black
player should have developed quite an effective defence. Since both
players are now not really adept at offence, it should be that both
could converge to an equal number of games being won by each side
in the long run and, as a side effect, games should also take longer to
complete.

The results are shown in Table 2.
We observe, that with the notable exception of MC1 experiments,

where the black player actually becomes faster at winning when the
CC session takes longer, actually allowing the CC session to evolve
makes both players slower.

It is very interesting that the first part of the CC session, which
consists of the first 100 games, invariably shows a dramatic increase
in the games won by black. That increase is dramatic throughout,
and not just for MC1 experiments, where one might be tempted to
say that no real minimax is actually employed.

It is also very interesting that a deeper look-ahead is associated



Look-ahead Games Won Average # of Moves
100 CC 1000 CC 100 CC 1000 CC
W B W B W B W B

1 72 28 556 444 32 28 36 49
3 58 42 390 610 679 628 742 377
5 55 45 649 351 341 235 697 429
7 42 58 576 424 284 199 441 430
9 23 77 300 700 47 20 733 437

Table 2. The evolution of post-minimax self play.

with a more dramatic decrease in how white does; however, we note
that for a look-ahead value of more than 5, that trend is eventually
reversed. Maybe, this signifies that the white player initially pays the
price for the absence of its tutor, yet loses so many games that it
is also forced to update that part of its learning structure that deals
with effective defence and eventually manages to counter the attack.
Where this eventually is not possible (see MC3 and MC9 experi-
ments), games take the longest to conclude among the observed ex-
periments; we believe that this is a signal that a learning stalemate
is being reached. That may be particularly true for the MC9 exper-
iments, where the increase in the length of the CC session does not
really affect the percentage of games won by each player.

3.4 Judging a tutor by a student tournament

When the minimax tutor is present, the white player does usually
win; however, the black player also learns quite a bit by losing too
often against an opponent that does have a strategy (losing against an
opponent by luck does not allow one to really learn anything).

Deciding what level of look-ahead to choose is a computationally
sensitive issue that can easily lead to an exponential explosion. It is
therefore natural to ask whether a certain level of look-ahead is worth
the price we pay for it. A straightforward way to look for an answer
is to organize a tournament among all learned behaviours.

A tournament game involves measuring the relative effectiveness
of the learning policies that delivered the model for each one of any
learning batches X and Y . Each comparison is done in two steps of
1, 000 CC games each. In the first step the white player of the Xth
batch plays again the black player of the Y th batch; in the second
step the white player of the Y th batch plays again the black player of
the Xth batch. Sample results are presented in Table 3.

Games Won Average # of Moves
W B W B

WhiteX - BlackY 715 285 291 397
WhiteY - BlackX 530 470 445 314

Table 3. Comparing learning batches X and Y .

Now, for each MC session, we can pit it against the other look-
ahead sessions (we remind the reader, that even during comparison,
the players actually evolve), by opposing white to black players.
Thus, each white player plays against all available black players; for
each such tournament game we report below, in Table 4, the surplus
of wins for the white player (a negative value indicates more wins for
the black side; -S- denotes the sum of these values and -R- denotes
the rank of the player compared to its peers).

Black
1 3 5 7 9 -S- -R-

White 1 −142 −138 −198 −88 −566 4
3 −48 430 −46 −204 132 2
5 80 56 −138 −84 −86 3
7 44 −258 216 186 188 1
9 −524 −400 −68 148 −844 5

-S- −448 −744 440 −234 −190
-R- 2 1 5 3 4

Table 4. Tournament results (on 1, 000 games).

The results are quite interesting. The MC3 session did surprisingly
well, both for the white player (132 more wins) and the black player
(744 more wins; note the negative sign for black players). Moreover,
its white player is just a close second to the white player of MC7.
MC9 is plain bad.

It is instructing to compare the above results to their snapshot at
only 100 CC games, as shown in Table 5.

Black
1 3 5 7 9 -S- -R-

White 1 −6 94 −30 −64 −6 1
3 −24 2 −72 2 −92 4
5 18 −84 −54 −82 −202 5
7 12 −24 8 −42 −46 2
9 −22 −32 −22 18 −58 3

-S- −16 −146 82 −138 −186
-R- 4 2 5 3 1

Table 5. Tournament results (on 100 games).

The overall ordering has changed quite dramatically. We believe
that this confirms the findings of section 3.3, where we noted that the
disappearance of the tutor has a very profound effect on the white
player in the short term.

We can now probably formulate the following explanation: a mini-
max tutor for the white player actually trains the black one by forcing
it to lose; when the tutor goes, however, the black player overwhelms
the white one, which has to adapt itself due to black pressure as fast
as possible. This is the pendulum effect that we spoke about in our
introductory section.

4 Discussion
We definitely need more experiments if we are to train (and not pro-
gram) computer players to a level comparable to that of a human
player. The options considered to-date [13, 14] range from experi-
mentation with a wealth of parameters of the reinforcement learning
and neural network parameters, with the input-output representation
of the neural network, or with alternative reward types or expert play-
ing policies.

We have developed our paper along the last recommendation, but
we believe that this may affect a decision on how to deal with the
other options as well.

In particular, we note that in the experiments detailed in earlier
studies of this game [11, 12, 13, 14], no indication was observed of
the pendulum effect; indeed, any interesting patterns of behaviour
eventually surfaced after the number of self-play games greatly ex-
ceeded the number actually used in this paper.



A possible explanation for this behaviour is that, indeed, the pa-
rameters of both the reinforcement learning and neural network in-
frastructure are inadequately specified to capture training on behalf
of the white player. However, even observing the pendulum effect
and relating it to an explanation that is not outside the realm of
human-to-human tutoring (namely, that one learns to do well when
facing a competent player), is a finding that, at the very least, justifies
the term “artificial intelligence”.

When viewed from the pendulum effect viewpoint, the finding that
increasing the look-ahead brings about quite a disturbance in the win-
ning patterns of CC games is less surprising. To be able to home on
a more precise explanation, we must scale experimentation up to at
least MC19 experiments, since we need at least 10 moves to move a
pawn out of its home base and into the enemy base (we say at least,
because an attacking pawn may have to move around a defending
one and such a manoeuvre could increase the overall path to the tar-
get base).

The above development directions notwithstanding, there is a key
technical development that merits close attention. This is the imple-
mentation of the actual minimax algorithm; a brute force approach,
as is currently employed, is quite expensive and its scaling leaves a
lot to be desired.

Overall, we believe that an interesting direction for future work
is determining whether the pendulum effect is due to the introduc-
tion of the minimax tutor or if it relates to the experimental setup
(i.e., number of games, board size, learning parameters, etc.). Hav-
ing said that, the recommendations set out in previous treatments of
this game [13, 14] are still valid. A meta-experimentation engine [18]
that would attempt to calculate (most probably, via evolution) good
reinforcement learning and neural network parameters, as well as de-
sign a series of minimax-based training games, seems quite promis-
ing. Yet again, however, it is interactive evolution that seems to hold
the most potential. While intuitively appealing, earlier experimental
workflows [14] had to be customized for the requirements of this
paper. This was a very human-intensive effort, costing well beyond
what the actual experiments cost. Yet, it is exactly the design of ex-
perimental sessions that could help uncover interesting learning pat-
terns, such as the pendulum effect. While a meta-experimentation
game could in theory deliver an excellent computer player, it would
obviously subtract from our research effort some of the drive that is
associated with the discovery of interesting learning phenomena.

5 Conclusion

This paper focused on the presentation of carefully designed experi-
ments, at a large scale, to support the claim that expert tutoring can
measurably improve the performance of computer players in a board
game. In our context, the expert role is assumed by a minimax player.

After elaborating on the experimental setup, we presented the re-
sults which are centered on two key statistics: number of games won
at the beginning and at the end of a session.

The computation of these statistics is a trivial task, but the key
challenge is how to associate them with the actual depth of the tu-
toring expertise. As minimax offers a straightforward way to control
such depth via its look-ahead parameter, it is tempting to consider
such task as an easy one, however we have found that the quality of
the training did not necessarily increase with increasing look-ahead.

The AI toolbox is full of techniques that can be applied to the
problem of co-evolutionary gaming and beyond [19]. Still, however,
streamlining the experimentation process in game analysis is more
of an engineering issue. As such, it calls for productivity enhancing

tools, especially so if we also attempt to shed some light into the
dynamics of intelligent systems and how they relate to identifiable
traits of human cognition.

ACKNOWLEDGEMENTS
This paper and the results reported herein have not been submitted
elsewhere. All previous related work by the same authors has been
referenced and properly acknowledged. The code is available on de-
mand for personal academic research purposes, as well as the com-
plete design of the experimental sequences and the related results.
Finally, the authors wish to thank the reviewers for useful comments
and suggestions.

REFERENCES
[1] C. Shannon. “Programming a Computer for Playing Chess”, Philosoph-

ical Magazine, Vol. 41 (4), pp. 265-275, 1950.
[2] A. Samuel. “Some Studies in Machine Learning Using the Game of

Checkers”, IBM Journal of Research and Development, Vol. 3, pp. 210-
229, 1959.

[3] R.S. Sutton. “Learning to Predict by the Methods of Temporal Differ-
ences”, Machine Learning, Vol. 3, pp. 9-44, 1988.

[4] G. Tesauro. “Practical Issues in Temporal Difference Learning”, Ma-
chine Learning, Vol. 8, No. 3-4, pp. 257-277, 1992.

[5] G. Tesauro. “Temporal Difference Learning and TD-Gammon”, Com-
munications of the ACM, Vol. 38, No 3, pp. 58-68, 1995.

[6] G. Tesauro. “Programming Backgammon Using Self-teaching Neural
Nets”, Artificial Intelligence, 134(3), pp. 181-199, 2002.

[7] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake,
P. Lu and S. Sutphen. “Checkers is Solved”, Science, Vol. 317, pp.
1518-1522, 2007.

[8] H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura.
“Monte Carlo Go Has a Way to Go”. Proceedings of AAAI Conference
on Artificial Intelligence, 2006.

[9] I. Ghory. “Reinforcement Learning in Board Games”, Technical report
CSTR-04-004, Department of Computer Science, University of Bristol,
2004.

[10] D. Osman, J. Mańdziuk. “TD-GAC: Machine Learning Experiment
with Give-Away Checkers”, Issues in Intelligent Systems. Models and
Techniques, M. Dramiński et al. (eds.), EXIT, pp. 131-145, 2005.

[11] D. Kalles and P. Kanellopoulos. “On Verifying Game Design and Play-
ing Strategies using Reinforcement Learning”, ACM Symposium on Ap-
plied Computing, special track on Artificial Intelligence and Computa-
tion Logic, Las Vegas, pp. 6-11, March 2001.

[12] D. Kalles, E. Ntoutsi. “Interactive Verification of Game Design and
Playing Strategies”, Proceedings of IEEE International Conference on
Tools with Artificial Intelligence, pp. 425-430, Washington D.C., 2002.

[13] D. Kalles. “Measuring Expert Impact on Learning how to Play a Board
Game”, Proceedings of 4th IFIP Conference on Artificial Intelligence
Applications and Innovations, Athens, Greece, September 2007

[14] D. Kalles. “Player Co-modeling in a Strategy Board Game: Discovering
How to Play Fast”, Cybernetics and Systems, Vol. 39, No. 1, pp. 1 - 18,
2008.

[15] R. Sutton and A. Barto. “Reinforcement Learning - An Introduction”,
MIT Press, Cambridge, Massachusetts, 1998.

[16] M.L. Littman. “Markov Games as a Framework for Multi-Agent Rein-
forcement Learning”, Proceedings of 11th International Conference on
Machine Learning, San Francisco, pp 157-163, 1994.

[17] A. Condon. “The Complexity of Stochastic Games”, Information and
Computation, 96, pp. 203-224, 1992.

[18] I. Partalas, G. Tsoumakas, I. Katakis and I. Vlahavas. “Ensembe Prun-
ing Using Reinforcement Learning”, Proceedings of the 4th Panhel-
lenic conference on Artificial Intelligence, Heraklion, Greece, Springer
LNCS 3955, pp. 301-310, 2006.

[19] C.D. Rosin. “Co-evolutionary Search Among Adversaries”. Ph.D. The-
sis, University of California at San Diego, 1997.


