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ABSTRACT

Localization of an isotropic acoustic source using energy measure-

ments from distributed sensors is considered. While most acous-

tic source localization algorithms require that distance estimates be-

tween the sensors and the source of interest are available, we pro-

pose a linear least squares criterion that does not make such an as-

sumption. The new criterion can yield the location of the source

and its transmit power in closed form. A weighted least squares cost

function is also considered, and distributed implementation of the

proposed estimators is studied. Numerical results indicate signifi-

cant performance improvement as compared to a linear least squares

based approach that utilizes energy ratios, and comparable perfor-

mance to other estimators of higher computational complexity.

Index Terms— Position measurement, Least squares methods,

Distributed algorithms

1. INTRODUCTION

Localizing and tracking moving objects is an essential capability for

a Wireless Sensor Network (WSN) [1]. On the other hand, sen-

sor networks must operate using minimum resources: typical sensor

nodes are battery powered and have limited processing ability. These

constraints impose new challenges in algorithm development, and

imply that power efficient, distributed and cooperative techniques

should be employed.

Source localization methods fall mainly into two broad cate-

gories. The algorithms of the first category utilize Time Delay Of Ar-

rival (TDOA) measurements, whereas the algorithms of the second

category use Direction Of Arrival (DOA) measurements. DOA es-

timates are particularly useful for locating sources emitting narrow-

band signals [2], while TDOA measurements offer the increased ca-

pability of localizing sources emitting broadband signals [3]. How-

ever, both methods require high enough sampling rate and accurate

synchronization. Recently [4], a new approach to source localization

was proposed, that utilizes Received Signal Strength (RSS) measure-

ments. In order to avoid the ambiguities due to the unknown power

of the source, it was proposed to compute ratios of measurements

taken at pairs of active sensors. Note that, a sensor node is character-

ized as active if its reading is greater than a predetermined threshold.

In [5], maximum likelihood multiple-source localization based on

RSS measurements was considered. In [6], a distributed “incremen-

tal subgradient” algorithm was prosposed to yield the source location

estimate iteratively. In [7], the algorithm of [8] was modified so as

This work is part of the 03ED910 research project, implemented within
the framework of the “Reinforcement Programme of Human Research Man-
power” (PENED) and co-financed by National and EC Funds

to utilize RSS measurements instead of range difference measure-

ments, however the source power was assumed known. Consider-

ing dense WSNs in [9], source location estimates that are robust to

erroneous modelling of the energy decay function were derived by

properly averaging the locations of active sensors. More recently, a

distributed localization algorithm enjoying good convergence prop-

erties was proposed in [10]. In [11], a non-linear cost function for

localization was proposed and it was proven that its gradient descent

minimization is globally converging.

In this work, we show that distance estimation can properly be

incorporated into a linear Least Squares (LS) cost function so that the

source location and its unknown power can be estimated in closed

form. A weighted LS cost function is also derived. Furthermore,

distributed implementation of the estimators is considered.

2. PROBLEM FORMULATION

The energy attenuation model of [4] is adopted. Let us consider N
sensor nodes with known location vectors rn ∈ Rp×1. An energy

source is located at an unknown location r ∈ Rp×1. The RSS mea-

surement yn acquired by sensor node n is given by

yn = gn

A

||r − rn||2
+ wn, n = 1, 2, . . . , N (1)

where gn denotes the gain of node n and A denotes the power of the

source as measured at 1 meter from it. The aim is to estimate the

source location vector r. Measurements yn are corrupted by Addi-

tive White Gaussian Noise (AWGN) wn with mean µ > 0 and vari-

ance σ2 = 2µ2/M , where M denotes the number of signal samples

involved in the estimation of the power sample yn [4]. In this work,

for the sake of simplicity, we assume that the sensor nodes are well

calibrated so that gn = 1. Furthermore it is assumed that all sensors

are identical so that the noise that corrupts the RSS estimates has the

same statistics for all sensor nodes. However, the results presented

here could be easily generalized for the case where each sensor node

n has an estimate of its gain gn and its measurement is corrupted by

AWGN with mean µn, different for each sensor.

Provided that the distances ρn = ||r − rn|| between each sen-

sor node n and the source of interest have been estimated as ρ̂n, an

estimate of the source location is given by (see [1] pp. 31-32, also

equation (2.2) of [11] ):

r̃ = arg min
r

||Pr − b||2 (2)

where P is a N(N − 1)/2 × p matrix and b is a N(N − 1)/2 × 1
vector, whose k-th rows are given by

P
T
k = 2(rT

j − r
T
i ), bk = ||rj ||2 − ||ri||2 + ρ̂2

i − ρ̂2
j (3)



for i = 1, . . . , N − 1, j = i + 1, . . . , N and k corresponds to an

arbitrary ordering of all the
(

N

2

)

pairs of sensor nodes {i, j}. Al-

though there are
(

N

2

)

linear equations in (2), it can easily be verified

that only N − 1 equations are linearly independent.

Unfortunately, the aforementioned LS criterion cannot be di-

rectly used for localization using RSS measurements, since it re-

quires the distances of the sensors from the source, that are not avail-

able. Of course, if the power A was known, such distance estimates

could be obtained using ρ̂n ≈
√

A/(yn − µ). However, the method

that will be presented in the next Section relies directly on the energy

measurements and does not need a previous estimate of A.

3. THE NEW LOCALIZATION ALGORITHM

3.1. Alternative formulation of the LS problem

The k-th equation in (2) is

2(rT
j − r

T
i )r = ||rj ||2 − ||ri||2 + ρ̂2

i − ρ̂2
j . (4)

Let us define zn = yn − wn and ẑn = yn − µ with zn denoting

the noiseless measurements (deterministic) and ẑn the noisy mean-

corrected measurements, respectively. We add the term

A

ẑj

− A

ẑi

(5)

on both sides of (4), and replace the distance estimates ρ̂2
n by the

correct squared distances ρ2
n = A/zn to get

2(rT
j − r

T
i )r +

(

1

ẑj

− 1

ẑi

)

A = ||rj ||2 − ||ri||2 + ei,j (6)

where

ei,j = A

(

wi − µ

ẑizi

)

− A

(

wj − µ

ẑjzj

)

. (7)

From (7), we can observe that if the random variables ẑi and ẑj take

large values (i.e. high SNR) then ei,j will behave as a noise term.

Furthermore, since the expected values of the numerators in (7) are

zero, we regard ei,j as a zero mean noise term.

We can express the
(

N

2

)

equations in (6) in matrix form as

P
′
r
′ = b

′ + e (8)

where the k-th row of matrix P′ is given by

P
′T
k =

[

2(rT
j − r

T
i )

(

1

ẑj

− 1

ẑi

)]

, (9)

the k-th elements of vectors b′ and e are respectively

b′k = ||rj ||2 − ||ri||2 , ek = ei,j (10)

and r′T = [rT A]. Thus, minimization of ||P′r′−b′||2 gives [12]

r̃
′ = (P′T

P
′)−1

P
′T

b
′

(11)

to yield both the source location vector r and its power A in closed

form. In the following, we will refer to the above estimator as the

Linear Least Squares (LLS) estimator. As pointed out by anony-

mous reviewers, an estimator similar to (11) was reported in [13].

However, in that work, no expression for ei,j required for comput-

ing accurate weights, as discussed in the next section, was given.

3.2. Weighted least squares

In the previous, we treated all the error terms of the LS cost function

as equally important. However, each pair of nodes {i, j} should have

a different weight on the respective error term of the LS function.

For example, pairs of nodes with high SNRs should have a greater

influence on the cost function than pairs with smaller SNRs. Thus,

in this section we derive proper weights and introduce a modification

of the aforementioned linear LS problem.

Our scope is to compute a weighting matrix W and solve the

LS problem WP′r ∼ Wb′. The optimal selection for matrix C =
WT W is the inverse of the noise covariance matrix [12]

C = E[eeT ]−1 . (12)

It can be shown that matrix E[eeT ] is a sparse matrix having O(N2)

non-zero elements out of
(

N

2

)2
total elements. The diagonal el-

ements of matrix E[eeT ] at the k-th row and k-th column (k =
1, 2, . . . ,

(

N

2

)

) will be given by

E[e2
i,j ] = A2E

[

(

wi − µ

ẑizi

)2
]

+ A2E

[

(

wj − µ

ẑjzj

)2
]

− 2A2E

[

wi − µ

ẑizi

]

E

[

wj − µ

ẑjzj

]

. (13)

Now, assuming that both terms of ei,j are zero mean and using the

first-order approximation for the variance of the ratio of two random

variables R1 and R2 given by [14]:

V

[

R1

R2

]

≈ V [R2]
E2[R1]

E4[R2]
+

V [R1]

E2[R2]
− 2Cov[R1, R2]

E[R1]

E[R2]

we have that

E[e2
i,j ] ≈

A2

z4
i

σ2 +
A2

z4
j

σ2 . (14)

Since zn denotes the unobserved noise-free measurements, we re-

place zn by ẑn. Note that ẑn = yn − µ is the best estimator of

zn, since we have only one measurement yn. Furthermore, as the

solution of the weighted LS problem does not change due to multi-

plication of the weighting matrix by a scalar, we finally have

E[e2
i,j ] ∝ dk =

1

ẑ4
i

+
1

ẑ4
j

. (15)

Using similar reasoning, we can find the following expressions for

the non-zero non-diagonal elements of E[eeT ]

E[ei,jej,l] ∝ − 1

ẑ4
j

and E[ei,jei,l] ∝
1

ẑ4
i

.

However, keeping in mind the restrictive computation and commu-

nication abilities of wireless sensor networks, we will depart from

the above optimal selection of the weighting matrix. In particular,

we will assume that E[eeT ] is a diagonal matrix. This approach,

although not optimal, has the advantage that it can be implemented

in a distributed fashion. Furthermore, numerical experiments veri-

fied that small performance degradation occurs by performing this

approximation. Thus, in place of matrix C we use the diagonal ma-

trix

Ĉ = diag[1/d1 1/d2 · · · 1/d(N
2
)] (16)

and in place of the associated matrix W we use

Ŵ = diag





1√
d1

1√
d2

· · · 1
√

d(N
2
)



 . (17)



Input from node i: θt−1, Rt−1, ri, ẑi

Set the forgetting factor λ

pt =
[

2(rT
j − rT

i )
(

1

ẑj
− 1

ẑi

)]T

bt = ||rj ||2 − ||ri||2

wt =

{

1 For the LLS estimator

1/
√

dk For the DWLLS estimator
vt = wtRt−1pt

kt = 1

λ+wtp
T
t vt

vt

ξt = wtbt − wtθ
T
t−1pt

θt = θt−1 + ktξt

Rt = λ−1Rt−1 − λ−1wtktp
T
t Rt−1

Select next node l
Output to node l: θt, Rt, rj , ẑj

Table 1. Distributed source localization using the RLS algorithm.
Node j receives data at time t from node i, updates the estimates,
and forwards its data to node l

Finally, the solution of the weighted LS problem can be expressed

as

r̃
′

w = (P′T
ĈP

′)−1
P

′T
Ĉb

′ . (18)

In the following, we will refer to the above estimator as the Diag-

onally Weighted Linear Least Squares (DWLLS) estimator. Also,

we will refer to the estimator that does not make the diagonal ma-

trix approximation as the Weighted Linear Least Squares estimator

(WLLS).

4. DISTRIBUTED IMPLEMENTATION

Linear LS cost functions are particularly attractive since well-known

adaptive algorithms (i.e. Least Mean Square (LMS), Recursive Least

Squares (RLS) [15]) exist for minimization and/or tracking of the

solution in a scenario where the source moves and/or its power varies

with time. It is quite easy to derive such adaptive estimators from

(11) and (18). Furthermore, by observing the k-th linear equation

in the aforementioned cost functions, we note that it is dependent

only on information available to nodes i and j. Thus, distributed

minimization is possible.

Let us consider for example that all active nodes in the network

are organized in a circle, and that node i has an estimate θt−1 of r̃′

(or r̃′w) at some discrete time instant t−1. Then, node i forwards its

estimate to the next active node j. Table 1 describes the steps taken

by node j at time t, following the RLS algorithm. Node j will in

turn forward its data to the next node l, and so on.

The communication cost of the algorithm in Table 1 consists in

transmitting the current estimate θt, the inverse correlation matrix

Rt, as well as the location vector rj and measurement ẑj in every

iteration of the distributed algorithm. For static sensors, the location

vectors need to be transmitted only once. Similarly, measurements

ẑj need to be transmitted only if they change (i.e. moving source

and/or new samples are acquired). Thus, the overall communication

cost for the static case after K iterations will be to transmit Np +
N + K((p + 1) + (p + 1)2) real numbers, where p is the number

of dimensions of the deployment field and N is the number of active

nodes. Using the LMS approach, we save the cost of transmitting

the inverse correlation matrix, thus reducing the communication cost

to Np + N + K(p + 1) real numbers. However, this will reduce

convergence speed.

Organizing the active nodes into a circle, might prove to be a

challenging task. In particular, since not all sensor pairs contain the
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same “quality” of information, we have that the selection of the cir-

cle is critical to the performance of the algorithm. Thus, a proper

cost function should be defined for this task in conjunction with a

distributed algorithm for its minimization. In order to avoid this

“overhead” computation and communication, we propose to forward

estimates from node to node in a random walk fashion. Thus, node

j selects the next node l among its neighbors uniformly at random.

Besides the computation and communication savings, this approach

will use all the
(

N

2

)

pairs of nodes, rather than using only N pairs

along a circle. The expected time in which a random walk traverses

all the edges of a complete graph of N nodes is studied in [16].

Simulation results presented in the next section, demonstrate that

the random walk based approach achieves minimization of the cost

function, at the cost of increasing the time required for convergence.

5. NUMERICAL RESULTS

In order to assess the convergence speed of the proposed algorithms

we simulated a sensor network in which 1500 nodes were uniformly

developed over a 100m×100m field. A signal source with A = 100
was located at r = [50 50]T . The noise variance was σ2 = 1.

N = 11 active nodes cooperated for the estimation based on their

distance from the source. Figure 1 presents the Root Mean Squared

(RMS) error of the location estimate as a function of the iterations

performed. A total of 50N iterations were conducted and the results

are the average of 1000 different noise realizations. We examined
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the random walk based RLS versions of the LLS and DWLLS esti-

mators, the RLS versions of LLS and DWLLS where the nodes have

been organized in a circle in order of decreasing measurement, and

the Cramer-Rao lower bound [5]. All algorithms start from an ini-

tial location at [100 100]T while the initial value of A was set equal

to zero. The inverse correlation matrix for all RLS algorithms was

initialized to 100I while the forgetting factor λ was 1. From Fig-

ure 1, we note that organization of nodes in a circle of decreasing

measurement gives very fast convergence speed, as expected, and a

single circle (11 hops) is adequate for convergence. In practice how-

ever, one should also take into account the time required to achieve

this organization of the nodes. On the other hand, the random walk

based algorithms converge slower but require no organization of the

nodes. Interestingly, the DWLLS estimator in this setting achieves a

performance close to the Cramer-Rao bound.

In another simulation, the performance of the proposed estima-

tors was compared to the the ER-LS, ER-NLS and Maximum Like-

lihood (ML) estimators of [5]. The number of nodes was increased

from 300 to 3100 in 200 increments. Active nodes were selected

as those with measurement higher than a threshold equal to 5 + µ,

i.e. only sensors whose SNR ((yn − µ)/σ2) is greater than 7dB

take part in the estimation procedure. For ML estimation, two mul-

tiresolution iterations were performed, using a 10m × 10m square

grid centered at the actual source location for the first iteration, and

a 5m × 5m grid for the second iteration. Each grid used 81 × 81
search points logarithmically distributed around their center. Also,

optimization for the ER-NLS approach was conducted by applying

the method described in [10]. Figures 2 and 3 demonstrate the error

(RMS and root median square) for localization and power estimation

respectively, as a function of the average number of active nodes N̄ .

The results are the average of 50000 Monte Carlo runs. Network

realizations resulting in less than 5 active nodes were not permitted.

Figure 2 demonstrates that the proposed estimators offer better

localization accuracy than the ER-LS, and comparable performance

to the ER-NLS approach. In particular, one can observe that the

ER-NLS approach (optimized using POCS [10]) gives smaller RMS

error than the DWLLS, while the DWLLS approach achieves better

root median square error. We noticed that this phenomenon is due

to some “ill-conditioned” network topologies that may be realized.

These topologies result in very big location errors for LS-based al-

gorithms and dominate RMS error calculation. In order to overcome

this, we have applied robust methods based on the Huber norm [17].

Numerical results not included here have shown the effectiveness of

such robust methods in tackling this phenomenon.

Figure 3 demonstrates that the proposed estimators provide es-

timates for the power of the acoustic source that get close to the

estimates provided by the Maximum Likelihood estimator, as the

network density increases. Note that the ER-LS and ER-NLS esti-

mators of [5], do not provide an estimate of A and thus they are not

included in Figure 3.

6. CONCLUSIONS

In this work, we derived novel linear least squares criteria for joint

estimation of the location and power of an acoustic source. The

proposed criteria utilize received signal strength measurements and

are particularly suited to low-cost networks of distributed sensors.

Weighted least squares were also considered and distributed imple-

mentation was studied. Numerical results verified that the proposed

estimators offer good performance-complexity trade-offs as com-

pared to existing estimators. Future work will focus on the appli-

cation of optimization methods based on robust statistics in order

to explore the potential performance improvement of the proposed

criteria.
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